4f29810e3c
Signed-off-by: Intel
2089 lines
58 KiB
C
2089 lines
58 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/queue.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_tailq.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_malloc.h>
|
|
|
|
#include "e1000_logs.h"
|
|
#include "e1000/e1000_api.h"
|
|
#include "e1000_ethdev.h"
|
|
|
|
static int eth_igb_configure(struct rte_eth_dev *dev);
|
|
static int eth_igb_start(struct rte_eth_dev *dev);
|
|
static void eth_igb_stop(struct rte_eth_dev *dev);
|
|
static void eth_igb_close(struct rte_eth_dev *dev);
|
|
static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
|
|
static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
|
|
static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
|
|
static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
|
|
static int eth_igb_link_update(struct rte_eth_dev *dev,
|
|
int wait_to_complete);
|
|
static void eth_igb_stats_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_stats *rte_stats);
|
|
static void eth_igb_stats_reset(struct rte_eth_dev *dev);
|
|
static void eth_igb_infos_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_dev_info *dev_info);
|
|
static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
|
|
struct rte_eth_fc_conf *fc_conf);
|
|
static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
|
|
static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
|
|
static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
|
|
static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
|
|
void *param);
|
|
static int igb_hardware_init(struct e1000_hw *hw);
|
|
static void igb_hw_control_acquire(struct e1000_hw *hw);
|
|
static void igb_hw_control_release(struct e1000_hw *hw);
|
|
static void igb_init_manageability(struct e1000_hw *hw);
|
|
static void igb_release_manageability(struct e1000_hw *hw);
|
|
|
|
static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
|
|
uint16_t vlan_id, int on);
|
|
static void eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid_id);
|
|
static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
|
|
|
|
static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
|
|
static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
|
|
static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
|
|
static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
|
|
static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
|
|
static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
|
|
|
|
static int eth_igb_led_on(struct rte_eth_dev *dev);
|
|
static int eth_igb_led_off(struct rte_eth_dev *dev);
|
|
|
|
static void igb_intr_disable(struct e1000_hw *hw);
|
|
static int igb_get_rx_buffer_size(struct e1000_hw *hw);
|
|
static void eth_igb_rar_set(struct rte_eth_dev *dev,
|
|
struct ether_addr *mac_addr,
|
|
uint32_t index, uint32_t pool);
|
|
static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
|
|
|
|
static void igbvf_intr_disable(struct e1000_hw *hw);
|
|
static int igbvf_dev_configure(struct rte_eth_dev *dev);
|
|
static int igbvf_dev_start(struct rte_eth_dev *dev);
|
|
static void igbvf_dev_stop(struct rte_eth_dev *dev);
|
|
static void igbvf_dev_close(struct rte_eth_dev *dev);
|
|
static int eth_igbvf_link_update(struct e1000_hw *hw);
|
|
static void eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats);
|
|
static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
|
|
static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
|
|
uint16_t vlan_id, int on);
|
|
static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
|
|
static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
|
|
static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta *reta_conf);
|
|
static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta *reta_conf);
|
|
|
|
/*
|
|
* Define VF Stats MACRO for Non "cleared on read" register
|
|
*/
|
|
#define UPDATE_VF_STAT(reg, last, cur) \
|
|
{ \
|
|
u32 latest = E1000_READ_REG(hw, reg); \
|
|
cur += latest - last; \
|
|
last = latest; \
|
|
}
|
|
|
|
|
|
#define IGB_FC_PAUSE_TIME 0x0680
|
|
#define IGB_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
|
|
#define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
|
|
|
|
#define IGBVF_PMD_NAME "rte_igbvf_pmd" /* PMD name */
|
|
|
|
static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
|
|
|
|
/*
|
|
* The set of PCI devices this driver supports
|
|
*/
|
|
static struct rte_pci_id pci_id_igb_map[] = {
|
|
|
|
#define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
|
|
#include "rte_pci_dev_ids.h"
|
|
|
|
{.device_id = 0},
|
|
};
|
|
|
|
/*
|
|
* The set of PCI devices this driver supports (for 82576&I350 VF)
|
|
*/
|
|
static struct rte_pci_id pci_id_igbvf_map[] = {
|
|
|
|
#define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
|
|
#include "rte_pci_dev_ids.h"
|
|
|
|
{.device_id = 0},
|
|
};
|
|
|
|
static struct eth_dev_ops eth_igb_ops = {
|
|
.dev_configure = eth_igb_configure,
|
|
.dev_start = eth_igb_start,
|
|
.dev_stop = eth_igb_stop,
|
|
.dev_close = eth_igb_close,
|
|
.promiscuous_enable = eth_igb_promiscuous_enable,
|
|
.promiscuous_disable = eth_igb_promiscuous_disable,
|
|
.allmulticast_enable = eth_igb_allmulticast_enable,
|
|
.allmulticast_disable = eth_igb_allmulticast_disable,
|
|
.link_update = eth_igb_link_update,
|
|
.stats_get = eth_igb_stats_get,
|
|
.stats_reset = eth_igb_stats_reset,
|
|
.dev_infos_get = eth_igb_infos_get,
|
|
.vlan_filter_set = eth_igb_vlan_filter_set,
|
|
.vlan_tpid_set = eth_igb_vlan_tpid_set,
|
|
.vlan_offload_set = eth_igb_vlan_offload_set,
|
|
.rx_queue_setup = eth_igb_rx_queue_setup,
|
|
.rx_queue_release = eth_igb_rx_queue_release,
|
|
.rx_queue_count = eth_igb_rx_queue_count,
|
|
.rx_descriptor_done = eth_igb_rx_descriptor_done,
|
|
.tx_queue_setup = eth_igb_tx_queue_setup,
|
|
.tx_queue_release = eth_igb_tx_queue_release,
|
|
.dev_led_on = eth_igb_led_on,
|
|
.dev_led_off = eth_igb_led_off,
|
|
.flow_ctrl_set = eth_igb_flow_ctrl_set,
|
|
.mac_addr_add = eth_igb_rar_set,
|
|
.mac_addr_remove = eth_igb_rar_clear,
|
|
.reta_update = eth_igb_rss_reta_update,
|
|
.reta_query = eth_igb_rss_reta_query,
|
|
};
|
|
|
|
/*
|
|
* dev_ops for virtual function, bare necessities for basic vf
|
|
* operation have been implemented
|
|
*/
|
|
static struct eth_dev_ops igbvf_eth_dev_ops = {
|
|
.dev_configure = igbvf_dev_configure,
|
|
.dev_start = igbvf_dev_start,
|
|
.dev_stop = igbvf_dev_stop,
|
|
.dev_close = igbvf_dev_close,
|
|
.link_update = eth_igb_link_update,
|
|
.stats_get = eth_igbvf_stats_get,
|
|
.stats_reset = eth_igbvf_stats_reset,
|
|
.vlan_filter_set = igbvf_vlan_filter_set,
|
|
.dev_infos_get = eth_igb_infos_get,
|
|
.rx_queue_setup = eth_igb_rx_queue_setup,
|
|
.rx_queue_release = eth_igb_rx_queue_release,
|
|
.tx_queue_setup = eth_igb_tx_queue_setup,
|
|
.tx_queue_release = eth_igb_tx_queue_release,
|
|
};
|
|
|
|
/**
|
|
* Atomically reads the link status information from global
|
|
* structure rte_eth_dev.
|
|
*
|
|
* @param dev
|
|
* - Pointer to the structure rte_eth_dev to read from.
|
|
* - Pointer to the buffer to be saved with the link status.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, negative value.
