numam-dpdk/drivers/net/hns3/hns3_ethdev.h
Lijun Ou 806f1d5ab0 net/hns3: set RSS hash type input configuration
This patch support for hash type input set configuration. That is, upper
level application can call the rte_flow_create or
rte_eth_dev_rss_hash_update API to set the specified tuples by RSS types.
As a result, the hardware can selectively use the tuples to perform hash
calculation based on the specific tuple to enable the fields.
The following uses the RSS flow as an example:

When application calls the rte_flow_create API to select tuple input for
ipv4-tcp l3-src-only, the driver can enable the ipv4-tcp src field of the
hardware register by calling the internal function named
hns3_set_rss_tuple_by_rss_hf according to the RSS types in actions list.
In testpmd application, the command as follows:
testpmd> flow create 0 ingress pattern end actions rss types \
ipv4-tcp l3-src-only end queues 1 3 end / end

The following use the rte_eth_dev_rss_hash_update as an example:
if the user set the select tuple input for ipv4-tcp l3-src-only by
rte_eth_rss_conf structure in rte_eth_dev_rss_hash_update. the next
flow is the same as that of the RSS flow. In testpmd application,
the command as follows:
testpmd> port config all rss ipv4-tcp l3-src-only

Signed-off-by: Lijun Ou <oulijun@huawei.com>
Signed-off-by: Wei Hu (Xavier) <xavier.huwei@huawei.com>
2020-09-30 19:19:11 +02:00

927 lines
27 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2019 Hisilicon Limited.
*/
#ifndef _HNS3_ETHDEV_H_
#define _HNS3_ETHDEV_H_
#include <sys/time.h>
#include <rte_alarm.h>
#include "hns3_cmd.h"
#include "hns3_mbx.h"
#include "hns3_rss.h"
#include "hns3_fdir.h"
#include "hns3_stats.h"
/* Vendor ID */
#define PCI_VENDOR_ID_HUAWEI 0x19e5
/* Device IDs */
#define HNS3_DEV_ID_GE 0xA220
#define HNS3_DEV_ID_25GE 0xA221
#define HNS3_DEV_ID_25GE_RDMA 0xA222
#define HNS3_DEV_ID_50GE_RDMA 0xA224
#define HNS3_DEV_ID_100G_RDMA_MACSEC 0xA226
#define HNS3_DEV_ID_200G_RDMA 0xA228
#define HNS3_DEV_ID_100G_VF 0xA22E
#define HNS3_DEV_ID_100G_RDMA_PFC_VF 0xA22F
/* PCI Config offsets */
#define HNS3_PCI_REVISION_ID 0x08
#define HNS3_PCI_REVISION_ID_LEN 1
#define PCI_REVISION_ID_HIP08_B 0x21
#define PCI_REVISION_ID_HIP09_A 0x30
#define HNS3_PF_FUNC_ID 0
#define HNS3_1ST_VF_FUNC_ID 1
#define HNS3_SW_SHIFT_AND_DISCARD_MODE 0
#define HNS3_HW_SHIFT_AND_DISCARD_MODE 1
#define HNS3_UC_MACADDR_NUM 128
#define HNS3_VF_UC_MACADDR_NUM 48
#define HNS3_MC_MACADDR_NUM 128
#define HNS3_MAX_BD_SIZE 65535
#define HNS3_MAX_NON_TSO_BD_PER_PKT 8
#define HNS3_MAX_TSO_BD_PER_PKT 63
#define HNS3_MAX_FRAME_LEN 9728
#define HNS3_VLAN_TAG_SIZE 4
#define HNS3_DEFAULT_RX_BUF_LEN 2048
#define HNS3_MAX_BD_PAYLEN (1024 * 1024 - 1)
#define HNS3_MAX_TSO_HDR_SIZE 512
#define HNS3_MAX_TSO_HDR_BD_NUM 3
#define HNS3_MAX_LRO_SIZE 64512
#define HNS3_ETH_OVERHEAD \
(RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + HNS3_VLAN_TAG_SIZE * 2)
#define HNS3_PKTLEN_TO_MTU(pktlen) ((pktlen) - HNS3_ETH_OVERHEAD)
#define HNS3_MAX_MTU (HNS3_MAX_FRAME_LEN - HNS3_ETH_OVERHEAD)
#define HNS3_DEFAULT_MTU 1500UL
#define HNS3_DEFAULT_FRAME_LEN (HNS3_DEFAULT_MTU + HNS3_ETH_OVERHEAD)
