numam-dpdk/app/test-crypto-perf/main.c
Anatoly Burakov c364321669 app/crypto-perf: add nb-desc parameter
This parameter makes number of cryptodev descriptors adjustable
and defaults to earlier hardcoded default of 2048.

Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Reviewed-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2017-10-12 15:12:48 +01:00

560 lines
14 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <unistd.h>
#include <rte_eal.h>
#include <rte_cryptodev.h>
#include "cperf.h"
#include "cperf_options.h"
#include "cperf_test_vector_parsing.h"
#include "cperf_test_throughput.h"
#include "cperf_test_latency.h"
#include "cperf_test_verify.h"
#define NUM_SESSIONS 2048
#define SESS_MEMPOOL_CACHE_SIZE 64
const char *cperf_test_type_strs[] = {
[CPERF_TEST_TYPE_THROUGHPUT] = "throughput",
[CPERF_TEST_TYPE_LATENCY] = "latency",
[CPERF_TEST_TYPE_VERIFY] = "verify"
};
const char *cperf_op_type_strs[] = {
[CPERF_CIPHER_ONLY] = "cipher-only",
[CPERF_AUTH_ONLY] = "auth-only",
[CPERF_CIPHER_THEN_AUTH] = "cipher-then-auth",
[CPERF_AUTH_THEN_CIPHER] = "auth-then-cipher",
[CPERF_AEAD] = "aead"
};
const struct cperf_test cperf_testmap[] = {
[CPERF_TEST_TYPE_THROUGHPUT] = {
cperf_throughput_test_constructor,
cperf_throughput_test_runner,
cperf_throughput_test_destructor
},
[CPERF_TEST_TYPE_LATENCY] = {
cperf_latency_test_constructor,
cperf_latency_test_runner,
cperf_latency_test_destructor
},
[CPERF_TEST_TYPE_VERIFY] = {
cperf_verify_test_constructor,
cperf_verify_test_runner,
cperf_verify_test_destructor
}
};
static int
cperf_initialize_cryptodev(struct cperf_options *opts, uint8_t *enabled_cdevs,
struct rte_mempool *session_pool_socket[])
{
uint8_t enabled_cdev_count = 0, nb_lcores, cdev_id;
unsigned int i;
int ret;
enabled_cdev_count = rte_cryptodev_devices_get(opts->device_type,
enabled_cdevs, RTE_CRYPTO_MAX_DEVS);
if (enabled_cdev_count == 0) {
printf("No crypto devices type %s available\n",
opts->device_type);
return -EINVAL;
}
nb_lcores = rte_lcore_count() - 1;
if (enabled_cdev_count > nb_lcores) {
printf("Number of capable crypto devices (%d) "
"has to be less or equal to number of slave "
"cores (%d)\n", enabled_cdev_count, nb_lcores);
return -EINVAL;
}
/* Create a mempool shared by all the devices */
uint32_t max_sess_size = 0, sess_size;
for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
sess_size = rte_cryptodev_get_private_session_size(cdev_id);
if (sess_size > max_sess_size)
max_sess_size = sess_size;
}
for (i = 0; i < enabled_cdev_count &&
i < RTE_CRYPTO_MAX_DEVS; i++) {
cdev_id = enabled_cdevs[i];
uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);
struct rte_cryptodev_config conf = {
.nb_queue_pairs = 1,
.socket_id = socket_id
};
struct rte_cryptodev_qp_conf qp_conf = {
.nb_descriptors = opts->nb_descriptors
};
if (session_pool_socket[socket_id] == NULL) {
char mp_name[RTE_MEMPOOL_NAMESIZE];
struct rte_mempool *sess_mp;
snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
"sess_mp_%u", socket_id);
sess_mp = rte_mempool_create(mp_name,
NUM_SESSIONS,
max_sess_size,
SESS_MEMPOOL_CACHE_SIZE,
0, NULL, NULL, NULL,
