b70b56032b
This library provides reordering capability for out of order mbufs based on a sequence number in the mbuf structure. Signed-off-by: Reshma Pattan <reshma.pattan@intel.com> Signed-off-by: Richardson Bruce <bruce.richardson@intel.com> Signed-off-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: Declan Doherty <declan.doherty@intel.com>
417 lines
12 KiB
C
417 lines
12 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
|
|
#include <rte_log.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_tailq.h>
|
|
#include <rte_malloc.h>
|
|
|
|
#include "rte_reorder.h"
|
|
|
|
TAILQ_HEAD(rte_reorder_list, rte_tailq_entry);
|
|
|
|
#define NO_FLAGS 0
|
|
#define RTE_REORDER_PREFIX "RO_"
|
|
#define RTE_REORDER_NAMESIZE 32
|
|
|
|
/* Macros for printing using RTE_LOG */
|
|
#define RTE_LOGTYPE_REORDER RTE_LOGTYPE_USER1
|
|
|
|
/* A generic circular buffer */
|
|
struct cir_buffer {
|
|
unsigned int size; /**< Number of entries that can be stored */
|
|
unsigned int mask; /**< [buffer_size - 1]: used for wrap-around */
|
|
unsigned int head; /**< insertion point in buffer */
|
|
unsigned int tail; /**< extraction point in buffer */
|
|
struct rte_mbuf **entries;
|
|
} __rte_cache_aligned;
|
|
|
|
/* The reorder buffer data structure itself */
|
|
struct rte_reorder_buffer {
|
|
char name[RTE_REORDER_NAMESIZE];
|
|
uint32_t min_seqn; /**< Lowest seq. number that can be in the buffer */
|
|
unsigned int memsize; /**< memory area size of reorder buffer */
|
|
struct cir_buffer ready_buf; /**< temp buffer for dequeued entries */
|
|
struct cir_buffer order_buf; /**< buffer used to reorder entries */
|
|
} __rte_cache_aligned;
|
|
|
|
static void
|
|
rte_reorder_free_mbufs(struct rte_reorder_buffer *b);
|
|
|
|
struct rte_reorder_buffer *
|
|
rte_reorder_init(struct rte_reorder_buffer *b, unsigned int bufsize,
|
|
const char *name, unsigned int size)
|
|
{
|
|
const unsigned int min_bufsize = sizeof(*b) +
|
|
(2 * size * sizeof(struct rte_mbuf *));
|
|
|
|
if (b == NULL) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer parameter:"
|
|
" NULL\n");
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
if (!rte_is_power_of_2(size)) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer size"
|
|
" - Not a power of 2\n");
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
if (name == NULL) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:"
|
|
" NULL\n");
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
if (bufsize < min_bufsize) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer memory size: %u, "
|
|
"minimum required: %u\n", bufsize, min_bufsize);
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
memset(b, 0, bufsize);
|
|
snprintf(b->name, sizeof(b->name), "%s", name);
|
|
b->memsize = bufsize;
|
|
b->order_buf.size = b->ready_buf.size = size;
|
|
b->order_buf.mask = b->ready_buf.mask = size - 1;
|
|
b->ready_buf.entries = (void *)&b[1];
|
|
b->order_buf.entries = RTE_PTR_ADD(&b[1],
|
|
size * sizeof(b->ready_buf.entries[0]));
|
|
|
|
return b;
|
|
}
|
|
|
|
struct rte_reorder_buffer*
|
|
rte_reorder_create(const char *name, unsigned socket_id, unsigned int size)
|
|
{
|
|
struct rte_reorder_buffer *b = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_reorder_list *reorder_list;
|
|
const unsigned int bufsize = sizeof(struct rte_reorder_buffer) +
|
|
(2 * size * sizeof(struct rte_mbuf *));
|
|
|
|
/* check that we have an initialised tail queue */
|
|
reorder_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_REORDER, rte_reorder_list);
|
|
if (!reorder_list) {
|
|
rte_errno = E_RTE_NO_TAILQ;
|
|
return NULL;
|
|
}
|
|
|
|
/* Check user arguments. */
|
|
if (!rte_is_power_of_2(size)) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer size"
|
|
" - Not a power of 2\n");
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
if (name == NULL) {
|
|
RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:"
|
|
" NULL\n");
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
