numam-dpdk/app/test-pmd/csumonly.c
Jijiang Liu c14236f210 mbuf: replace inner fields by outer fields semantic
Replace the inner_l2_len and the inner_l3_len field with the
outer_l2_len and outer_l3_len field, and rework csum forward engine
and i40e PMD due to these changes.

Signed-off-by: Jijiang Liu <jijiang.liu@intel.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Olivier Matz <olivier.matz@6wind.com>
2014-12-05 16:55:00 +01:00

551 lines
17 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* Copyright 2014 6WIND S.A.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdarg.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_udp.h>
#include <rte_sctp.h>
#include <rte_prefetch.h>
#include <rte_string_fns.h>
#include "testpmd.h"
#define IP_DEFTTL 64 /* from RFC 1340. */
#define IP_VERSION 0x40
#define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */
#define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
/* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
#else
#define _htons(x) (x)
#endif
static uint16_t
get_psd_sum(void *l3_hdr, uint16_t ethertype, uint64_t ol_flags)
{
if (ethertype == _htons(ETHER_TYPE_IPv4))
return rte_ipv4_phdr_cksum(l3_hdr, ol_flags);
else /* assume ethertype == ETHER_TYPE_IPv6 */
return rte_ipv6_phdr_cksum(l3_hdr, ol_flags);
}
static uint16_t
get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
{
if (ethertype == _htons(ETHER_TYPE_IPv4))
return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
else /* assume ethertype == ETHER_TYPE_IPv6 */
return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
}
/*
* Parse an ethernet header to fill the ethertype, l2_len, l3_len and
* ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
* header. The l4_len argument is only set in case of TCP (useful for TSO).
*/
static void
parse_ethernet(struct ether_hdr *eth_hdr, uint16_t *ethertype, uint16_t *l2_len,
uint16_t *l3_len, uint8_t *l4_proto, uint16_t *l4_len)
{
struct ipv4_hdr *ipv4_hdr;
struct ipv6_hdr *ipv6_hdr;
struct tcp_hdr *tcp_hdr;
*l2_len = sizeof(struct ether_hdr);
*ethertype = eth_hdr->ether_type;
if (*ethertype == _htons(ETHER_TYPE_VLAN)) {
struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
*l2_len += sizeof(struct vlan_hdr);
*ethertype = vlan_hdr->eth_proto;
}
switch (*ethertype) {
case _htons(ETHER_TYPE_IPv4):
ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + *l2_len);
*l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
*l4_proto = ipv4_hdr->next_proto_id;
break;
case _htons(ETHER_TYPE_IPv6):
ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + *l2_len);
*l3_len = sizeof(struct ipv6_hdr);
*l4_proto = ipv6_hdr->proto;
break;
default:
*l3_len = 0;
*l4_proto = 0;
break;
}
if (*l4_proto == IPPROTO_TCP) {
tcp_hdr = (struct tcp_hdr *)((char *)eth_hdr +
*l2_len + *l3_len);
*l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
} else
*l4_len = 0;
}
/* modify the IPv4 or IPv4 source address of a packet */
static void
change_ip_addresses(void *l3_hdr, uint16_t ethertype)
{
struct ipv4_hdr *ipv4_hdr = l3_hdr;
struct ipv6_hdr *ipv6_hdr = l3_hdr;
if (ethertype == _htons(ETHER_TYPE_IPv4)) {
ipv4_hdr->src_addr =
rte_cpu_to_be_32(rte_be_to_cpu_32(ipv4_hdr->src_addr) + 1);
} else if (ethertype == _htons(ETHER_TYPE_IPv6)) {
ipv6_hdr->src_addr[15] = ipv6_hdr->src_addr[15] + 1;
}
}
/* if possible, calculate the checksum of a packet in hw or sw,
* depending on the testpmd command line configuration */
static uint64_t
process_inner_cksums(void *l3_hdr, uint16_t ethertype, uint16_t l3_len,
uint8_t l4_proto, uint16_t tso_segsz, uint16_t testpmd_ol_flags)
{
struct ipv4_hdr *ipv4_hdr = l3_hdr;
struct udp_hdr *udp_hdr;
struct tcp_hdr *tcp_hdr;
struct sctp_hdr *sctp_hdr;
uint64_t ol_flags = 0;
if (ethertype == _htons(ETHER_TYPE_IPv4)) {
ipv4_hdr = l3_hdr;
ipv4_hdr->hdr_checksum = 0;
if (tso_segsz != 0 && l4_proto == IPPROTO_TCP) {
ol_flags |= PKT_TX_IP_CKSUM;
} else {