|
|
*/
|
|
static inline int
|
|
rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
|
|
struct rte_eth_link *link)
|
|
{
|
|
struct rte_eth_link *dst = link;
|
|
struct rte_eth_link *src = &(dev->data->dev_link);
|
|
|
|
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
|
|
*(uint64_t *)src) == 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Atomically writes the link status information into global
|
|
* structure rte_eth_dev.
|
|
*
|
|
* @param dev
|
|
* - Pointer to the structure rte_eth_dev to read from.
|
|
* - Pointer to the buffer to be saved with the link status.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, negative value.
|
|
*/
|
|
static inline int
|
|
rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
|
|
struct rte_eth_link *link)
|
|
{
|
|
struct rte_eth_link *dst = &(dev->data->dev_link);
|
|
struct rte_eth_link *src = link;
|
|
|
|
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
|
|
*(uint64_t *)src) == 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
igb_intr_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
static void
|
|
igb_intr_disable(struct e1000_hw *hw)
|
|
{
|
|
E1000_WRITE_REG(hw, E1000_IMC, ~0);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
static inline int32_t
|
|
igb_pf_reset_hw(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl_ext;
|
|
int32_t status;
|
|
|
|
status = e1000_reset_hw(hw);
|
|
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
/* Set PF Reset Done bit so PF/VF Mail Ops can work */
|
|
ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
igb_identify_hardware(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
hw->vendor_id = dev->pci_dev->id.vendor_id;
|
|
hw->device_id = dev->pci_dev->id.device_id;
|
|
hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
|
|
hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
|
|
|
|
e1000_set_mac_type(hw);
|
|
|
|
/* need to check if it is a vf device below */
|
|
}
|
|
|
|
static int
|
|
eth_igb_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
|
|
struct rte_eth_dev *eth_dev)
|
|
{
|
|
int error = 0;
|
|
struct rte_pci_device *pci_dev;
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
|
|
uint32_t ctrl_ext;
|
|
|
|
pci_dev = eth_dev->pci_dev;
|
|
eth_dev->dev_ops = ð_igb_ops;
|
|
eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
|
|
eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
|
|
|
|
/* for secondary processes, we don't initialise any further as primary
|
|
* has already done this work. Only check we don't need a different
|
|
* RX function */
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
|
|
if (eth_dev->data->scattered_rx)
|
|
eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
|
|
return 0;
|
|
}
|
|
|
|
hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
|
|
|
|
igb_identify_hardware(eth_dev);
|
|
if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
|
|
error = -EIO;
|
|
goto err_late;
|
|
}
|
|
|
|
e1000_get_bus_info(hw);
|
|
|
|
hw->mac.autoneg = 1;
|
|
hw->phy.autoneg_wait_to_complete = 0;
|
|
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
|
|
|
|
/* Copper options */
|
|
if (hw->phy.media_type == e1000_media_type_copper) {
|
|
hw->phy.mdix = 0; /* AUTO_ALL_MODES */
|
|
hw->phy.disable_polarity_correction = 0;
|
|
hw->phy.ms_type = e1000_ms_hw_default;
|
|
}
|
|
|
|
/*
|
|
* Start from a known state, this is important in reading the nvm
|
|
* and mac from that.
|
|
*/
|
|
igb_pf_reset_hw(hw);
|
|
|
|
/* Make sure we have a good EEPROM before we read from it */
|
|
if (e1000_validate_nvm_checksum(hw) < 0) {
|
|
/*
|
|
* Some PCI-E parts fail the first check due to
|
|
* the link being in sleep state, call it again,
|
|
* if it fails a second time its a real issue.
|
|
*/
|
|
if (e1000_validate_nvm_checksum(hw) < 0) {
|
|
PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
|
|
error = -EIO;
|
|
goto err_late;
|
|
}
|
|
}
|
|
|
|
/* Read the permanent MAC address out of the EEPROM */
|
|
if (e1000_read_mac_addr(hw) != 0) {
|
|
PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
|
|
error = -EIO;
|
|
goto err_late;
|
|
}
|
|
|
|
/* Allocate memory for storing MAC addresses */
|
|
eth_dev->data->mac_addrs = rte_zmalloc("e1000",
|
|
ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
|
|
if (eth_dev->data->mac_addrs == NULL) {
|
|
PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
|
|
"store MAC addresses",
|
|
ETHER_ADDR_LEN * hw->mac.rar_entry_count);
|
|
error = -ENOMEM;
|
|
goto err_late;
|
|
}
|
|
|
|
/* Copy the permanent MAC address */
|
|
ether_addr_copy((struct ether_addr *)hw->mac.addr, ð_dev->data->mac_addrs[0]);
|
|
|
|
/* initialize the vfta */
|
|
memset(shadow_vfta, 0, sizeof(*shadow_vfta));
|
|
|
|
/* Now initialize the hardware */
|
|
if (igb_hardware_init(hw) != 0) {
|
|
PMD_INIT_LOG(ERR, "Hardware initialization failed");
|
|
rte_free(eth_dev->data->mac_addrs);
|
|
eth_dev->data->mac_addrs = NULL;
|
|
error = -ENODEV;
|
|
goto err_late;
|
|
}
|
|
hw->mac.get_link_status = 1;
|
|
|
|
/* Indicate SOL/IDER usage */
|
|
if (e1000_check_reset_block(hw) < 0) {
|
|
PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
|
|
"SOL/IDER session");
|
|
}
|
|
|
|
/* initialize PF if max_vfs not zero */
|
|
igb_pf_host_init(eth_dev);
|
|
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
/* Set PF Reset Done bit so PF/VF Mail Ops can work */
|
|
ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
PMD_INIT_LOG(INFO, "port_id %d vendorID=0x%x deviceID=0x%x\n",
|
|
eth_dev->data->port_id, pci_dev->id.vendor_id,
|
|
pci_dev->id.device_id);
|
|
|
|
rte_intr_callback_register(&(pci_dev->intr_handle),
|
|
eth_igb_interrupt_handler, (void *)eth_dev);
|
|
|
|
/* enable uio intr after callback register */
|
|
rte_intr_enable(&(pci_dev->intr_handle));
|
|
|
|
/* enable support intr */
|
|
igb_intr_enable(eth_dev);
|
|
|
|
return 0;
|
|
|
|
err_late:
|
|
igb_hw_control_release(hw);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Virtual Function device init
|
|
*/
|
|
static int
|
|
eth_igbvf_dev_init(__attribute__((unused)) struct eth_driver *eth_drv,
|
|
struct rte_eth_dev *eth_dev)
|
|
{
|
|
struct rte_pci_device *pci_dev;
