numam-dpdk/drivers/bus/pci/pci_common.c
Shahaf Shuler c33a675b62 bus: introduce device level DMA memory mapping
The DPDK APIs expose 3 different modes to work with memory used for DMA:

1. Use the DPDK owned memory (backed by the DPDK provided hugepages).
This memory is allocated by the DPDK libraries, included in the DPDK
memory system (memseg lists) and automatically DMA mapped by the DPDK
layers.

2. Use memory allocated by the user and register to the DPDK memory
systems. Upon registration of memory, the DPDK layers will DMA map it
to all needed devices. After registration, allocation of this memory
will be done with rte_*malloc APIs.

3. Use memory allocated by the user and not registered to the DPDK memory
system. This is for users who wants to have tight control on this
memory (e.g. avoid the rte_malloc header).
The user should create a memory, register it through rte_extmem_register
API, and call DMA map function in order to register such memory to
the different devices.

The scope of the patch focus on #3 above.

Currently the only way to map external memory is through VFIO
(rte_vfio_dma_map). While VFIO is common, there are other vendors
which use different ways to map memory (e.g. Mellanox and NXP).

The work in this patch moves the DMA mapping to vendor agnostic APIs.
Device level DMA map and unmap APIs were added. Implementation of those
APIs was done currently only for PCI devices.

For PCI bus devices, the pci driver can expose its own map and unmap
functions to be used for the mapping. In case the driver doesn't provide
any, the memory will be mapped, if possible, to IOMMU through VFIO APIs.

Application usage with those APIs is quite simple:
* allocate memory
* call rte_extmem_register on the memory chunk.
* take a device, and query its rte_device.
* call the device specific mapping function for this device.

Future work will deprecate the rte_vfio_dma_map and rte_vfio_dma_unmap
APIs, leaving the rte device APIs as the preferred option for the user.

Signed-off-by: Shahaf Shuler <shahafs@mellanox.com>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2019-03-30 16:48:56 +01:00