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM)
ol_flags |= PKT_TX_IP_CKSUM;
else {
ipv4_hdr->hdr_checksum =
rte_ipv4_cksum(ipv4_hdr);
ol_flags |= PKT_TX_IPV4;
}
}
} else if (ethertype == _htons(ETHER_TYPE_IPv6))
ol_flags |= PKT_TX_IPV6;
else
return 0; /* packet type not supported, nothing to do */
if (l4_proto == IPPROTO_UDP) {
udp_hdr = (struct udp_hdr *)((char *)l3_hdr + l3_len);
/* do not recalculate udp cksum if it was 0 */
if (udp_hdr->dgram_cksum != 0) {
udp_hdr->dgram_cksum = 0;
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) {
ol_flags |= PKT_TX_UDP_CKSUM;
udp_hdr->dgram_cksum = get_psd_sum(l3_hdr,
ethertype, ol_flags);
} else {
udp_hdr->dgram_cksum =
get_udptcp_checksum(l3_hdr, udp_hdr,
ethertype);
}
}
} else if (l4_proto == IPPROTO_TCP) {
tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + l3_len);
tcp_hdr->cksum = 0;
if (tso_segsz != 0) {
ol_flags |= PKT_TX_TCP_SEG;
tcp_hdr->cksum = get_psd_sum(l3_hdr, ethertype, ol_flags);
} else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) {
ol_flags |= PKT_TX_TCP_CKSUM;
tcp_hdr->cksum = get_psd_sum(l3_hdr, ethertype, ol_flags);
} else {
tcp_hdr->cksum =
get_udptcp_checksum(l3_hdr, tcp_hdr, ethertype);
}
} else if (l4_proto == IPPROTO_SCTP) {
sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + l3_len);
sctp_hdr->cksum = 0;
/* sctp payload must be a multiple of 4 to be
* offloaded */
if ((testpmd_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) &&
((ipv4_hdr->total_length & 0x3) == 0)) {
ol_flags |= PKT_TX_SCTP_CKSUM;
} else {
/* XXX implement CRC32c, example available in
* RFC3309 */
}
}
return ol_flags;
}
/* Calculate the checksum of outer header (only vxlan is supported,
* meaning IP + UDP). The caller already checked that it's a vxlan
* packet */
static uint64_t
process_outer_cksums(void *outer_l3_hdr, uint16_t outer_ethertype,
uint16_t outer_l3_len, uint16_t testpmd_ol_flags)
{
struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
struct udp_hdr *udp_hdr;
uint64_t ol_flags = 0;
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_VXLAN_CKSUM)
ol_flags |= PKT_TX_UDP_TUNNEL_PKT;
if (outer_ethertype == _htons(ETHER_TYPE_IPv4)) {
ipv4_hdr->hdr_checksum = 0;
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_VXLAN_CKSUM)
ol_flags |= PKT_TX_OUTER_IP_CKSUM;
else
ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
} else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_VXLAN_CKSUM)
ol_flags |= PKT_TX_OUTER_IPV6;
udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + outer_l3_len);
/* do not recalculate udp cksum if it was 0 */
if (udp_hdr->dgram_cksum != 0) {
udp_hdr->dgram_cksum = 0;
if (outer_ethertype == _htons(ETHER_TYPE_IPv4))
udp_hdr->dgram_cksum =
rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
else
udp_hdr->dgram_cksum =
rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
}
return ol_flags;
}
/*
* Receive a burst of packets, and for each packet:
* - parse packet, and try to recognize a supported packet type (1)
* - if it's not a supported packet type, don't touch the packet, else:
* - modify the IPs in inner headers and in outer headers if any
* - reprocess the checksum of all supported layers. This is done in SW
* or HW, depending on testpmd command line configuration
* - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
* segmentation offload (this implies HW TCP checksum)
* Then transmit packets on the output port.
*
* (1) Supported packets are:
* Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
* Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
* UDP|TCP|SCTP
*
* The testpmd command line for this forward engine sets the flags
* TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
* wether a checksum must be calculated in software or in hardware. The
* IP, UDP, TCP and SCTP flags always concern the inner layer. The
* VxLAN flag concerns the outer IP (if packet is recognized as a vxlan packet).