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
|
|
int diag;
|
|
|
|
PMD_INIT_LOG(DEBUG, "eth_igbvf_dev_init");
|
|
|
|
eth_dev->dev_ops = &igbvf_eth_dev_ops;
|
|
eth_dev->rx_pkt_burst = ð_igb_recv_pkts;
|
|
eth_dev->tx_pkt_burst = ð_igb_xmit_pkts;
|
|
|
|
/* for secondary processes, we don't initialise any further as primary
|
|
* has already done this work. Only check we don't need a different
|
|
* RX function */
|
|
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
|
|
if (eth_dev->data->scattered_rx)
|
|
eth_dev->rx_pkt_burst = ð_igb_recv_scattered_pkts;
|
|
return 0;
|
|
}
|
|
|
|
pci_dev = eth_dev->pci_dev;
|
|
|
|
hw->device_id = pci_dev->id.device_id;
|
|
hw->vendor_id = pci_dev->id.vendor_id;
|
|
hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
|
|
|
|
/* Initialize the shared code */
|
|
diag = e1000_setup_init_funcs(hw, TRUE);
|
|
if (diag != 0) {
|
|
PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
|
|
diag);
|
|
return -EIO;
|
|
}
|
|
|
|
/* init_mailbox_params */
|
|
hw->mbx.ops.init_params(hw);
|
|
|
|
/* Disable the interrupts for VF */
|
|
igbvf_intr_disable(hw);
|
|
|
|
diag = hw->mac.ops.reset_hw(hw);
|
|
|
|
/* Allocate memory for storing MAC addresses */
|
|
eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
|
|
hw->mac.rar_entry_count, 0);
|
|
if (eth_dev->data->mac_addrs == NULL) {
|
|
PMD_INIT_LOG(ERR,
|
|
"Failed to allocate %d bytes needed to store MAC "
|
|
"addresses",
|
|
ETHER_ADDR_LEN * hw->mac.rar_entry_count);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Copy the permanent MAC address */
|
|
ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
|
|
ð_dev->data->mac_addrs[0]);
|
|
|
|
PMD_INIT_LOG(DEBUG, "\nport %d vendorID=0x%x deviceID=0x%x "
|
|
"mac.type=%s\n",
|
|
eth_dev->data->port_id, pci_dev->id.vendor_id,
|
|
pci_dev->id.device_id,
|
|
"igb_mac_82576_vf");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct eth_driver rte_igb_pmd = {
|
|
{
|
|
.name = "rte_igb_pmd",
|
|
.id_table = pci_id_igb_map,
|
|
#ifdef RTE_EAL_UNBIND_PORTS
|
|
.drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
|
|
#endif
|
|
},
|
|
.eth_dev_init = eth_igb_dev_init,
|
|
.dev_private_size = sizeof(struct e1000_adapter),
|
|
};
|
|
|
|
/*
|
|
* virtual function driver struct
|
|
*/
|
|
static struct eth_driver rte_igbvf_pmd = {
|
|
{
|
|
.name = "rte_igbvf_pmd",
|
|
.id_table = pci_id_igbvf_map,
|
|
#ifdef RTE_EAL_UNBIND_PORTS
|
|
.drv_flags = RTE_PCI_DRV_NEED_IGB_UIO,
|
|
#endif
|
|
},
|
|
.eth_dev_init = eth_igbvf_dev_init,
|
|
.dev_private_size = sizeof(struct e1000_adapter),
|
|
};
|
|
|
|
int
|
|
rte_igb_pmd_init(void)
|
|
{
|
|
rte_eth_driver_register(&rte_igb_pmd);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
/* RCTL: enable VLAN filter since VMDq always use VLAN filter */
|
|
uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl |= E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
/*
|
|
* VF Driver initialization routine.
|
|
* Invoked one at EAL init time.
|
|
* Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices.
|
|
*/
|
|
int
|
|
rte_igbvf_pmd_init(void)
|
|
{
|
|
DEBUGFUNC("rte_igbvf_pmd_init");
|
|
|
|
rte_eth_driver_register(&rte_igbvf_pmd);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
eth_igb_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
|
|
PMD_INIT_LOG(DEBUG, ">>");
|
|
|
|
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
|
|
|
|
PMD_INIT_LOG(DEBUG, "<<");
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
eth_igb_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
int ret, i, mask;
|
|
uint32_t ctrl_ext;
|
|
|
|
PMD_INIT_LOG(DEBUG, ">>");
|
|
|
|
/* Power up the phy. Needed to make the link go Up */
|
|
e1000_power_up_phy(hw);
|
|
|
|
/*
|
|
* Packet Buffer Allocation (PBA)
|
|
* Writing PBA sets the receive portion of the buffer
|
|
* the remainder is used for the transmit buffer.
|
|
*/
|
|
if (hw->mac.type == e1000_82575) {
|
|
uint32_t pba;
|
|
|
|
pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
|
|
E1000_WRITE_REG(hw, E1000_PBA, pba);
|
|
}
|
|
|
|
/* Put the address into the Receive Address Array */
|
|
e1000_rar_set(hw, hw->mac.addr, 0);
|
|
|
|
/* Initialize the hardware */
|
|
if (igb_hardware_init(hw)) {
|
|
PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
|
|
return (-EIO);
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
|
|
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
/* Set PF Reset Done bit so PF/VF Mail Ops can work */
|
|
ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
/* configure PF module if SRIOV enabled */
|
|
igb_pf_host_configure(dev);
|
|
|
|
/* Configure for OS presence */
|
|
igb_init_manageability(hw);
|
|
|
|
eth_igb_tx_init(dev);
|
|
|
|
/* This can fail when allocating mbufs for descriptor rings */
|
|
ret = eth_igb_rx_init(dev);
|
|
if (ret) {
|
|
PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
|
|
igb_dev_clear_queues(dev);
|
|
return ret;
|
|
}
|
|
|
|
e1000_clear_hw_cntrs_base_generic(hw);
|
|
|
|
/*
|
|
* VLAN Offload Settings
|
|
*/
|
|
mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
|
|
ETH_VLAN_EXTEND_MASK;
|
|
eth_igb_vlan_offload_set(dev, mask);
|
|
|
|
if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
|
|
/* Enable VLAN filter since VMDq always use VLAN filter */
|
|
igb_vmdq_vlan_hw_filter_enable(dev);
|
|
}
|
|
|
|
/*
|
|
* Configure the Interrupt Moderation register (EITR) with the maximum
|
|
* possible value (0xFFFF) to minimize "System Partial Write" issued by
|
|
* spurious [DMA] memory updates of RX and TX ring descriptors.
|
|
*
|
|
* With a EITR granularity of 2 microseconds in the 82576, only 7/8
|
|
* spurious memory updates per second should be expected.
|
|
* ((65535 * 2) / 1000.1000 ~= 0.131 second).
|
|
*
|
|
* Because interrupts are not used at all, the MSI-X is not activated
|
|
* and interrupt moderation is controlled by EITR[0].
|
|
*
|
|
* Note that having [almost] disabled memory updates of RX and TX ring
|
|
* descriptors through the Interrupt Moderation mechanism, memory
|
|
* updates of ring descriptors are now moderated by the configurable
|
|
* value of Write-Back Threshold registers.