597 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation.
* Copyright 2013-2014 6WIND S.A.
*/
#include <string.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/queue.h>
#include <sys/mman.h>
#include <rte_errno.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_bus.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_per_lcore.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_string_fns.h>
#include <rte_common.h>
#include <rte_devargs.h>
#include <rte_vfio.h>
#include "private.h"
#define SYSFS_PCI_DEVICES "/sys/bus/pci/devices"
const char *rte_pci_get_sysfs_path(void)
{
const char *path = NULL;
path = getenv("SYSFS_PCI_DEVICES");
if (path == NULL)
return SYSFS_PCI_DEVICES;
return path;
}
static struct rte_devargs *pci_devargs_lookup(struct rte_pci_device *dev)
{
struct rte_devargs *devargs;
struct rte_pci_addr addr;
RTE_EAL_DEVARGS_FOREACH("pci", devargs) {
devargs->bus->parse(devargs->name, &addr);
if (!rte_pci_addr_cmp(&dev->addr, &addr))
return devargs;
}
return NULL;
}
void
pci_name_set(struct rte_pci_device *dev)
{
struct rte_devargs *devargs;
/* Each device has its internal, canonical name set. */
rte_pci_device_name(&dev->addr,
dev->name, sizeof(dev->name));
devargs = pci_devargs_lookup(dev);
dev->device.devargs = devargs;
/* In blacklist mode, if the device is not blacklisted, no
* rte_devargs exists for it.
*/
if (devargs != NULL)
/* If an rte_devargs exists, the generic rte_device uses the
* given name as its name.
*/
dev->device.name = dev->device.devargs->name;
else
/* Otherwise, it uses the internal, canonical form. */
dev->device.name = dev->name;
}
/*
* Match the PCI Driver and Device using the ID Table
*/
int
rte_pci_match(const struct rte_pci_driver *pci_drv,
const struct rte_pci_device *pci_dev)
{
const struct rte_pci_id *id_table;
for (id_table = pci_drv->id_table; id_table->vendor_id != 0;
id_table++) {
/* check if device's identifiers match the driver's ones */
if (id_table->vendor_id != pci_dev->id.vendor_id &&
id_table->vendor_id != PCI_ANY_ID)
continue;
if (id_table->device_id != pci_dev->id.device_id &&
id_table->device_id != PCI_ANY_ID)
continue;
if (id_table->subsystem_vendor_id !=
pci_dev->id.subsystem_vendor_id &&
id_table->subsystem_vendor_id != PCI_ANY_ID)
continue;
if (id_table->subsystem_device_id !=
pci_dev->id.subsystem_device_id &&
id_table->subsystem_device_id != PCI_ANY_ID)
continue;
if (id_table->class_id != pci_dev->id.class_id &&
id_table->class_id != RTE_CLASS_ANY_ID)
continue;
return 1;
}
return 0;
}
/*
* If vendor/device ID match, call the probe() function of the
* driver.
*/
static int
rte_pci_probe_one_driver(struct rte_pci_driver *dr,
struct rte_pci_device *dev)
{
int ret;
bool already_probed;
struct rte_pci_addr *loc;
if ((dr == NULL) || (dev == NULL))
return -EINVAL;
loc = &dev->addr;
/* The device is not blacklisted; Check if driver supports it */
if (!rte_pci_match(dr, dev))
/* Match of device and driver failed */
return 1;
RTE_LOG(INFO, EAL, "PCI device "PCI_PRI_FMT" on NUMA socket %i\n",
loc->domain, loc->bus, loc->devid, loc->function,
dev->device.numa_node);
/* no initialization when blacklisted, return without error */
if (dev->device.devargs != NULL &&
dev->device.devargs->policy ==
RTE_DEV_BLACKLISTED) {
RTE_LOG(INFO, EAL, " Device is blacklisted, not"
" initializing\n");
return 1;
}
if (dev->device.numa_node < 0) {
RTE_LOG(WARNING, EAL, " Invalid NUMA socket, default to 0\n");
dev->device.numa_node = 0;
}
already_probed = rte_dev_is_probed(&dev->device);
if (already_probed && !(dr->drv_flags & RTE_PCI_DRV_PROBE_AGAIN)) {
RTE_LOG(DEBUG, EAL, "Device %s is already probed\n",
dev->device.name);
return -EEXIST;
}
RTE_LOG(INFO, EAL, " probe driver: %x:%x %s\n", dev->id.vendor_id,
dev->id.device_id, dr->driver.name);
/*
* reference driver structure
* This needs to be before rte_pci_map_device(), as it enables to use
* driver flags for adjusting configuration.
*/
if (!already_probed)
dev->driver = dr;
if (!already_probed && (dr->drv_flags & RTE_PCI_DRV_NEED_MAPPING)) {
/* map resources for devices that use igb_uio */
ret = rte_pci_map_device(dev);
if (ret != 0) {
dev->driver = NULL;
return ret;
}
}
/* call the driver probe() function */
ret = dr->probe(dr, dev);
if (already_probed)
return ret; /* no rollback if already succeeded earlier */
if (ret) {
dev->driver = NULL;
if ((dr->drv_flags & RTE_PCI_DRV_NEED_MAPPING) &&