/* guarantee there's no existing */
|
|
TAILQ_FOREACH(te, reorder_list, next) {
|
|
b = (struct rte_reorder_buffer *) te->data;
|
|
if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
if (te != NULL)
|
|
goto exit;
|
|
|
|
/* allocate tailq entry */
|
|
te = rte_zmalloc("REORDER_TAILQ_ENTRY", sizeof(*te), 0);
|
|
if (te == NULL) {
|
|
RTE_LOG(ERR, REORDER, "Failed to allocate tailq entry\n");
|
|
rte_errno = ENOMEM;
|
|
b = NULL;
|
|
goto exit;
|
|
}
|
|
|
|
/* Allocate memory to store the reorder buffer structure. */
|
|
b = rte_zmalloc_socket("REORDER_BUFFER", bufsize, 0, socket_id);
|
|
if (b == NULL) {
|
|
RTE_LOG(ERR, REORDER, "Memzone allocation failed\n");
|
|
rte_errno = ENOMEM;
|
|
rte_free(te);
|
|
} else {
|
|
rte_reorder_init(b, bufsize, name, size);
|
|
te->data = (void *)b;
|
|
TAILQ_INSERT_TAIL(reorder_list, te, next);
|
|
}
|
|
|
|
exit:
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
return b;
|
|
}
|
|
|
|
void
|
|
rte_reorder_reset(struct rte_reorder_buffer *b)
|
|
{
|
|
char name[RTE_REORDER_NAMESIZE];
|
|
|
|
rte_reorder_free_mbufs(b);
|
|
snprintf(name, sizeof(name), "%s", b->name);
|
|
/* No error checking as current values should be valid */
|
|
rte_reorder_init(b, b->memsize, name, b->order_buf.size);
|
|
}
|
|
|
|
static void
|
|
rte_reorder_free_mbufs(struct rte_reorder_buffer *b)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Free up the mbufs of order buffer & ready buffer */
|
|
for (i = 0; i < b->order_buf.size; i++) {
|
|
if (b->order_buf.entries[i])
|
|
rte_pktmbuf_free(b->order_buf.entries[i]);
|
|
if (b->ready_buf.entries[i])
|
|
rte_pktmbuf_free(b->ready_buf.entries[i]);
|
|
}
|
|
}
|
|
|
|
void
|
|
rte_reorder_free(struct rte_reorder_buffer *b)
|
|
{
|
|
struct rte_reorder_list *reorder_list;
|
|
struct rte_tailq_entry *te;
|
|
|
|
/* Check user arguments. */
|
|
if (b == NULL)
|
|
return;
|
|
|
|
/* check that we have an initialised tail queue */
|
|
reorder_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_REORDER, rte_reorder_list);
|
|
if (!reorder_list) {
|
|
rte_errno = E_RTE_NO_TAILQ;
|
|
return;
|
|
}
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
/* find our tailq entry */
|
|
TAILQ_FOREACH(te, reorder_list, next) {
|
|
if (te->data == (void *) b)
|
|
break;
|
|
}
|
|
if (te == NULL) {
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
return;
|
|
}
|
|
|
|
TAILQ_REMOVE(reorder_list, te, next);
|
|
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
rte_reorder_free_mbufs(b);
|
|
|
|
rte_free(b);
|
|
rte_free(te);
|
|
}
|
|
|
|
struct rte_reorder_buffer *
|
|
rte_reorder_find_existing(const char *name)
|
|
{
|
|
struct rte_reorder_buffer *b = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_reorder_list *reorder_list;
|
|
|
|
/* check that we have an initialised tail queue */
|
|
reorder_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_REORDER, rte_reorder_list);
|
|
if (!reorder_list) {
|
|
rte_errno = E_RTE_NO_TAILQ;
|
|
return NULL;
|
|
}
|
|
|
|
rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
TAILQ_FOREACH(te, reorder_list, next) {
|
|
b = (struct rte_reorder_buffer *) te->data;
|
|
if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
if (te == NULL) {
|
|
rte_errno = ENOENT;
|
|
return NULL;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
static unsigned
|
|
rte_reorder_fill_overflow(struct rte_reorder_buffer *b, unsigned n)
|
|
{
|
|
/*
|
|
* 1. Move all ready entries that fit to the ready_buf
|
|
* 2. check if we meet the minimum needed (n).
|
|
* 3. If not, then skip any gaps and keep moving.
|
|
* 4. If at any point the ready buffer is full, stop
|
|
* 5. Return the number of positions the order_buf head has moved
|
|
*/
|
|
|
|
struct cir_buffer *order_buf = &b->order_buf,
|
|
*ready_buf = &b->ready_buf;
|
|
|
|
unsigned int order_head_adv = 0;
|
|
|
|
/*
|
|
* move at least n packets to ready buffer, assuming ready buffer
|
|
* has room for those packets.