NULL, socket_id,
0);
if (sess_mp == NULL) {
printf("Cannot create session pool on socket %d\n",
socket_id);
return -ENOMEM;
}
printf("Allocated session pool on socket %d\n", socket_id);
session_pool_socket[socket_id] = sess_mp;
}
ret = rte_cryptodev_configure(cdev_id, &conf);
if (ret < 0) {
printf("Failed to configure cryptodev %u", cdev_id);
return -EINVAL;
}
ret = rte_cryptodev_queue_pair_setup(cdev_id, 0,
&qp_conf, socket_id,
session_pool_socket[socket_id]);
if (ret < 0) {
printf("Failed to setup queue pair %u on "
"cryptodev %u", 0, cdev_id);
return -EINVAL;
}
ret = rte_cryptodev_start(cdev_id);
if (ret < 0) {
printf("Failed to start device %u: error %d\n",
cdev_id, ret);
return -EPERM;
}
}
return enabled_cdev_count;
}
static int
cperf_verify_devices_capabilities(struct cperf_options *opts,
uint8_t *enabled_cdevs, uint8_t nb_cryptodevs)
{
struct rte_cryptodev_sym_capability_idx cap_idx;
const struct rte_cryptodev_symmetric_capability *capability;
uint8_t i, cdev_id;
int ret;
for (i = 0; i < nb_cryptodevs; i++) {
cdev_id = enabled_cdevs[i];
if (opts->op_type == CPERF_AUTH_ONLY ||
opts->op_type == CPERF_CIPHER_THEN_AUTH ||
opts->op_type == CPERF_AUTH_THEN_CIPHER) {
cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH;
cap_idx.algo.auth = opts->auth_algo;
capability = rte_cryptodev_sym_capability_get(cdev_id,
&cap_idx);
if (capability == NULL)
return -1;
ret = rte_cryptodev_sym_capability_check_auth(
capability,
opts->auth_key_sz,
opts->digest_sz,
opts->auth_iv_sz);
if (ret != 0)
return ret;
}
if (opts->op_type == CPERF_CIPHER_ONLY ||
opts->op_type == CPERF_CIPHER_THEN_AUTH ||
opts->op_type == CPERF_AUTH_THEN_CIPHER) {
cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
cap_idx.algo.cipher = opts->cipher_algo;
capability = rte_cryptodev_sym_capability_get(cdev_id,
&cap_idx);
if (capability == NULL)
return -1;
ret = rte_cryptodev_sym_capability_check_cipher(
capability,
opts->cipher_key_sz,
opts->cipher_iv_sz);
if (ret != 0)
return ret;
}
if (opts->op_type == CPERF_AEAD) {
cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD;
cap_idx.algo.aead = opts->aead_algo;
capability = rte_cryptodev_sym_capability_get(cdev_id,
&cap_idx);
if (capability == NULL)
return -1;
ret = rte_cryptodev_sym_capability_check_aead(
capability,
opts->aead_key_sz,
opts->digest_sz,
opts->aead_aad_sz,
opts->aead_iv_sz);
if (ret != 0)
return ret;
}
}
return 0;
}
static int
cperf_check_test_vector(struct cperf_options *opts,
struct cperf_test_vector *test_vec)
{
if (opts->op_type == CPERF_CIPHER_ONLY) {
if (opts->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
if (test_vec->plaintext.data == NULL)
return -1;
} else if (opts->cipher_algo != RTE_CRYPTO_CIPHER_NULL) {
if (test_vec->plaintext.data == NULL)
return -1;
if (test_vec->plaintext.length < opts->max_buffer_size)
return -1;
if (test_vec->ciphertext.data == NULL)
return -1;
if (test_vec->ciphertext.length < opts->max_buffer_size)
return -1;
if (test_vec->cipher_iv.data == NULL)
return -1;
if (test_vec->cipher_iv.length != opts->cipher_iv_sz)
return -1;
if (test_vec->cipher_key.data == NULL)
return -1;