|
|
*/
|
|
if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
|
|
(hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210)) {
|
|
uint32_t ivar;
|
|
|
|
/* Enable all RX & TX queues in the IVAR registers */
|
|
ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID);
|
|
for (i = 0; i < 8; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar);
|
|
|
|
/* Configure EITR with the maximum possible value (0xFFFF) */
|
|
E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
|
|
}
|
|
|
|
/* Setup link speed and duplex */
|
|
switch (dev->data->dev_conf.link_speed) {
|
|
case ETH_LINK_SPEED_AUTONEG:
|
|
if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
|
|
hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
|
|
else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
|
|
hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
|
|
else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
|
|
hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
|
|
else
|
|
goto error_invalid_config;
|
|
break;
|
|
case ETH_LINK_SPEED_10:
|
|
if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
|
|
hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
|
|
else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
|
|
hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
|
|
else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
|
|
hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
|
|
else
|
|
goto error_invalid_config;
|
|
break;
|
|
case ETH_LINK_SPEED_100:
|
|
if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
|
|
hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
|
|
else if (dev->data->dev_conf.link_duplex == ETH_LINK_HALF_DUPLEX)
|
|
hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
|
|
else if (dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX)
|
|
hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
|
|
else
|
|
goto error_invalid_config;
|
|
break;
|
|
case ETH_LINK_SPEED_1000:
|
|
if ((dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX) ||
|
|
(dev->data->dev_conf.link_duplex == ETH_LINK_FULL_DUPLEX))
|
|
hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
|
|
else
|
|
goto error_invalid_config;
|
|
break;
|
|
case ETH_LINK_SPEED_10000:
|
|
default:
|
|
goto error_invalid_config;
|
|
}
|
|
e1000_setup_link(hw);
|
|
|
|
/* check if lsc interrupt feature is enabled */
|
|
if (dev->data->dev_conf.intr_conf.lsc != 0)
|
|
ret = eth_igb_lsc_interrupt_setup(dev);
|
|
|
|
/* resume enabled intr since hw reset */
|
|
igb_intr_enable(dev);
|
|
|
|
PMD_INIT_LOG(DEBUG, "<<");
|
|
|
|
return (0);
|
|
|
|
error_invalid_config:
|
|
PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u\n",
|
|
dev->data->dev_conf.link_speed,
|
|
dev->data->dev_conf.link_duplex, dev->data->port_id);
|
|
igb_dev_clear_queues(dev);
|
|
return (-EINVAL);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine disables all traffic on the adapter by issuing a
|
|
* global reset on the MAC.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
eth_igb_stop(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_eth_link link;
|
|
|
|
igb_intr_disable(hw);
|
|
igb_pf_reset_hw(hw);
|
|
E1000_WRITE_REG(hw, E1000_WUC, 0);
|
|
|
|
/* Set bit for Go Link disconnect */
|
|
if (hw->mac.type >= e1000_82580) {
|
|
uint32_t phpm_reg;
|
|
|
|
phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
|
|
phpm_reg |= E1000_82580_PM_GO_LINKD;
|
|
E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
|
|
}
|
|
|
|
/* Power down the phy. Needed to make the link go Down */
|
|
e1000_power_down_phy(hw);
|
|
|
|
igb_dev_clear_queues(dev);
|
|
|
|
/* clear the recorded link status */
|
|
memset(&link, 0, sizeof(link));
|
|
rte_igb_dev_atomic_write_link_status(dev, &link);
|
|
}
|
|
|
|
static void
|
|
eth_igb_close(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_eth_link link;
|
|
|
|
eth_igb_stop(dev);
|
|
e1000_phy_hw_reset(hw);
|
|
igb_release_manageability(hw);
|
|
igb_hw_control_release(hw);
|
|
|
|
/* Clear bit for Go Link disconnect */
|
|
if (hw->mac.type >= e1000_82580) {
|
|
uint32_t phpm_reg;
|
|
|
|
phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
|
|
phpm_reg &= ~E1000_82580_PM_GO_LINKD;
|
|
E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
|
|
}
|
|
|
|
igb_dev_clear_queues(dev);
|
|
|
|
memset(&link, 0, sizeof(link));
|
|
rte_igb_dev_atomic_write_link_status(dev, &link);
|
|
}
|
|
|
|
static int
|
|
igb_get_rx_buffer_size(struct e1000_hw *hw)
|
|
{
|
|
uint32_t rx_buf_size;
|
|
if (hw->mac.type == e1000_82576) {
|
|
rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
|
|
} else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
|
|
/* PBS needs to be translated according to a lookup table */
|
|
rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
|
|
rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
|
|
rx_buf_size = (rx_buf_size << 10);
|
|
} else if (hw->mac.type == e1000_i210) {
|
|
rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
|
|
} else {
|
|
rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
|
|
}
|
|
|
|
return rx_buf_size;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize the hardware
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
igb_hardware_init(struct e1000_hw *hw)
|
|
{
|
|
uint32_t rx_buf_size;
|
|
int diag;
|
|
|
|
/* Let the firmware know the OS is in control */
|
|
igb_hw_control_acquire(hw);
|
|
|
|
/*
|
|
* These parameters control the automatic generation (Tx) and
|
|
* response (Rx) to Ethernet PAUSE frames.
|
|
* - High water mark should allow for at least two standard size (1518)
|
|
* frames to be received after sending an XOFF.
|
|
* - Low water mark works best when it is very near the high water mark.
|
|
* This allows the receiver to restart by sending XON when it has
|
|
* drained a bit. Here we use an arbitary value of 1500 which will
|
|
* restart after one full frame is pulled from the buffer. There
|
|
* could be several smaller frames in the buffer and if so they will
|
|
* not trigger the XON until their total number reduces the buffer
|
|
* by 1500.
|
|
* - The pause time is fairly large at 1000 x 512ns = 512 usec.
|
|
*/
|
|
rx_buf_size = igb_get_rx_buffer_size(hw);
|
|
|
|
hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
|
|
hw->fc.low_water = hw->fc.high_water - 1500;
|
|
hw->fc.pause_time = IGB_FC_PAUSE_TIME;
|
|
hw->fc.send_xon = 1;
|
|
|
|
/* Set Flow control, use the tunable location if sane */
|
|
if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
|
|
hw->fc.requested_mode = igb_fc_setting;
|
|
else
|
|
hw->fc.requested_mode = e1000_fc_none;
|
|
|
|
/* Issue a global reset */
|
|
igb_pf_reset_hw(hw);
|
|
E1000_WRITE_REG(hw, E1000_WUC, 0);
|
|
|
|
diag = e1000_init_hw(hw);
|
|
if (diag < 0)
|
|
return (diag);
|
|
|
|
E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
|
|
e1000_get_phy_info(hw);
|
|
e1000_check_for_link(hw);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* This function is based on igb_update_stats_counters() in igb/if_igb.c */
|
|
static void
|
|
eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_hw_stats *stats =
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
int pause_frames;
|
|
|
|
if(hw->phy.media_type == e1000_media_type_copper ||
|
|
(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
|
|
stats->symerrs +=
|
|
E1000_READ_REG(hw,E1000_SYMERRS);
|
|
stats->sec += E1000_READ_REG(hw, E1000_SEC);
|
|
}
|
|
|
|
stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
|
|
stats->mpc += E1000_READ_REG(hw, E1000_MPC);
|
|
stats->scc += E1000_READ_REG(hw, E1000_SCC);
|
|
stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
|
|
|
|
stats->mcc += E1000_READ_REG(hw, E1000_MCC);
|
|
stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
|
|
stats->colc += E1000_READ_REG(hw, E1000_COLC);
|
|
stats->dc += E1000_READ_REG(hw, E1000_DC);