|
|
*/
|
|
while (order_head_adv < n &&
|
|
((ready_buf->head + 1) & ready_buf->mask) != ready_buf->tail) {
|
|
|
|
/* if we are blocked waiting on a packet, skip it */
|
|
if (order_buf->entries[order_buf->head] == NULL) {
|
|
order_buf->head = (order_buf->head + 1) & order_buf->mask;
|
|
order_head_adv++;
|
|
}
|
|
|
|
/* Move all ready entries that fit to the ready_buf */
|
|
while (order_buf->entries[order_buf->head] != NULL) {
|
|
ready_buf->entries[ready_buf->head] =
|
|
order_buf->entries[order_buf->head];
|
|
|
|
order_buf->entries[order_buf->head] = NULL;
|
|
order_head_adv++;
|
|
|
|
order_buf->head = (order_buf->head + 1) & order_buf->mask;
|
|
|
|
if (((ready_buf->head + 1) & ready_buf->mask) == ready_buf->tail)
|
|
break;
|
|
|
|
ready_buf->head = (ready_buf->head + 1) & ready_buf->mask;
|
|
}
|
|
}
|
|
|
|
b->min_seqn += order_head_adv;
|
|
/* Return the number of positions the order_buf head has moved */
|
|
return order_head_adv;
|
|
}
|
|
|
|
int
|
|
rte_reorder_insert(struct rte_reorder_buffer *b, struct rte_mbuf *mbuf)
|
|
{
|
|
uint32_t offset, position;
|
|
struct cir_buffer *order_buf = &b->order_buf;
|
|
|
|
/*
|
|
* calculate the offset from the head pointer we need to go.
|
|
* The subtraction takes care of the sequence number wrapping.
|
|
* For example (using 16-bit for brevity):
|
|
* min_seqn = 0xFFFD
|
|
* mbuf_seqn = 0x0010
|
|
* offset = 0x0010 - 0xFFFD = 0x13
|
|
*/
|
|
offset = mbuf->seqn - b->min_seqn;
|
|
|
|
/*
|
|
* action to take depends on offset.
|
|
* offset < buffer->size: the mbuf fits within the current window of
|
|
* sequence numbers we can reorder. EXPECTED CASE.
|
|
* offset > buffer->size: the mbuf is outside the current window. There
|
|
* are a number of cases to consider:
|
|
* 1. The packet sequence is just outside the window, then we need
|
|
* to see about shifting the head pointer and taking any ready
|
|
* to return packets out of the ring. If there was a delayed
|
|
* or dropped packet preventing drains from shifting the window
|
|
* this case will skip over the dropped packet instead, and any
|
|
* packets dequeued here will be returned on the next drain call.
|
|
* 2. The packet sequence number is vastly outside our window, taken
|
|
* here as having offset greater than twice the buffer size. In
|
|
* this case, the packet is probably an old or late packet that
|
|
* was previously skipped, so just enqueue the packet for
|
|
* immediate return on the next drain call, or else return error.
|
|
*/
|
|
if (offset < b->order_buf.size) {
|
|
position = (order_buf->head + offset) & order_buf->mask;
|
|
order_buf->entries[position] = mbuf;
|
|
} else if (offset < 2 * b->order_buf.size) {
|
|
if (rte_reorder_fill_overflow(b, offset + 1 - order_buf->size)
|
|
< (offset + 1 - order_buf->size)) {
|
|
/* Put in handling for enqueue straight to output */
|
|
rte_errno = ENOSPC;
|
|
return -1;
|
|
}
|
|
offset = mbuf->seqn - b->min_seqn;
|
|
position = (order_buf->head + offset) & order_buf->mask;
|
|
order_buf->entries[position] = mbuf;
|
|
} else {
|
|
/* Put in handling for enqueue straight to output */
|
|
rte_errno = ERANGE;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned int
|
|
rte_reorder_drain(struct rte_reorder_buffer *b, struct rte_mbuf **mbufs,
|
|
unsigned max_mbufs)
|
|
{
|
|
unsigned int drain_cnt = 0;
|
|
|
|
struct cir_buffer *order_buf = &b->order_buf,
|
|
*ready_buf = &b->ready_buf;
|
|
|
|
/* Try to fetch requested number of mbufs from ready buffer */
|
|
while ((drain_cnt < max_mbufs) && (ready_buf->tail != ready_buf->head)) {
|
|
mbufs[drain_cnt++] = ready_buf->entries[ready_buf->tail];
|
|
ready_buf->tail = (ready_buf->tail + 1) & ready_buf->mask;
|
|
}
|
|
|
|
/*
|
|
* If requested number of buffers not fetched from ready buffer, fetch
|
|
* remaining buffers from order buffer
|
|
*/
|
|
while ((drain_cnt < max_mbufs) &&
|
|
(order_buf->entries[order_buf->head] != NULL)) {
|
|
mbufs[drain_cnt++] = order_buf->entries[order_buf->head];
|
|
order_buf->entries[order_buf->head] = NULL;
|
|
b->min_seqn++;
|
|
order_buf->head = (order_buf->head + 1) & order_buf->mask;
|
|
}
|
|
|
|
return drain_cnt;
|
|
}
|