numam-dpdk/lib/librte_malloc/malloc_heap.c
Sergio Gonzalez Monroy fdf20fa7be add prefix to cache line macros
CACHE_LINE_SIZE is a macro defined in machine/param.h in FreeBSD and
conflicts with DPDK macro version.
Adding RTE_ prefix to avoid conflicts.
CACHE_LINE_MASK and CACHE_LINE_ROUNDUP are also prefixed.

Signed-off-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
[Thomas: updated on HEAD, including PPC]
2014-11-27 16:21:11 +01:00

211 lines
7.0 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>
#include <rte_memcpy.h>
#include <rte_atomic.h>
#include "malloc_elem.h"
#include "malloc_heap.h"
/* since the memzone size starts with a digit, it will appear unquoted in
* rte_config.h, so quote it so it can be passed to rte_str_to_size */
#define MALLOC_MEMZONE_SIZE RTE_STR(RTE_MALLOC_MEMZONE_SIZE)
/*
* returns the configuration setting for the memzone size as a size_t value
*/
static inline size_t
get_malloc_memzone_size(void)
{
return rte_str_to_size(MALLOC_MEMZONE_SIZE);
}
/*
* reserve an extra memory zone and make it available for use by a particular
* heap. This reserves the zone and sets a dummy malloc_elem header at the end
* to prevent overflow. The rest of the zone is added to free list as a single
* large free block
*/
static int
malloc_heap_add_memzone(struct malloc_heap *heap, size_t size, unsigned align)
{
const unsigned mz_flags = 0;
const size_t block_size = get_malloc_memzone_size();
/* ensure the data we want to allocate will fit in the memzone */
const size_t min_size = size + align + MALLOC_ELEM_OVERHEAD * 2;
const struct rte_memzone *mz = NULL;
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
unsigned numa_socket = heap - mcfg->malloc_heaps;
size_t mz_size = min_size;
if (mz_size < block_size)
mz_size = block_size;
char mz_name[RTE_MEMZONE_NAMESIZE];
snprintf(mz_name, sizeof(mz_name), "MALLOC_S%u_HEAP_%u",
numa_socket, heap->mz_count++);
/* try getting a block. if we fail and we don't need as big a block
* as given in the config, we can shrink our request and try again
*/
do {
mz = rte_memzone_reserve(mz_name, mz_size, numa_socket,
mz_flags);
if (mz == NULL)
mz_size /= 2;
} while (mz == NULL && mz_size > min_size);
if (mz == NULL)
return -1;
/* allocate the memory block headers, one at end, one at start */
struct malloc_elem *start_elem = (struct malloc_elem *)mz->addr;
struct malloc_elem *end_elem = RTE_PTR_ADD(mz->addr,
mz_size - MALLOC_ELEM_OVERHEAD);
end_elem = RTE_PTR_ALIGN_FLOOR(end_elem, RTE_CACHE_LINE_SIZE);
const unsigned elem_size = (uintptr_t)end_elem - (uintptr_t)start_elem;
malloc_elem_init(start_elem, heap, mz, elem_size);
malloc_elem_mkend(end_elem, start_elem);
malloc_elem_free_list_insert(start_elem);
/* increase heap total size by size of new memzone */
heap->total_size+=mz_size - MALLOC_ELEM_OVERHEAD;
return 0;
}
/*
* Iterates through the freelist for a heap to find a free element
* which can store data of the required size and with the requested alignment.
* Returns null on failure, or pointer to element on success.
*/
static struct malloc_elem *
find_suitable_element(struct malloc_heap *heap, size_t size, unsigned align)
{
size_t idx;
struct malloc_elem *elem;
for (idx = malloc_elem_free_list_index(size);
idx < RTE_HEAP_NUM_FREELISTS; idx++)
{
for (elem = LIST_FIRST(&heap->free_head[idx]);
!!elem; elem = LIST_NEXT(elem, free_list))
{
if (malloc_elem_can_hold(elem, size, align))
return elem;
}
}
return NULL;
}
/*
* Main function called by malloc to allocate a block of memory from the
* heap. It locks the free list, scans it, and adds a new memzone if the
* scan fails. Once the new memzone is added, it re-scans and should return
* the new element after releasing the lock.
*/
void *
malloc_heap_alloc(struct malloc_heap *heap,
const char *type __attribute__((unused)), size_t size, unsigned align)
{
size = RTE_CACHE_LINE_ROUNDUP(size);
align = RTE_CACHE_LINE_ROUNDUP(align);
rte_spinlock_lock(&heap->lock);
struct malloc_elem *elem = find_suitable_element(heap, size, align);
if (elem == NULL){
if ((malloc_heap_add_memzone(heap, size, align)) == 0)
elem = find_suitable_element(heap, size, align);
}
if (elem != NULL){
elem = malloc_elem_alloc(elem, size, align);
/* increase heap's count of allocated elements */
heap->alloc_count++;
}
rte_spinlock_unlock(&heap->lock);
return elem == NULL ? NULL : (void *)(&elem[1]);
}
/*
* Function to retrieve data for heap on given socket
*/
int
malloc_heap_get_stats(const struct malloc_heap *heap,
struct rte_malloc_socket_stats *socket_stats)
{
size_t idx;
struct malloc_elem *elem;
/* Initialise variables for heap */
socket_stats->free_count = 0;
socket_stats->heap_freesz_bytes = 0;
socket_stats->greatest_free_size = 0;
/* Iterate through free list */
for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
for (elem = LIST_FIRST(&heap->free_head[idx]);
!!elem; elem = LIST_NEXT(elem, free_list))
{
socket_stats->free_count++;
socket_stats->heap_freesz_bytes += elem->size;
if (elem->size > socket_stats->greatest_free_size)
socket_stats->greatest_free_size = elem->size;
}
}
/* Get stats on overall heap and allocated memory on this heap */
socket_stats->heap_totalsz_bytes = heap->total_size;
socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
socket_stats->heap_freesz_bytes);
socket_stats->alloc_count = heap->alloc_count;
return 0;
}