|
|
stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
|
|
stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
|
|
stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
|
|
/*
|
|
** For watchdog management we need to know if we have been
|
|
** paused during the last interval, so capture that here.
|
|
*/
|
|
pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
|
|
stats->xoffrxc += pause_frames;
|
|
stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
|
|
stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
|
|
stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
|
|
stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
|
|
stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
|
|
stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
|
|
stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
|
|
stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
|
|
stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
|
|
stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
|
|
stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
|
|
stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
|
|
|
|
/* For the 64-bit byte counters the low dword must be read first. */
|
|
/* Both registers clear on the read of the high dword */
|
|
|
|
stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
|
|
stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
|
|
stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
|
|
stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
|
|
|
|
stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
|
|
stats->ruc += E1000_READ_REG(hw, E1000_RUC);
|
|
stats->rfc += E1000_READ_REG(hw, E1000_RFC);
|
|
stats->roc += E1000_READ_REG(hw, E1000_ROC);
|
|
stats->rjc += E1000_READ_REG(hw, E1000_RJC);
|
|
|
|
stats->tor += E1000_READ_REG(hw, E1000_TORH);
|
|
stats->tot += E1000_READ_REG(hw, E1000_TOTH);
|
|
|
|
stats->tpr += E1000_READ_REG(hw, E1000_TPR);
|
|
stats->tpt += E1000_READ_REG(hw, E1000_TPT);
|
|
stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
|
|
stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
|
|
stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
|
|
stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
|
|
stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
|
|
stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
|
|
stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
|
|
stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
|
|
|
|
/* Interrupt Counts */
|
|
|
|
stats->iac += E1000_READ_REG(hw, E1000_IAC);
|
|
stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
|
|
stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
|
|
stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
|
|
stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
|
|
stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
|
|
stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
|
|
stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
|
|
stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
|
|
|
|
/* Host to Card Statistics */
|
|
|
|
stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
|
|
stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
|
|
stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
|
|
stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
|
|
stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
|
|
stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
|
|
stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
|
|
stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
|
|
stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
|
|
stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
|
|
stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
|
|
stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
|
|
stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
|
|
stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
|
|
|
|
stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
|
|
stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
|
|
stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
|
|
stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
|
|
stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
|
|
stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
|
|
|
|
if (rte_stats == NULL)
|
|
return;
|
|
|
|
/* Rx Errors */
|
|
rte_stats->ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
|
|
stats->ruc + stats->roc + stats->mpc + stats->cexterr;
|
|
|
|
/* Tx Errors */
|
|
rte_stats->oerrors = stats->ecol + stats->latecol;
|
|
|
|
rte_stats->ipackets = stats->gprc;
|
|
rte_stats->opackets = stats->gptc;
|
|
rte_stats->ibytes = stats->gorc;
|
|
rte_stats->obytes = stats->gotc;
|
|
}
|
|
|
|
static void
|
|
eth_igb_stats_reset(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw_stats *hw_stats =
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
|
|
/* HW registers are cleared on read */
|
|
eth_igb_stats_get(dev, NULL);
|
|
|
|
/* Reset software totals */
|
|
memset(hw_stats, 0, sizeof(*hw_stats));
|
|
}
|
|
|
|
static void
|
|
eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
|
|
/* Good Rx packets, include VF loopback */
|
|
UPDATE_VF_STAT(E1000_VFGPRC,
|
|
hw_stats->last_gprc, hw_stats->gprc);
|
|
|
|
/* Good Rx octets, include VF loopback */
|
|
UPDATE_VF_STAT(E1000_VFGORC,
|
|
hw_stats->last_gorc, hw_stats->gorc);
|
|
|
|
/* Good Tx packets, include VF loopback */
|
|
UPDATE_VF_STAT(E1000_VFGPTC,
|
|
hw_stats->last_gptc, hw_stats->gptc);
|
|
|
|
/* Good Tx octets, include VF loopback */
|
|
UPDATE_VF_STAT(E1000_VFGOTC,
|
|
hw_stats->last_gotc, hw_stats->gotc);
|
|
|
|
/* Rx Multicst packets */
|
|
UPDATE_VF_STAT(E1000_VFMPRC,
|
|
hw_stats->last_mprc, hw_stats->mprc);
|
|
|
|
/* Good Rx loopback packets */
|
|
UPDATE_VF_STAT(E1000_VFGPRLBC,
|
|
hw_stats->last_gprlbc, hw_stats->gprlbc);
|
|
|
|
/* Good Rx loopback octets */
|
|
UPDATE_VF_STAT(E1000_VFGORLBC,
|
|
hw_stats->last_gorlbc, hw_stats->gorlbc);
|
|
|
|
/* Good Tx loopback packets */
|
|
UPDATE_VF_STAT(E1000_VFGPTLBC,
|
|
hw_stats->last_gptlbc, hw_stats->gptlbc);
|
|
|
|
/* Good Tx loopback octets */
|
|
UPDATE_VF_STAT(E1000_VFGOTLBC,
|
|
hw_stats->last_gotlbc, hw_stats->gotlbc);
|
|
|
|
if (rte_stats == NULL)
|
|
return;
|
|
|
|
memset(rte_stats, 0, sizeof(*rte_stats));
|
|
rte_stats->ipackets = hw_stats->gprc;
|
|
rte_stats->ibytes = hw_stats->gorc;
|
|
rte_stats->opackets = hw_stats->gptc;
|
|
rte_stats->obytes = hw_stats->gotc;
|
|
rte_stats->imcasts = hw_stats->mprc;
|
|
rte_stats->ilbpackets = hw_stats->gprlbc;
|
|
rte_stats->ilbbytes = hw_stats->gorlbc;
|
|
rte_stats->olbpackets = hw_stats->gptlbc;
|
|
rte_stats->olbbytes = hw_stats->gotlbc;
|
|
|
|
}
|
|
|
|
static void
|
|
eth_igbvf_stats_reset(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
|
|
E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
|
|
|
|
/* Sync HW register to the last stats */
|
|
eth_igbvf_stats_get(dev, NULL);
|
|
|
|
/* reset HW current stats*/
|
|
memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
|
|
offsetof(struct e1000_vf_stats, gprc));
|
|
|
|
}
|
|
|
|
static void
|
|
eth_igb_infos_get(struct rte_eth_dev *dev,
|
|
struct rte_eth_dev_info *dev_info)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
|
|
dev_info->max_rx_pktlen = 0x3FFF; /* See RLPML register. */
|
|
dev_info->max_mac_addrs = hw->mac.rar_entry_count;
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82575:
|
|
dev_info->max_rx_queues = 4;
|
|
dev_info->max_tx_queues = 4;
|
|
dev_info->max_vmdq_pools = 0;
|
|
break;
|
|
|
|
case e1000_82576:
|
|
dev_info->max_rx_queues = 16;
|
|
dev_info->max_tx_queues = 16;
|
|
dev_info->max_vmdq_pools = ETH_8_POOLS;
|
|
break;
|
|
|
|
case e1000_82580:
|
|
dev_info->max_rx_queues = 8;
|
|
dev_info->max_tx_queues = 8;
|
|
dev_info->max_vmdq_pools = ETH_8_POOLS;
|
|
break;
|
|
|
|
case e1000_i350:
|
|
dev_info->max_rx_queues = 8;
|
|
dev_info->max_tx_queues = 8;
|
|
dev_info->max_vmdq_pools = ETH_8_POOLS;
|
|
break;
|
|
|
|
case e1000_i354:
|
|
dev_info->max_rx_queues = 8;
|
|
dev_info->max_tx_queues = 8;
|
|
break;
|
|
|
|
case e1000_i210:
|
|
dev_info->max_rx_queues = 4;
|
|
dev_info->max_tx_queues = 4;
|
|
dev_info->max_vmdq_pools = 0;
|
|
break;
|
|
|
|
case e1000_vfadapt:
|
|
dev_info->max_rx_queues = 2;
|
|
dev_info->max_tx_queues = 2;
|
|
dev_info->max_vmdq_pools = 0;
|
|
break;
|
|
|
|
case e1000_vfadapt_i350:
|
|
dev_info->max_rx_queues = 1;
|
|
dev_info->max_tx_queues = 1;
|
|
dev_info->max_vmdq_pools = 0;
|
|
break;
|
|
|
|
default:
|
|
/* Should not happen */
|
|
dev_info->max_rx_queues = 0;
|
|
dev_info->max_tx_queues = 0;
|
|
dev_info->max_vmdq_pools = 0;
|
|
}
|
|
}
|
|
|
|
/* return 0 means link status changed, -1 means not changed */
|
|
static int
|
|
eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_eth_link link, old;
|
|
int link_check, count;
|
|
|
|
link_check = 0;
|
|
hw->mac.get_link_status = 1;
|
|
|
|
/* possible wait-to-complete in up to 9 seconds */
|
|
for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
|
|
/* Read the real link status */
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_copper:
|
|
/* Do the work to read phy */
|
|
e1000_check_for_link(hw);
|
|
link_check = !hw->mac.get_link_status;
|
|
break;
|
|
|
|
case e1000_media_type_fiber:
|
|
e1000_check_for_link(hw);
|
|
link_check = (E1000_READ_REG(hw, E1000_STATUS) &
|
|
E1000_STATUS_LU);
|
|
break;
|
|
|
|
case e1000_media_type_internal_serdes:
|
|
e1000_check_for_link(hw);
|
|
link_check = hw->mac.serdes_has_link;
|
|
break;
|
|
|
|
/* VF device is type_unknown */
|
|
case e1000_media_type_unknown:
|
|
eth_igbvf_link_update(hw);
|
|
link_check = !hw->mac.get_link_status;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
if (link_check || wait_to_complete == 0)
|
|
break;
|
|
rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
|
|
}
|
|
memset(&link, 0, sizeof(link));
|
|
rte_igb_dev_atomic_read_link_status(dev, &link);
|
|
old = link;
|
|
|
|
/* Now we check if a transition has happened */
|
|
if (link_check) {
|
|
hw->mac.ops.get_link_up_info(hw, &link.link_speed,
|
|
&link.link_duplex);
|
|
link.link_status = 1;
|
|
} else if (!link_check) {
|
|
link.link_speed = 0;
|
|
link.link_duplex = 0;
|
|
link.link_status = 0;
|
|
}
|
|
rte_igb_dev_atomic_write_link_status(dev, &link);
|
|
|
|
/* not changed */
|
|
if (old.link_status == link.link_status)
|
|
return -1;
|
|
|
|
/* changed */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means
|
|
* that the driver is loaded.