if (test_vec->cipher_key.length != opts->cipher_key_sz)
return -1;
}
} else if (opts->op_type == CPERF_AUTH_ONLY) {
if (opts->auth_algo != RTE_CRYPTO_AUTH_NULL) {
if (test_vec->plaintext.data == NULL)
return -1;
if (test_vec->plaintext.length < opts->max_buffer_size)
return -1;
if (test_vec->auth_key.data == NULL)
return -1;
if (test_vec->auth_key.length != opts->auth_key_sz)
return -1;
if (test_vec->auth_iv.length != opts->auth_iv_sz)
return -1;
/* Auth IV is only required for some algorithms */
if (opts->auth_iv_sz && test_vec->auth_iv.data == NULL)
return -1;
if (test_vec->digest.data == NULL)
return -1;
if (test_vec->digest.length < opts->digest_sz)
return -1;
}
} else if (opts->op_type == CPERF_CIPHER_THEN_AUTH ||
opts->op_type == CPERF_AUTH_THEN_CIPHER) {
if (opts->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
if (test_vec->plaintext.data == NULL)
return -1;
if (test_vec->plaintext.length < opts->max_buffer_size)
return -1;
} else if (opts->cipher_algo != RTE_CRYPTO_CIPHER_NULL) {
if (test_vec->plaintext.data == NULL)
return -1;
if (test_vec->plaintext.length < opts->max_buffer_size)
return -1;
if (test_vec->ciphertext.data == NULL)
return -1;
if (test_vec->ciphertext.length < opts->max_buffer_size)
return -1;
if (test_vec->cipher_iv.data == NULL)
return -1;
if (test_vec->cipher_iv.length != opts->cipher_iv_sz)
return -1;
if (test_vec->cipher_key.data == NULL)
return -1;
if (test_vec->cipher_key.length != opts->cipher_key_sz)
return -1;
}
if (opts->auth_algo != RTE_CRYPTO_AUTH_NULL) {
if (test_vec->auth_key.data == NULL)
return -1;
if (test_vec->auth_key.length != opts->auth_key_sz)
return -1;
if (test_vec->auth_iv.length != opts->auth_iv_sz)
return -1;
/* Auth IV is only required for some algorithms */
if (opts->auth_iv_sz && test_vec->auth_iv.data == NULL)
return -1;
if (test_vec->digest.data == NULL)
return -1;
if (test_vec->digest.length < opts->digest_sz)
return -1;
}
} else if (opts->op_type == CPERF_AEAD) {
if (test_vec->plaintext.data == NULL)
return -1;
if (test_vec->plaintext.length < opts->max_buffer_size)
return -1;
if (test_vec->ciphertext.data == NULL)
return -1;
if (test_vec->ciphertext.length < opts->max_buffer_size)
return -1;
if (test_vec->aead_iv.data == NULL)
return -1;
if (test_vec->aead_iv.length != opts->aead_iv_sz)
return -1;
if (test_vec->aad.data == NULL)
return -1;
if (test_vec->aad.length != opts->aead_aad_sz)
return -1;
if (test_vec->digest.data == NULL)
return -1;
if (test_vec->digest.length < opts->digest_sz)
return -1;
}
return 0;
}
int
main(int argc, char **argv)
{
struct cperf_options opts = {0};
struct cperf_test_vector *t_vec = NULL;
struct cperf_op_fns op_fns;
void *ctx[RTE_MAX_LCORE] = { };
struct rte_mempool *session_pool_socket[RTE_MAX_NUMA_NODES] = { 0 };
int nb_cryptodevs = 0;
uint8_t cdev_id, i;
uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = { 0 };
uint8_t buffer_size_idx = 0;
int ret;
uint32_t lcore_id;
/* Initialise DPDK EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL arguments!\n");
argc -= ret;
argv += ret;
cperf_options_default(&opts);