#define HNS3_HIP08_MIN_TX_PKT_LEN 33
#define HNS3_HIP09_MIN_TX_PKT_LEN 9
#define HNS3_4_TCS 4
#define HNS3_8_TCS 8
#define HNS3_MAX_PF_NUM 8
#define HNS3_UMV_TBL_SIZE 3072
#define HNS3_DEFAULT_UMV_SPACE_PER_PF \
(HNS3_UMV_TBL_SIZE / HNS3_MAX_PF_NUM)
#define HNS3_PF_CFG_BLOCK_SIZE 32
#define HNS3_PF_CFG_DESC_NUM \
(HNS3_PF_CFG_BLOCK_SIZE / HNS3_CFG_RD_LEN_BYTES)
#define HNS3_DEFAULT_ENABLE_PFC_NUM 0
#define HNS3_INTR_UNREG_FAIL_RETRY_CNT 5
#define HNS3_INTR_UNREG_FAIL_DELAY_MS 500
#define HNS3_QUIT_RESET_CNT 10
#define HNS3_QUIT_RESET_DELAY_MS 100
#define HNS3_POLL_RESPONE_MS 1
#define HNS3_MAX_USER_PRIO 8
#define HNS3_PG_NUM 4
enum hns3_fc_mode {
HNS3_FC_NONE,
HNS3_FC_RX_PAUSE,
HNS3_FC_TX_PAUSE,
HNS3_FC_FULL,
HNS3_FC_DEFAULT
};
#define HNS3_SCH_MODE_SP 0
#define HNS3_SCH_MODE_DWRR 1
struct hns3_pg_info {
uint8_t pg_id;
uint8_t pg_sch_mode; /* 0: sp; 1: dwrr */
uint8_t tc_bit_map;
uint32_t bw_limit;
uint8_t tc_dwrr[HNS3_MAX_TC_NUM];
};
struct hns3_tc_info {
uint8_t tc_id;
uint8_t tc_sch_mode; /* 0: sp; 1: dwrr */
uint8_t pgid;
uint32_t bw_limit;
uint8_t up_to_tc_map; /* user priority maping on the TC */
};
struct hns3_dcb_info {
uint8_t num_tc;
uint8_t num_pg; /* It must be 1 if vNET-Base schd */
uint8_t pg_dwrr[HNS3_PG_NUM];
uint8_t prio_tc[HNS3_MAX_USER_PRIO];
struct hns3_pg_info pg_info[HNS3_PG_NUM];
struct hns3_tc_info tc_info[HNS3_MAX_TC_NUM];
uint8_t hw_pfc_map; /* Allow for packet drop or not on this TC */
uint8_t pfc_en; /* Pfc enabled or not for user priority */
};
enum hns3_fc_status {
HNS3_FC_STATUS_NONE,
HNS3_FC_STATUS_MAC_PAUSE,
HNS3_FC_STATUS_PFC,
};
struct hns3_tc_queue_info {
uint8_t tqp_offset; /* TQP offset from base TQP */
uint8_t tqp_count; /* Total TQPs */
uint8_t tc; /* TC index */
bool enable; /* If this TC is enable or not */
};
struct hns3_cfg {
uint8_t vmdq_vport_num;
uint8_t tc_num;
uint16_t tqp_desc_num;
uint16_t rx_buf_len;
uint16_t rss_size_max;
uint8_t phy_addr;
uint8_t media_type;
uint8_t mac_addr[RTE_ETHER_ADDR_LEN];
uint8_t default_speed;
uint32_t numa_node_map;
uint8_t speed_ability;
uint16_t umv_space;
};
/* mac media type */
enum hns3_media_type {
HNS3_MEDIA_TYPE_UNKNOWN,
HNS3_MEDIA_TYPE_FIBER,
HNS3_MEDIA_TYPE_COPPER,
HNS3_MEDIA_TYPE_BACKPLANE,
HNS3_MEDIA_TYPE_NONE,
};
struct hns3_mac {
uint8_t mac_addr[RTE_ETHER_ADDR_LEN];
bool default_addr_setted; /* whether default addr(mac_addr) is setted */
uint8_t media_type;
uint8_t phy_addr;
uint8_t link_duplex : 1; /* ETH_LINK_[HALF/FULL]_DUPLEX */
uint8_t link_autoneg : 1; /* ETH_LINK_[AUTONEG/FIXED] */
uint8_t link_status : 1; /* ETH_LINK_[DOWN/UP] */
uint32_t link_speed; /* ETH_SPEED_NUM_ */
};
struct hns3_fake_queue_data {
void **rx_queues; /* Array of pointers to fake RX queues. */
void **tx_queues; /* Array of pointers to fake TX queues. */
uint16_t nb_fake_rx_queues; /* Number of fake RX queues. */
uint16_t nb_fake_tx_queues; /* Number of fake TX queues. */
};
#define HNS3_PORT_BASE_VLAN_DISABLE 0
#define HNS3_PORT_BASE_VLAN_ENABLE 1
struct hns3_port_base_vlan_config {
uint16_t state;
uint16_t pvid;
};
/* Primary process maintains driver state in main thread.