|
|
*/
|
|
static void
|
|
igb_hw_control_acquire(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl_ext;
|
|
|
|
/* Let firmware know the driver has taken over */
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
|
|
/*
|
|
* igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
|
|
* For ASF and Pass Through versions of f/w this means that the
|
|
* driver is no longer loaded.
|
|
*/
|
|
static void
|
|
igb_hw_control_release(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl_ext;
|
|
|
|
/* Let firmware taken over control of h/w */
|
|
ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT,
|
|
ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
|
|
}
|
|
|
|
/*
|
|
* Bit of a misnomer, what this really means is
|
|
* to enable OS management of the system... aka
|
|
* to disable special hardware management features.
|
|
*/
|
|
static void
|
|
igb_init_manageability(struct e1000_hw *hw)
|
|
{
|
|
if (e1000_enable_mng_pass_thru(hw)) {
|
|
uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
|
|
uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
|
|
|
|
/* disable hardware interception of ARP */
|
|
manc &= ~(E1000_MANC_ARP_EN);
|
|
|
|
/* enable receiving management packets to the host */
|
|
manc |= E1000_MANC_EN_MNG2HOST;
|
|
manc2h |= 1 << 5; /* Mng Port 623 */
|
|
manc2h |= 1 << 6; /* Mng Port 664 */
|
|
E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
|
|
E1000_WRITE_REG(hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
igb_release_manageability(struct e1000_hw *hw)
|
|
{
|
|
if (e1000_enable_mng_pass_thru(hw)) {
|
|
uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
|
|
|
|
manc |= E1000_MANC_ARP_EN;
|
|
manc &= ~E1000_MANC_EN_MNG2HOST;
|
|
|
|
E1000_WRITE_REG(hw, E1000_MANC, manc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static void
|
|
eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl &= (~E1000_RCTL_UPE);
|
|
if (dev->data->all_multicast == 1)
|
|
rctl |= E1000_RCTL_MPE;
|
|
else
|
|
rctl &= (~E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static void
|
|
eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl |= E1000_RCTL_MPE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static void
|
|
eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rctl;
|
|
|
|
if (dev->data->promiscuous == 1)
|
|
return; /* must remain in all_multicast mode */
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
rctl &= (~E1000_RCTL_MPE);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
}
|
|
|
|
static int
|
|
eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
|
|
uint32_t vfta;
|
|
uint32_t vid_idx;
|
|
uint32_t vid_bit;
|
|
|
|
vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
|
|
E1000_VFTA_ENTRY_MASK);
|
|
vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
|
|
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
|
|
if (on)
|
|
vfta |= vid_bit;
|
|
else
|
|
vfta &= ~vid_bit;
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
|
|
|
|
/* update local VFTA copy */
|
|
shadow_vfta->vfta[vid_idx] = vfta;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
eth_igb_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg = ETHER_TYPE_VLAN ;
|
|
|
|
reg |= (tpid << 16);
|
|
E1000_WRITE_REG(hw, E1000_VET, reg);
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* Filter Table Disable */
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
reg &= ~E1000_RCTL_CFIEN;
|
|
reg &= ~E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
/* Filter Table Enable, CFI not used for packet acceptance */
|
|
reg = E1000_READ_REG(hw, E1000_RCTL);
|
|
reg &= ~E1000_RCTL_CFIEN;
|
|
reg |= E1000_RCTL_VFE;
|
|
E1000_WRITE_REG(hw, E1000_RCTL, reg);
|
|
|
|
/* restore VFTA table */
|
|
for (i = 0; i < IGB_VFTA_SIZE; i++)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* VLAN Mode Disable */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
reg &= ~E1000_CTRL_VME;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, reg);
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* VLAN Mode Enable */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL);
|
|
reg |= E1000_CTRL_VME;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, reg);
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* CTRL_EXT: Extended VLAN */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
|
|
|
|
/* Update maximum packet length */
|
|
if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
|
|
E1000_WRITE_REG(hw, E1000_RLPML,
|
|
dev->data->dev_conf.rxmode.max_rx_pkt_len +
|
|
VLAN_TAG_SIZE);
|
|
}
|
|
|
|
static void
|
|
igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t reg;
|
|
|
|
/* CTRL_EXT: Extended VLAN */
|
|
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
|
|
reg |= E1000_CTRL_EXT_EXTEND_VLAN;
|
|
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
|
|
|
|
/* Update maximum packet length */
|
|
if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
|
|
E1000_WRITE_REG(hw, E1000_RLPML,
|
|
dev->data->dev_conf.rxmode.max_rx_pkt_len +
|
|
2 * VLAN_TAG_SIZE);
|
|
}
|
|
|
|
static void
|
|
eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
|
|
{
|
|
if(mask & ETH_VLAN_STRIP_MASK){
|
|
if (dev->data->dev_conf.rxmode.hw_vlan_strip)
|
|
igb_vlan_hw_strip_enable(dev);
|
|
else
|
|
igb_vlan_hw_strip_disable(dev);
|
|
}
|
|
|
|
if(mask & ETH_VLAN_FILTER_MASK){
|
|
if (dev->data->dev_conf.rxmode.hw_vlan_filter)
|
|
igb_vlan_hw_filter_enable(dev);
|
|
else
|
|
igb_vlan_hw_filter_disable(dev);
|
|
}
|
|
|
|
if(mask & ETH_VLAN_EXTEND_MASK){
|
|
if (dev->data->dev_conf.rxmode.hw_vlan_extend)
|
|
igb_vlan_hw_extend_enable(dev);
|
|
else
|
|
igb_vlan_hw_extend_disable(dev);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* It enables the interrupt mask and then enable the interrupt.
|
|
*
|
|
* @param dev
|
|
* Pointer to struct rte_eth_dev.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
|
|
intr->mask |= E1000_ICR_LSC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It reads ICR and gets interrupt causes, check it and set a bit flag
|
|
* to update link status.