ret = cperf_options_parse(&opts, argc, argv);
if (ret) {
RTE_LOG(ERR, USER1, "Parsing on or more user options failed\n");
goto err;
}
ret = cperf_options_check(&opts);
if (ret) {
RTE_LOG(ERR, USER1,
"Checking on or more user options failed\n");
goto err;
}
if (!opts.silent)
cperf_options_dump(&opts);
nb_cryptodevs = cperf_initialize_cryptodev(&opts, enabled_cdevs,
session_pool_socket);
if (nb_cryptodevs < 1) {
RTE_LOG(ERR, USER1, "Failed to initialise requested crypto "
"device type\n");
nb_cryptodevs = 0;
goto err;
}
ret = cperf_verify_devices_capabilities(&opts, enabled_cdevs,
nb_cryptodevs);
if (ret) {
RTE_LOG(ERR, USER1, "Crypto device type does not support "
"capabilities requested\n");
goto err;
}
if (opts.test_file != NULL) {
t_vec = cperf_test_vector_get_from_file(&opts);
if (t_vec == NULL) {
RTE_LOG(ERR, USER1,
"Failed to create test vector for"
" specified file\n");
goto err;
}
if (cperf_check_test_vector(&opts, t_vec)) {
RTE_LOG(ERR, USER1, "Incomplete necessary test vectors"
"\n");
goto err;
}
} else {
t_vec = cperf_test_vector_get_dummy(&opts);
if (t_vec == NULL) {
RTE_LOG(ERR, USER1,
"Failed to create test vector for"
" specified algorithms\n");
goto err;
}
}
ret = cperf_get_op_functions(&opts, &op_fns);
if (ret) {
RTE_LOG(ERR, USER1, "Failed to find function ops set for "
"specified algorithms combination\n");
goto err;
}
if (!opts.silent)
show_test_vector(t_vec);
i = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == nb_cryptodevs)
break;
cdev_id = enabled_cdevs[i];
uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);
ctx[cdev_id] = cperf_testmap[opts.test].constructor(
session_pool_socket[socket_id], cdev_id, 0,
&opts, t_vec, &op_fns);
if (ctx[cdev_id] == NULL) {
RTE_LOG(ERR, USER1, "Test run constructor failed\n");
goto err;
}
i++;
}
/* Get first size from range or list */
if (opts.inc_buffer_size != 0)
opts.test_buffer_size = opts.min_buffer_size;
else
opts.test_buffer_size = opts.buffer_size_list[0];
while (opts.test_buffer_size <= opts.max_buffer_size) {
i = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == nb_cryptodevs)
break;
cdev_id = enabled_cdevs[i];
rte_eal_remote_launch(cperf_testmap[opts.test].runner,
ctx[cdev_id], lcore_id);
i++;
}
i = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == nb_cryptodevs)
break;
rte_eal_wait_lcore(lcore_id);
i++;
}
/* Get next size from range or list */
if (opts.inc_buffer_size != 0)
opts.test_buffer_size += opts.inc_buffer_size;
else {
if (++buffer_size_idx == opts.buffer_size_count)
break;
opts.test_buffer_size = opts.buffer_size_list[buffer_size_idx];
}
}
i = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == nb_cryptodevs)
break;
cdev_id = enabled_cdevs[i];
cperf_testmap[opts.test].destructor(ctx[cdev_id]);
i++;
}
free_test_vector(t_vec, &opts);
printf("\n");
return EXIT_SUCCESS;
err:
i = 0;
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (i == nb_cryptodevs)
break;
cdev_id = enabled_cdevs[i];
if (ctx[cdev_id] && cperf_testmap[opts.test].destructor)
cperf_testmap[opts.test].destructor(ctx[cdev_id]);
i++;
}
free_test_vector(t_vec, &opts);
printf("\n");
return EXIT_FAILURE;
}