/* Don't unmap if device is unsupported and
* driver needs mapped resources.
*/
!(ret > 0 &&
(dr->drv_flags & RTE_PCI_DRV_KEEP_MAPPED_RES)))
rte_pci_unmap_device(dev);
} else {
dev->device.driver = &dr->driver;
}
return ret;
}
/*
* If vendor/device ID match, call the remove() function of the
* driver.
*/
static int
rte_pci_detach_dev(struct rte_pci_device *dev)
{
struct rte_pci_addr *loc;
struct rte_pci_driver *dr;
int ret = 0;
if (dev == NULL)
return -EINVAL;
dr = dev->driver;
loc = &dev->addr;
RTE_LOG(DEBUG, EAL, "PCI device "PCI_PRI_FMT" on NUMA socket %i\n",
loc->domain, loc->bus, loc->devid,
loc->function, dev->device.numa_node);
RTE_LOG(DEBUG, EAL, " remove driver: %x:%x %s\n", dev->id.vendor_id,
dev->id.device_id, dr->driver.name);
if (dr->remove) {
ret = dr->remove(dev);
if (ret < 0)
return ret;
}
/* clear driver structure */
dev->driver = NULL;
if (dr->drv_flags & RTE_PCI_DRV_NEED_MAPPING)
/* unmap resources for devices that use igb_uio */
rte_pci_unmap_device(dev);
return 0;
}
/*
* If vendor/device ID match, call the probe() function of all
* registered driver for the given device. Return < 0 if initialization
* failed, return 1 if no driver is found for this device.
*/
static int
pci_probe_all_drivers(struct rte_pci_device *dev)
{
struct rte_pci_driver *dr = NULL;
int rc = 0;
if (dev == NULL)
return -EINVAL;
FOREACH_DRIVER_ON_PCIBUS(dr) {
rc = rte_pci_probe_one_driver(dr, dev);
if (rc < 0)
/* negative value is an error */
return rc;
if (rc > 0)
/* positive value means driver doesn't support it */
continue;
return 0;
}
return 1;
}
/*
* Scan the content of the PCI bus, and call the probe() function for
* all registered drivers that have a matching entry in its id_table
* for discovered devices.
*/
int
rte_pci_probe(void)
{
struct rte_pci_device *dev = NULL;
size_t probed = 0, failed = 0;
struct rte_devargs *devargs;
int probe_all = 0;
int ret = 0;
if (rte_pci_bus.bus.conf.scan_mode != RTE_BUS_SCAN_WHITELIST)
probe_all = 1;
FOREACH_DEVICE_ON_PCIBUS(dev) {
probed++;
devargs = dev->device.devargs;
/* probe all or only whitelisted devices */
if (probe_all)
ret = pci_probe_all_drivers(dev);
else if (devargs != NULL &&
devargs->policy == RTE_DEV_WHITELISTED)
ret = pci_probe_all_drivers(dev);
if (ret < 0) {
if (ret != -EEXIST) {
RTE_LOG(ERR, EAL, "Requested device "
PCI_PRI_FMT " cannot be used\n",
dev->addr.domain, dev->addr.bus,
dev->addr.devid, dev->addr.function);
rte_errno = errno;
failed++;
}
ret = 0;
}
}
return (probed && probed == failed) ? -1 : 0;
}
/* dump one device */
static int
pci_dump_one_device(FILE *f, struct rte_pci_device *dev)
{
int i;
fprintf(f, PCI_PRI_FMT, dev->addr.domain, dev->addr.bus,
dev->addr.devid, dev->addr.function);
fprintf(f, " - vendor:%x device:%x\n", dev->id.vendor_id,
dev->id.device_id);
for (i = 0; i != sizeof(dev->mem_resource) /
sizeof(dev->mem_resource[0]); i++) {
fprintf(f, " %16.16"PRIx64" %16.16"PRIx64"\n",
dev->mem_resource[i].phys_addr,
dev->mem_resource[i].len);
}
return 0;
}
/* dump devices on the bus */
void
rte_pci_dump(FILE *f)
{
struct rte_pci_device *dev = NULL;
FOREACH_DEVICE_ON_PCIBUS(dev) {
pci_dump_one_device(f, dev);
}
}
static int
pci_parse(const char *name, void *addr)
{
struct rte_pci_addr *out = addr;
struct rte_pci_addr pci_addr;
bool parse;
parse = (rte_pci_addr_parse(name, &pci_addr) == 0);
if (parse && addr != NULL)
*out = pci_addr;
return parse == false;
}
/* register a driver */
void
rte_pci_register(struct rte_pci_driver *driver)
{
TAILQ_INSERT_TAIL(&rte_pci_bus.driver_list, driver, next);
driver->bus = &rte_pci_bus;
}
/* unregister a driver */
void
rte_pci_unregister(struct rte_pci_driver *driver)
{
TAILQ_REMOVE(&rte_pci_bus.driver_list, driver, next);
driver->bus = NULL;
}
/* Add a device to PCI bus */
void
rte_pci_add_device(struct rte_pci_device *pci_dev)
{
TAILQ_INSERT_TAIL(&rte_pci_bus.device_list, pci_dev, next);
}
/* Insert a device into a predefined position in PCI bus */
void
rte_pci_insert_device(struct rte_pci_device *exist_pci_dev,
struct rte_pci_device *new_pci_dev)
{
TAILQ_INSERT_BEFORE(exist_pci_dev, new_pci_dev, next);
}
/* Remove a device from PCI bus */
static void
rte_pci_remove_device(struct rte_pci_device *pci_dev)
{
TAILQ_REMOVE(&rte_pci_bus.device_list, pci_dev, next);
}
static struct rte_device *
pci_find_device(const struct rte_device *start, rte_dev_cmp_t cmp,
const void *data)
{
const struct rte_pci_device *pstart;