|
|
*
|
|
* @param dev
|
|
* Pointer to struct rte_eth_dev.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
|
|
{
|
|
uint32_t icr;
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
|
|
igb_intr_disable(hw);
|
|
|
|
/* read-on-clear nic registers here */
|
|
icr = E1000_READ_REG(hw, E1000_ICR);
|
|
|
|
intr->flags = 0;
|
|
if (icr & E1000_ICR_LSC) {
|
|
intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
|
|
}
|
|
|
|
if (icr & E1000_ICR_VMMB)
|
|
intr->flags |= E1000_FLAG_MAILBOX;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* It executes link_update after knowing an interrupt is prsent.
|
|
*
|
|
* @param dev
|
|
* Pointer to struct rte_eth_dev.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
static int
|
|
eth_igb_interrupt_action(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_interrupt *intr =
|
|
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
|
|
uint32_t tctl, rctl;
|
|
struct rte_eth_link link;
|
|
int ret;
|
|
|
|
if (intr->flags & E1000_FLAG_MAILBOX) {
|
|
igb_pf_mbx_process(dev);
|
|
intr->flags &= ~E1000_FLAG_MAILBOX;
|
|
}
|
|
|
|
igb_intr_enable(dev);
|
|
rte_intr_enable(&(dev->pci_dev->intr_handle));
|
|
|
|
if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
|
|
intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
|
|
|
|
/* set get_link_status to check register later */
|
|
hw->mac.get_link_status = 1;
|
|
ret = eth_igb_link_update(dev, 0);
|
|
|
|
/* check if link has changed */
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
memset(&link, 0, sizeof(link));
|
|
rte_igb_dev_atomic_read_link_status(dev, &link);
|
|
if (link.link_status) {
|
|
PMD_INIT_LOG(INFO,
|
|
" Port %d: Link Up - speed %u Mbps - %s\n",
|
|
dev->data->port_id, (unsigned)link.link_speed,
|
|
link.link_duplex == ETH_LINK_FULL_DUPLEX ?
|
|
"full-duplex" : "half-duplex");
|
|
} else {
|
|
PMD_INIT_LOG(INFO, " Port %d: Link Down\n",
|
|
dev->data->port_id);
|
|
}
|
|
PMD_INIT_LOG(INFO, "PCI Address: %04d:%02d:%02d:%d",
|
|
dev->pci_dev->addr.domain,
|
|
dev->pci_dev->addr.bus,
|
|
dev->pci_dev->addr.devid,
|
|
dev->pci_dev->addr.function);
|
|
tctl = E1000_READ_REG(hw, E1000_TCTL);
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
if (link.link_status) {
|
|
/* enable Tx/Rx */
|
|
tctl |= E1000_TCTL_EN;
|
|
rctl |= E1000_RCTL_EN;
|
|
} else {
|
|
/* disable Tx/Rx */
|
|
tctl &= ~E1000_TCTL_EN;
|
|
rctl &= ~E1000_RCTL_EN;
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Interrupt handler which shall be registered at first.
|
|
*
|
|
* @param handle
|
|
* Pointer to interrupt handle.
|
|
* @param param
|
|
* The address of parameter (struct rte_eth_dev *) regsitered before.
|
|
*
|
|
* @return
|
|
* void
|
|
*/
|
|
static void
|
|
eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
|
|
void *param)
|
|
{
|
|
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
|
|
|
|
eth_igb_interrupt_get_status(dev);
|
|
eth_igb_interrupt_action(dev);
|
|
}
|
|
|
|
static int
|
|
eth_igb_led_on(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
|
|
}
|
|
|
|
static int
|
|
eth_igb_led_off(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
|
|
}
|
|
|
|
static int
|
|
eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
|
|
{
|
|
struct e1000_hw *hw;
|
|
int err;
|
|
enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
|
|
e1000_fc_none,
|
|
e1000_fc_rx_pause,
|
|
e1000_fc_tx_pause,
|
|
e1000_fc_full
|
|
};
|
|
uint32_t rx_buf_size;
|
|
uint32_t max_high_water;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
rx_buf_size = igb_get_rx_buffer_size(hw);
|
|
PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x \n", rx_buf_size);
|
|
|
|
/* At least reserve one Ethernet frame for watermark */
|
|
max_high_water = rx_buf_size - ETHER_MAX_LEN;
|
|
if ((fc_conf->high_water > max_high_water) ||
|
|
(fc_conf->high_water < fc_conf->low_water)) {
|
|
PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value \n");
|
|
PMD_INIT_LOG(ERR, "high water must <= 0x%x \n", max_high_water);
|
|
return (-EINVAL);
|
|
}
|
|
|
|
hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
|
|
hw->fc.pause_time = fc_conf->pause_time;
|
|
hw->fc.high_water = fc_conf->high_water;
|
|
hw->fc.low_water = fc_conf->low_water;
|
|
hw->fc.send_xon = fc_conf->send_xon;
|
|
|
|
err = e1000_setup_link_generic(hw);
|
|
if (err == E1000_SUCCESS) {
|
|
return 0;
|
|
}
|
|
|
|
PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x \n", err);
|
|
return (-EIO);
|
|
}
|
|
|
|
#define E1000_RAH_POOLSEL_SHIFT (18)
|
|
static void
|
|
eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
|
|
uint32_t index, __rte_unused uint32_t pool)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
uint32_t rah;
|
|
|
|
e1000_rar_set(hw, mac_addr->addr_bytes, index);
|
|
rah = E1000_READ_REG(hw, E1000_RAH(index));
|
|
rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
|
|
E1000_WRITE_REG(hw, E1000_RAH(index), rah);
|
|
}
|
|
|
|
static void
|
|
eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
|
|
{
|
|
uint8_t addr[ETHER_ADDR_LEN];
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
memset(addr, 0, sizeof(addr));
|
|
|
|
e1000_rar_set(hw, addr, index);
|
|
}
|
|
|
|
/*
|
|
* Virtual Function operations
|
|
*/
|
|
static void
|
|
igbvf_intr_disable(struct e1000_hw *hw)
|
|
{
|
|
PMD_INIT_LOG(DEBUG, "igbvf_intr_disable");
|
|
|
|
/* Clear interrupt mask to stop from interrupts being generated */
|
|
E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
|
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
static void
|
|
igbvf_stop_adapter(struct rte_eth_dev *dev)
|
|
{
|
|
u32 reg_val;
|
|
u16 i;
|
|
struct rte_eth_dev_info dev_info;
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
memset(&dev_info, 0, sizeof(dev_info));
|
|
eth_igb_infos_get(dev, &dev_info);
|
|
|
|
/* Clear interrupt mask to stop from interrupts being generated */
|
|
igbvf_intr_disable(hw);
|
|
|
|
/* Clear any pending interrupts, flush previous writes */
|
|
E1000_READ_REG(hw, E1000_EICR);
|
|
|
|
/* Disable the transmit unit. Each queue must be disabled. */
|
|
for (i = 0; i < dev_info.max_tx_queues; i++)
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
|
|
|
|
/* Disable the receive unit by stopping each queue */
|
|
for (i = 0; i < dev_info.max_rx_queues; i++) {
|
|
reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
|
|
reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
|
|
while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
|
|
;
|
|
}
|
|
|
|
/* flush all queues disables */
|
|
E1000_WRITE_FLUSH(hw);
|
|
msec_delay(2);
|
|
}
|
|
|
|
static int eth_igbvf_link_update(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mbx_info *mbx = &hw->mbx;
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
int ret_val = E1000_SUCCESS;
|
|
|
|
PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
|
|
|
|
/*
|
|
* We only want to run this if there has been a rst asserted.