*/
static void
pkt_burst_checksum_forward(struct fwd_stream *fs)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_port *txp;
struct rte_mbuf *m;
struct ether_hdr *eth_hdr;
void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
struct udp_hdr *udp_hdr;
uint16_t nb_rx;
uint16_t nb_tx;
uint16_t i;
uint64_t ol_flags;
uint16_t testpmd_ol_flags;
uint8_t l4_proto, l4_tun_len = 0;
uint16_t ethertype = 0, outer_ethertype = 0;
uint16_t l2_len = 0, l3_len = 0, l4_len = 0;
uint16_t outer_l2_len = 0, outer_l3_len = 0;
uint16_t tso_segsz;
int tunnel = 0;
uint32_t rx_bad_ip_csum;
uint32_t rx_bad_l4_csum;
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
uint64_t start_tsc;
uint64_t end_tsc;
uint64_t core_cycles;
#endif
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
start_tsc = rte_rdtsc();
#endif
/* receive a burst of packet */
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
nb_pkt_per_burst);
if (unlikely(nb_rx == 0))
return;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
#endif
fs->rx_packets += nb_rx;
rx_bad_ip_csum = 0;
rx_bad_l4_csum = 0;
txp = &ports[fs->tx_port];
testpmd_ol_flags = txp->tx_ol_flags;
tso_segsz = txp->tso_segsz;
for (i = 0; i < nb_rx; i++) {
ol_flags = 0;
tunnel = 0;
l4_tun_len = 0;
m = pkts_burst[i];
/* Update the L3/L4 checksum error packet statistics */
rx_bad_ip_csum += ((m->ol_flags & PKT_RX_IP_CKSUM_BAD) != 0);
rx_bad_l4_csum += ((m->ol_flags & PKT_RX_L4_CKSUM_BAD) != 0);
/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
* and inner headers */
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
parse_ethernet(eth_hdr, &ethertype, &l2_len, &l3_len,
&l4_proto, &l4_len);
l3_hdr = (char *)eth_hdr + l2_len;
/* check if it's a supported tunnel (only vxlan for now) */
if (l4_proto == IPPROTO_UDP) {
udp_hdr = (struct udp_hdr *)((char *)l3_hdr + l3_len);
/* check udp destination port, 4789 is the default
* vxlan port (rfc7348) */
if (udp_hdr->dst_port == _htons(4789)) {
l4_tun_len = ETHER_VXLAN_HLEN;
tunnel = 1;
/* currently, this flag is set by i40e only if the
* packet is vxlan */
} else if (m->ol_flags & (PKT_RX_TUNNEL_IPV4_HDR |
PKT_RX_TUNNEL_IPV6_HDR))
tunnel = 1;
if (tunnel == 1) {
outer_ethertype = ethertype;
outer_l2_len = l2_len;
outer_l3_len = l3_len;
outer_l3_hdr = l3_hdr;
eth_hdr = (struct ether_hdr *)((char *)udp_hdr +
sizeof(struct udp_hdr) +
sizeof(struct vxlan_hdr));
parse_ethernet(eth_hdr, &ethertype, &l2_len,
&l3_len, &l4_proto, &l4_len);
l3_hdr = (char *)eth_hdr + l2_len;
}
}
/* step 2: change all source IPs (v4 or v6) so we need
* to recompute the chksums even if they were correct */
change_ip_addresses(l3_hdr, ethertype);
if (tunnel == 1)
change_ip_addresses(outer_l3_hdr, outer_ethertype);
/* step 3: depending on user command line configuration,
* recompute checksum either in software or flag the
* mbuf to offload the calculation to the NIC. If TSO
* is configured, prepare the mbuf for TCP segmentation. */
/* process checksums of inner headers first */
ol_flags |= process_inner_cksums(l3_hdr, ethertype,
l3_len, l4_proto, tso_segsz, testpmd_ol_flags);
/* Then process outer headers if any. Note that the software
* checksum will be wrong if one of the inner checksums is
* processed in hardware. */
if (tunnel == 1) {
ol_flags |= process_outer_cksums(outer_l3_hdr,