struct rte_pci_device *pdev;
if (start != NULL) {
pstart = RTE_DEV_TO_PCI_CONST(start);
pdev = TAILQ_NEXT(pstart, next);
} else {
pdev = TAILQ_FIRST(&rte_pci_bus.device_list);
}
while (pdev != NULL) {
if (cmp(&pdev->device, data) == 0)
return &pdev->device;
pdev = TAILQ_NEXT(pdev, next);
}
return NULL;
}
/*
* find the device which encounter the failure, by iterate over all device on
* PCI bus to check if the memory failure address is located in the range
* of the BARs of the device.
*/
static struct rte_pci_device *
pci_find_device_by_addr(const void *failure_addr)
{
struct rte_pci_device *pdev = NULL;
uint64_t check_point, start, end, len;
int i;
check_point = (uint64_t)(uintptr_t)failure_addr;
FOREACH_DEVICE_ON_PCIBUS(pdev) {
for (i = 0; i != RTE_DIM(pdev->mem_resource); i++) {
start = (uint64_t)(uintptr_t)pdev->mem_resource[i].addr;
len = pdev->mem_resource[i].len;
end = start + len;
if (check_point >= start && check_point < end) {
RTE_LOG(DEBUG, EAL, "Failure address %16.16"
PRIx64" belongs to device %s!\n",
check_point, pdev->device.name);
return pdev;
}
}
}
return NULL;
}
static int
pci_hot_unplug_handler(struct rte_device *dev)
{
struct rte_pci_device *pdev = NULL;
int ret = 0;
pdev = RTE_DEV_TO_PCI(dev);
if (!pdev)
return -1;
switch (pdev->kdrv) {
#ifdef HAVE_VFIO_DEV_REQ_INTERFACE
case RTE_KDRV_VFIO:
/*
* vfio kernel module guaranty the pci device would not be
* deleted until the user space release the resource, so no
* need to remap BARs resource here, just directly notify
* the req event to the user space to handle it.
*/
rte_dev_event_callback_process(dev->name,
RTE_DEV_EVENT_REMOVE);
break;
#endif
case RTE_KDRV_IGB_UIO:
case RTE_KDRV_UIO_GENERIC:
case RTE_KDRV_NIC_UIO:
/* BARs resource is invalid, remap it to be safe. */
ret = pci_uio_remap_resource(pdev);
break;
default:
RTE_LOG(DEBUG, EAL,
"Not managed by a supported kernel driver, skipped\n");
ret = -1;
break;
}
return ret;
}
static int
pci_sigbus_handler(const void *failure_addr)
{
struct rte_pci_device *pdev = NULL;
int ret = 0;
pdev = pci_find_device_by_addr(failure_addr);
if (!pdev) {
/* It is a generic sigbus error, no bus would handle it. */
ret = 1;
} else {
/* The sigbus error is caused of hot-unplug. */
ret = pci_hot_unplug_handler(&pdev->device);
if (ret) {
RTE_LOG(ERR, EAL,
"Failed to handle hot-unplug for device %s",
pdev->name);
ret = -1;
}
}
return ret;
}
static int
pci_plug(struct rte_device *dev)
{
return pci_probe_all_drivers(RTE_DEV_TO_PCI(dev));
}
static int
pci_unplug(struct rte_device *dev)
{
struct rte_pci_device *pdev;
int ret;
pdev = RTE_DEV_TO_PCI(dev);
ret = rte_pci_detach_dev(pdev);
if (ret == 0) {
rte_pci_remove_device(pdev);
rte_devargs_remove(dev->devargs);
free(pdev);
}
return ret;
}
static int
pci_dma_map(struct rte_device *dev, void *addr, uint64_t iova, size_t len)
{
struct rte_pci_device *pdev = RTE_DEV_TO_PCI(dev);
if (!pdev || !pdev->driver) {
rte_errno = EINVAL;
return -1;
}
if (pdev->driver->dma_map)
return pdev->driver->dma_map(pdev, addr, iova, len);
/**
* In case driver don't provides any specific mapping
* try fallback to VFIO.
*/
if (pdev->kdrv == RTE_KDRV_VFIO)
return rte_vfio_container_dma_map
(RTE_VFIO_DEFAULT_CONTAINER_FD, (uintptr_t)addr,
iova, len);
rte_errno = ENOTSUP;
return -1;
}
static int
pci_dma_unmap(struct rte_device *dev, void *addr, uint64_t iova, size_t len)
{
struct rte_pci_device *pdev = RTE_DEV_TO_PCI(dev);
if (!pdev || !pdev->driver) {
rte_errno = EINVAL;
return -1;
}
if (pdev->driver->dma_unmap)
return pdev->driver->dma_unmap(pdev, addr, iova, len);
/**
* In case driver don't provides any specific mapping
* try fallback to VFIO.
*/
if (pdev->kdrv == RTE_KDRV_VFIO)
return rte_vfio_container_dma_unmap
(RTE_VFIO_DEFAULT_CONTAINER_FD, (uintptr_t)addr,
iova, len);
rte_errno = ENOTSUP;
return -1;
}
struct rte_pci_bus rte_pci_bus = {
.bus = {
.scan = rte_pci_scan,
.probe = rte_pci_probe,
.find_device = pci_find_device,
.plug = pci_plug,
.unplug = pci_unplug,
.parse = pci_parse,
.dma_map = pci_dma_map,
.dma_unmap = pci_dma_unmap,
.get_iommu_class = rte_pci_get_iommu_class,
.dev_iterate = rte_pci_dev_iterate,
.hot_unplug_handler = pci_hot_unplug_handler,
.sigbus_handler = pci_sigbus_handler,
},
.device_list = TAILQ_HEAD_INITIALIZER(rte_pci_bus.device_list),
.driver_list = TAILQ_HEAD_INITIALIZER(rte_pci_bus.driver_list),
};
RTE_REGISTER_BUS(pci, rte_pci_bus.bus);