|
|
* in this case that could mean a link change, device reset,
|
|
* or a virtual function reset
|
|
*/
|
|
|
|
/* If we were hit with a reset or timeout drop the link */
|
|
if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
|
|
mac->get_link_status = TRUE;
|
|
|
|
if (!mac->get_link_status)
|
|
goto out;
|
|
|
|
/* if link status is down no point in checking to see if pf is up */
|
|
if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
|
|
goto out;
|
|
|
|
/* if we passed all the tests above then the link is up and we no
|
|
* longer need to check for link */
|
|
mac->get_link_status = FALSE;
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
|
|
static int
|
|
igbvf_dev_configure(struct rte_eth_dev *dev)
|
|
{
|
|
struct rte_eth_conf* conf = &dev->data->dev_conf;
|
|
|
|
PMD_INIT_LOG(DEBUG, "\nConfigured Virtual Function port id: %d\n",
|
|
dev->data->port_id);
|
|
|
|
/*
|
|
* VF has no ability to enable/disable HW CRC
|
|
* Keep the persistent behavior the same as Host PF
|
|
*/
|
|
#ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
|
|
if (!conf->rxmode.hw_strip_crc) {
|
|
PMD_INIT_LOG(INFO, "VF can't disable HW CRC Strip\n");
|
|
conf->rxmode.hw_strip_crc = 1;
|
|
}
|
|
#else
|
|
if (conf->rxmode.hw_strip_crc) {
|
|
PMD_INIT_LOG(INFO, "VF can't enable HW CRC Strip\n");
|
|
conf->rxmode.hw_strip_crc = 0;
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
igbvf_dev_start(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
int ret;
|
|
|
|
PMD_INIT_LOG(DEBUG, "igbvf_dev_start");
|
|
|
|
hw->mac.ops.reset_hw(hw);
|
|
|
|
/* Set all vfta */
|
|
igbvf_set_vfta_all(dev,1);
|
|
|
|
eth_igbvf_tx_init(dev);
|
|
|
|
/* This can fail when allocating mbufs for descriptor rings */
|
|
ret = eth_igbvf_rx_init(dev);
|
|
if (ret) {
|
|
PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
|
|
igb_dev_clear_queues(dev);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
igbvf_dev_stop(struct rte_eth_dev *dev)
|
|
{
|
|
PMD_INIT_LOG(DEBUG, "igbvf_dev_stop");
|
|
|
|
igbvf_stop_adapter(dev);
|
|
|
|
/*
|
|
* Clear what we set, but we still keep shadow_vfta to
|
|
* restore after device starts
|
|
*/
|
|
igbvf_set_vfta_all(dev,0);
|
|
|
|
igb_dev_clear_queues(dev);
|
|
}
|
|
|
|
static void
|
|
igbvf_dev_close(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
PMD_INIT_LOG(DEBUG, "igbvf_dev_close");
|
|
|
|
e1000_reset_hw(hw);
|
|
|
|
igbvf_dev_stop(dev);
|
|
}
|
|
|
|
static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
|
|
{
|
|
struct e1000_mbx_info *mbx = &hw->mbx;
|
|
uint32_t msgbuf[2];
|
|
|
|
/* After set vlan, vlan strip will also be enabled in igb driver*/
|
|
msgbuf[0] = E1000_VF_SET_VLAN;
|
|
msgbuf[1] = vid;
|
|
/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
|
|
if (on)
|
|
msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
|
|
|
|
return (mbx->ops.write_posted(hw, msgbuf, 2, 0));
|
|
}
|
|
|
|
static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
|
|
int i = 0, j = 0, vfta = 0, mask = 1;
|
|
|
|
for (i = 0; i < IGB_VFTA_SIZE; i++){
|
|
vfta = shadow_vfta->vfta[i];
|
|
if(vfta){
|
|
mask = 1;
|
|
for (j = 0; j < 32; j++){
|
|
if(vfta & mask)
|
|
igbvf_set_vfta(hw,
|
|
(uint16_t)((i<<5)+j), on);
|
|
mask<<=1;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static int
|
|
igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
|
|
{
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct e1000_vfta * shadow_vfta =
|
|
E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
|
|
uint32_t vid_idx = 0;
|
|
uint32_t vid_bit = 0;
|
|
int ret = 0;
|
|
|
|
PMD_INIT_LOG(DEBUG, "igbvf_vlan_filter_set");
|
|
|
|
/*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
|
|
ret = igbvf_set_vfta(hw, vlan_id, !!on);
|
|
if(ret){
|
|
PMD_INIT_LOG(ERR, "Unable to set VF vlan");
|
|
return ret;
|
|
}
|
|
vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
|
|
vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
|
|
|
|
/*Save what we set and retore it after device reset*/
|
|
if (on)
|
|
shadow_vfta->vfta[vid_idx] |= vid_bit;
|
|
else
|
|
shadow_vfta->vfta[vid_idx] &= ~vid_bit;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_rss_reta_update(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta *reta_conf)
|
|
{
|
|
uint8_t i,j,mask;
|
|
uint32_t reta;
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/*
|
|
* Update Redirection Table RETA[n],n=0...31,The redirection table has
|
|
* 128-entries in 32 registers
|
|
*/
|
|
for(i = 0; i < ETH_RSS_RETA_NUM_ENTRIES; i += 4) {
|
|
if (i < ETH_RSS_RETA_NUM_ENTRIES/2)
|
|
mask = (uint8_t)((reta_conf->mask_lo >> i) & 0xF);
|
|
else
|
|
mask = (uint8_t)((reta_conf->mask_hi >>
|
|
(i - ETH_RSS_RETA_NUM_ENTRIES/2)) & 0xF);
|
|
if (mask != 0) {
|
|
reta = 0;
|
|
/* If all 4 entries were set,don't need read RETA register */
|
|
if (mask != 0xF)
|
|
reta = E1000_READ_REG(hw,E1000_RETA(i >> 2));
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
if (mask & (0x1 << j)) {
|
|
if (mask != 0xF)
|
|
reta &= ~(0xFF << 8 * j);
|
|
reta |= reta_conf->reta[i + j] << 8 * j;
|
|
}
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_RETA(i >> 2),reta);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
eth_igb_rss_reta_query(struct rte_eth_dev *dev,
|
|
struct rte_eth_rss_reta *reta_conf)
|
|
{
|
|
uint8_t i,j,mask;
|
|
uint32_t reta;
|
|
struct e1000_hw *hw =
|
|
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/*
|
|
* Read Redirection Table RETA[n],n=0...31,The redirection table has
|
|
* 128-entries in 32 registers
|
|
*/
|
|
for(i = 0; i < ETH_RSS_RETA_NUM_ENTRIES; i += 4) {
|
|
if (i < ETH_RSS_RETA_NUM_ENTRIES/2)
|
|
mask = (uint8_t)((reta_conf->mask_lo >> i) & 0xF);
|
|
else
|
|
mask = (uint8_t)((reta_conf->mask_hi >>
|
|
(i - ETH_RSS_RETA_NUM_ENTRIES/2)) & 0xF);
|
|
|
|
if (mask != 0) {
|
|
reta = E1000_READ_REG(hw,E1000_RETA(i >> 2));
|
|
for (j = 0; j < 4; j++) {
|
|
if (mask & (0x1 << j))
|
|
reta_conf->reta[i + j] =
|
|
(uint8_t)((reta >> 8 * j) & 0xFF);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|