0d2cbe59b7
In this patch, we introduce five APIs to support TCP/IPv4 GRO. - gro_tcp4_reassemble: reassemble an inputted TCP/IPv4 packet. - gro_tcp4_tbl_create: create a TCP/IPv4 reassembly table, which is used to merge packets. - gro_tcp4_tbl_destroy: free memory space of a TCP/IPv4 reassembly table. - gro_tcp4_tbl_pkt_count: return the number of packets in a TCP/IPv4 reassembly table. - gro_tcp4_tbl_timeout_flush: flush timeout packets from a TCP/IPv4 reassembly table. TCP/IPv4 GRO API assumes all inputted packets are with correct IPv4 and TCP checksums. And TCP/IPv4 GRO API doesn't update IPv4 and TCP checksums for merged packets. If inputted packets are IP fragmented, TCP/IPv4 GRO API assumes they are complete packets (i.e. with L4 headers). In TCP/IPv4 GRO, we use a table structure, called TCP/IPv4 reassembly table, to reassemble packets. A TCP/IPv4 reassembly table includes a key array and a item array, where the key array keeps the criteria to merge packets and the item array keeps packet information. One key in the key array points to an item group, which consists of packets which have the same criteria value. If two packets are able to merge, they must be in the same item group. Each key in the key array includes two parts: - criteria: the criteria of merging packets. If two packets can be merged, they must have the same criteria value. - start_index: the index of the first incoming packet of the item group. Each element in the item array keeps the information of one packet. It mainly includes three parts: - firstseg: the address of the first segment of the packet - lastseg: the address of the last segment of the packet - next_pkt_index: the index of the next packet in the same item group. All packets in the same item group are chained by next_pkt_index. With next_pkt_index, we can locate all packets in the same item group one by one. To process an incoming packet needs three steps: a. check if the packet should be processed. Packets with one of the following properties won't be processed: - FIN, SYN, RST, URG, PSH, ECE or CWR bit is set; - packet payload length is 0. b. traverse the key array to find a key which has the same criteria value with the incoming packet. If find, goto step c. Otherwise, insert a new key and insert the packet into the item array. c. locate the first packet in the item group via the start_index in the key. Then traverse all packets in the item group via next_pkt_index. If find one packet which can merge with the incoming one, merge them together. If can't find, insert the packet into this item group. Signed-off-by: Jiayu Hu <jiayu.hu@intel.com> Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
279 lines
7.4 KiB
C
279 lines
7.4 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2017 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_ethdev.h>
|
|
|
|
#include "rte_gro.h"
|
|
#include "gro_tcp4.h"
|
|
|
|
typedef void *(*gro_tbl_create_fn)(uint16_t socket_id,
|
|
uint16_t max_flow_num,
|
|
uint16_t max_item_per_flow);
|
|
typedef void (*gro_tbl_destroy_fn)(void *tbl);
|
|
typedef uint32_t (*gro_tbl_pkt_count_fn)(void *tbl);
|
|
|
|
static gro_tbl_create_fn tbl_create_fn[RTE_GRO_TYPE_MAX_NUM] = {
|
|
gro_tcp4_tbl_create, NULL};
|
|
static gro_tbl_destroy_fn tbl_destroy_fn[RTE_GRO_TYPE_MAX_NUM] = {
|
|
gro_tcp4_tbl_destroy, NULL};
|
|
static gro_tbl_pkt_count_fn tbl_pkt_count_fn[RTE_GRO_TYPE_MAX_NUM] = {
|
|
gro_tcp4_tbl_pkt_count, NULL};
|
|
|
|
/*
|
|
* GRO context structure, which is used to merge packets. It keeps
|
|
* many reassembly tables of desired GRO types. Applications need to
|
|
* create GRO context objects before using rte_gro_reassemble to
|
|
* perform GRO.