outer_ethertype, outer_l3_len, testpmd_ol_flags);
}
/* step 4: fill the mbuf meta data (flags and header lengths) */
if (tunnel == 1) {
if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_VXLAN_CKSUM) {
m->outer_l2_len = outer_l2_len;
m->outer_l3_len = outer_l3_len;
m->l2_len = l4_tun_len + l2_len;
m->l3_len = l3_len;
}
else {
/* if we don't do vxlan cksum in hw,
outer checksum will be wrong because
we changed the ip, but it shows that
we can process the inner header cksum
in the nic */
m->l2_len = outer_l2_len + outer_l3_len +
sizeof(struct udp_hdr) +
sizeof(struct vxlan_hdr) + l2_len;
m->l3_len = l3_len;
m->l4_len = l4_len;
}
} else {
/* this is only useful if an offload flag is
* set, but it does not hurt to fill it in any
* case */
m->l2_len = l2_len;
m->l3_len = l3_len;
m->l4_len = l4_len;
}
m->tso_segsz = tso_segsz;
m->ol_flags = ol_flags;
/* if verbose mode is enabled, dump debug info */
if (verbose_level > 0) {
struct {
uint64_t flag;
uint64_t mask;
} tx_flags[] = {
{ PKT_TX_IP_CKSUM, PKT_TX_IP_CKSUM },
{ PKT_TX_UDP_CKSUM, PKT_TX_L4_MASK },
{ PKT_TX_TCP_CKSUM, PKT_TX_L4_MASK },
{ PKT_TX_SCTP_CKSUM, PKT_TX_L4_MASK },
{ PKT_TX_UDP_TUNNEL_PKT, PKT_TX_UDP_TUNNEL_PKT },
{ PKT_TX_IPV4, PKT_TX_IPV4 },
{ PKT_TX_IPV6, PKT_TX_IPV6 },
{ PKT_TX_OUTER_IP_CKSUM, PKT_TX_OUTER_IP_CKSUM },
{ PKT_TX_OUTER_IPV4, PKT_TX_OUTER_IPV4 },
{ PKT_TX_OUTER_IPV6, PKT_TX_OUTER_IPV6 },
{ PKT_TX_TCP_SEG, PKT_TX_TCP_SEG },
};
unsigned j;
const char *name;
printf("-----------------\n");
/* dump rx parsed packet info */
printf("rx: l2_len=%d ethertype=%x l3_len=%d "
"l4_proto=%d l4_len=%d\n",
l2_len, rte_be_to_cpu_16(ethertype),
l3_len, l4_proto, l4_len);
if (tunnel == 1)
printf("rx: outer_l2_len=%d outer_ethertype=%x "
"outer_l3_len=%d\n", outer_l2_len,
rte_be_to_cpu_16(outer_ethertype),
outer_l3_len);
/* dump tx packet info */
if ((testpmd_ol_flags & (TESTPMD_TX_OFFLOAD_IP_CKSUM |
TESTPMD_TX_OFFLOAD_UDP_CKSUM |
TESTPMD_TX_OFFLOAD_TCP_CKSUM |
TESTPMD_TX_OFFLOAD_SCTP_CKSUM)) ||
tso_segsz != 0)
printf("tx: m->l2_len=%d m->l3_len=%d "
"m->l4_len=%d\n",
m->l2_len, m->l3_len, m->l4_len);
if ((tunnel == 1) &&
(testpmd_ol_flags & TESTPMD_TX_OFFLOAD_VXLAN_CKSUM))
printf("tx: m->outer_l2_len=%d m->outer_l3_len=%d\n",
m->outer_l2_len, m->outer_l3_len);
if (tso_segsz != 0)
printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
printf("tx: flags=");
for (j = 0; j < sizeof(tx_flags)/sizeof(*tx_flags); j++) {
name = rte_get_tx_ol_flag_name(tx_flags[j].flag);
if ((m->ol_flags & tx_flags[j].mask) ==
tx_flags[j].flag)
printf("%s ", name);
}
printf("\n");
}
}
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_rx);
fs->tx_packets += nb_tx;
fs->rx_bad_ip_csum += rx_bad_ip_csum;
fs->rx_bad_l4_csum += rx_bad_l4_csum;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
#endif
if (unlikely(nb_tx < nb_rx)) {
fs->fwd_dropped += (nb_rx - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_rx);
}
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
end_tsc = rte_rdtsc();
core_cycles = (end_tsc - start_tsc);
fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
#endif
}
struct fwd_engine csum_fwd_engine = {
.fwd_mode_name = "csum",
.port_fwd_begin = NULL,
.port_fwd_end = NULL,
.packet_fwd = pkt_burst_checksum_forward,
};