|
|
*/
|
|
struct gro_ctx {
|
|
/* GRO types to perform */
|
|
uint64_t gro_types;
|
|
/* reassembly tables */
|
|
void *tbls[RTE_GRO_TYPE_MAX_NUM];
|
|
};
|
|
|
|
void *
|
|
rte_gro_ctx_create(const struct rte_gro_param *param)
|
|
{
|
|
struct gro_ctx *gro_ctx;
|
|
gro_tbl_create_fn create_tbl_fn;
|
|
uint64_t gro_type_flag = 0;
|
|
uint64_t gro_types = 0;
|
|
uint8_t i;
|
|
|
|
gro_ctx = rte_zmalloc_socket(__func__,
|
|
sizeof(struct gro_ctx),
|
|
RTE_CACHE_LINE_SIZE,
|
|
param->socket_id);
|
|
if (gro_ctx == NULL)
|
|
return NULL;
|
|
|
|
for (i = 0; i < RTE_GRO_TYPE_MAX_NUM; i++) {
|
|
gro_type_flag = 1 << i;
|
|
if ((param->gro_types & gro_type_flag) == 0)
|
|
continue;
|
|
|
|
create_tbl_fn = tbl_create_fn[i];
|
|
if (create_tbl_fn == NULL)
|
|
continue;
|
|
|
|
gro_ctx->tbls[i] = create_tbl_fn(param->socket_id,
|
|
param->max_flow_num,
|
|
param->max_item_per_flow);
|
|
if (gro_ctx->tbls[i] == NULL) {
|
|
/* destroy all created tables */
|
|
gro_ctx->gro_types = gro_types;
|
|
rte_gro_ctx_destroy(gro_ctx);
|
|
return NULL;
|
|
}
|
|
gro_types |= gro_type_flag;
|
|
}
|
|
gro_ctx->gro_types = param->gro_types;
|
|
|
|
return gro_ctx;
|
|
}
|
|
|
|
void
|
|
rte_gro_ctx_destroy(void *ctx)
|
|
{
|
|
gro_tbl_destroy_fn destroy_tbl_fn;
|
|
struct gro_ctx *gro_ctx = ctx;
|
|
uint64_t gro_type_flag;
|
|
uint8_t i;
|
|
|
|
if (gro_ctx == NULL)
|
|
return;
|
|
for (i = 0; i < RTE_GRO_TYPE_MAX_NUM; i++) {
|
|
gro_type_flag = 1 << i;
|
|
if ((gro_ctx->gro_types & gro_type_flag) == 0)
|
|
continue;
|
|
destroy_tbl_fn = tbl_destroy_fn[i];
|
|
if (destroy_tbl_fn)
|
|
destroy_tbl_fn(gro_ctx->tbls[i]);
|
|
}
|
|
rte_free(gro_ctx);
|
|
}
|
|
|
|
uint16_t
|
|
rte_gro_reassemble_burst(struct rte_mbuf **pkts,
|
|
uint16_t nb_pkts,
|
|
const struct rte_gro_param *param)
|
|
{
|
|
uint16_t i;
|
|
uint16_t nb_after_gro = nb_pkts;
|
|
uint32_t item_num;
|
|
|
|
/* allocate a reassembly table for TCP/IPv4 GRO */
|
|
struct gro_tcp4_tbl tcp_tbl;
|
|
struct gro_tcp4_key tcp_keys[RTE_GRO_MAX_BURST_ITEM_NUM];
|
|
struct gro_tcp4_item tcp_items[RTE_GRO_MAX_BURST_ITEM_NUM] = {{0} };
|
|
|
|
struct rte_mbuf *unprocess_pkts[nb_pkts];
|
|
uint16_t unprocess_num = 0;
|
|
int32_t ret;
|
|
uint64_t current_time;
|
|
|
|
if ((param->gro_types & RTE_GRO_TCP_IPV4) == 0)
|
|
return nb_pkts;
|
|
|
|
/* get the actual number of packets */
|
|
item_num = RTE_MIN(nb_pkts, (param->max_flow_num *
|
|
param->max_item_per_flow));
|
|
item_num = RTE_MIN(item_num, RTE_GRO_MAX_BURST_ITEM_NUM);
|
|
|
|
for (i = 0; i < item_num; i++)
|
|
tcp_keys[i].start_index = INVALID_ARRAY_INDEX;
|
|
|
|
tcp_tbl.keys = tcp_keys;
|
|
tcp_tbl.items = tcp_items;
|
|
tcp_tbl.key_num = 0;
|
|
tcp_tbl.item_num = 0;
|
|
tcp_tbl.max_key_num = item_num;
|
|
tcp_tbl.max_item_num = item_num;
|
|
|
|
current_time = rte_rdtsc();
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
if ((pkts[i]->packet_type & (RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_TCP)) ==
|
|
(RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP)) {
|
|
ret = gro_tcp4_reassemble(pkts[i],
|
|
&tcp_tbl,
|
|
current_time);
|
|
if (ret > 0)
|
|
/* merge successfully */
|
|
nb_after_gro--;
|
|
else if (ret < 0) {
|
|
unprocess_pkts[unprocess_num++] =
|
|
pkts[i];
|
|
}
|
|
} else
|
|
unprocess_pkts[unprocess_num++] = pkts[i];
|
|
}
|
|
|
|
/* re-arrange GROed packets */
|
|
if (nb_after_gro < nb_pkts) {
|
|
i = gro_tcp4_tbl_timeout_flush(&tcp_tbl, current_time,
|
|
pkts, nb_pkts);
|
|
if (unprocess_num > 0) {
|
|
memcpy(&pkts[i], unprocess_pkts,
|
|
sizeof(struct rte_mbuf *) *
|
|
unprocess_num);
|
|
}
|
|
}
|
|
|
|
return nb_after_gro;
|
|
}
|
|
|
|
uint16_t
|
|
rte_gro_reassemble(struct rte_mbuf **pkts,
|
|
uint16_t nb_pkts,
|
|
void *ctx)
|
|
{
|
|
uint16_t i, unprocess_num = 0;
|
|
struct rte_mbuf *unprocess_pkts[nb_pkts];
|
|
struct gro_ctx *gro_ctx = ctx;
|
|
uint64_t current_time;
|
|
|
|
if ((gro_ctx->gro_types & RTE_GRO_TCP_IPV4) == 0)
|
|
return nb_pkts;
|
|
|
|
current_time = rte_rdtsc();
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
if ((pkts[i]->packet_type & (RTE_PTYPE_L3_IPV4 |
|
|
RTE_PTYPE_L4_TCP)) ==
|
|
(RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP)) {
|
|
if (gro_tcp4_reassemble(pkts[i],
|
|
gro_ctx->tbls
|
|
[RTE_GRO_TCP_IPV4_INDEX],
|
|
current_time) < 0)
|
|
unprocess_pkts[unprocess_num++] = pkts[i];
|
|
} else
|
|
unprocess_pkts[unprocess_num++] = pkts[i];
|
|
}
|
|
if (unprocess_num > 0) {
|
|
memcpy(pkts, unprocess_pkts,
|
|
sizeof(struct rte_mbuf *) *
|
|
unprocess_num);
|
|
}
|
|
|
|
return unprocess_num;
|
|
}
|
|
|
|
uint16_t
|
|
rte_gro_timeout_flush(void *ctx,
|
|
uint64_t timeout_cycles,
|
|
uint64_t gro_types,
|
|
struct rte_mbuf **out,
|
|
uint16_t max_nb_out)
|
|
{
|
|
struct gro_ctx *gro_ctx = ctx;
|
|
uint64_t flush_timestamp;
|
|
|
|
gro_types = gro_types & gro_ctx->gro_types;
|
|
flush_timestamp = rte_rdtsc() - timeout_cycles;
|
|
|
|
if (gro_types & RTE_GRO_TCP_IPV4) {
|
|
return gro_tcp4_tbl_timeout_flush(
|
|
gro_ctx->tbls[RTE_GRO_TCP_IPV4_INDEX],
|
|
flush_timestamp,
|
|
out, max_nb_out);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint64_t
|
|
rte_gro_get_pkt_count(void *ctx)
|
|
{
|
|
struct gro_ctx *gro_ctx = ctx;
|
|
gro_tbl_pkt_count_fn pkt_count_fn;
|
|
uint64_t item_num = 0;
|
|
uint64_t gro_type_flag;
|
|
uint8_t i;
|
|
|
|
for (i = 0; i < RTE_GRO_TYPE_MAX_NUM; i++) {
|
|
gro_type_flag = 1 << i;
|
|
if ((gro_ctx->gro_types & gro_type_flag) == 0)
|
|
continue;
|
|
|
|
pkt_count_fn = tbl_pkt_count_fn[i];
|
|
if (pkt_count_fn == NULL)
|
|
continue;
|
|
item_num += pkt_count_fn(gro_ctx->tbls[i]);
|
|
}
|
|
return item_num;
|
|
}
|