*
* +---------------+
* | UNINITIALIZED |<-----------+
* +---------------+ |
* |.eth_dev_init |.eth_dev_uninit
* V |
* +---------------+------------+
* | INITIALIZED |
* +---------------+<-----------<---------------+
* |.dev_configure | |
* V |failed |
* +---------------+------------+ |
* | CONFIGURING | |
* +---------------+----+ |
* |success | |
* | | +---------------+
* | | | CLOSING |
* | | +---------------+
* | | ^
* V |.dev_configure |
* +---------------+----+ |.dev_close
* | CONFIGURED |----------------------------+
* +---------------+<-----------+
* |.dev_start |
* V |
* +---------------+ |
* | STARTING |------------^
* +---------------+ failed |
* |success |
* | +---------------+
* | | STOPPING |
* | +---------------+
* | ^
* V |.dev_stop
* +---------------+------------+
* | STARTED |
* +---------------+
*/
enum hns3_adapter_state {
HNS3_NIC_UNINITIALIZED = 0,
HNS3_NIC_INITIALIZED,
HNS3_NIC_CONFIGURING,
HNS3_NIC_CONFIGURED,
HNS3_NIC_STARTING,
HNS3_NIC_STARTED,
HNS3_NIC_STOPPING,
HNS3_NIC_CLOSING,
HNS3_NIC_CLOSED,
HNS3_NIC_REMOVED,
HNS3_NIC_NSTATES
};
/* Reset various stages, execute in order */
enum hns3_reset_stage {
/* Stop query services, stop transceiver, disable MAC */
RESET_STAGE_DOWN,
/* Clear reset completion flags, disable send command */
RESET_STAGE_PREWAIT,
/* Inform IMP to start resetting */
RESET_STAGE_REQ_HW_RESET,
/* Waiting for hardware reset to complete */
RESET_STAGE_WAIT,
/* Reinitialize hardware */
RESET_STAGE_DEV_INIT,
/* Restore user settings and enable MAC */
RESET_STAGE_RESTORE,
/* Restart query services, start transceiver */
RESET_STAGE_DONE,
/* Not in reset state */
RESET_STAGE_NONE,
};
enum hns3_reset_level {
HNS3_NONE_RESET,
HNS3_VF_FUNC_RESET, /* A VF function reset */
/*
* All VFs under a PF perform function reset.
* Kernel PF driver use mailbox to inform DPDK VF to do reset, the value
* of the reset level and the one defined in kernel driver should be
* same.
*/
HNS3_VF_PF_FUNC_RESET = 2,
/*
* All VFs under a PF perform FLR reset.
* Kernel PF driver use mailbox to inform DPDK VF to do reset, the value
* of the reset level and the one defined in kernel driver should be
* same.
*
* According to the protocol of PCIe, FLR to a PF resets the PF state as
* well as the SR-IOV extended capability including VF Enable which
* means that VFs no longer exist.
*
* In PF FLR, the register state of VF is not reliable, VF's driver
* should not access the registers of the VF device.
*/
HNS3_VF_FULL_RESET = 3,
HNS3_FLR_RESET, /* A VF perform FLR reset */
/* All VFs under the rootport perform a global or IMP reset */
HNS3_VF_RESET,
HNS3_FUNC_RESET, /* A PF function reset */
/* All PFs under the rootport perform a global reset */
HNS3_GLOBAL_RESET,
HNS3_IMP_RESET, /* All PFs under the rootport perform a IMP reset */
HNS3_MAX_RESET
};
enum hns3_wait_result {
HNS3_WAIT_UNKNOWN,
HNS3_WAIT_REQUEST,
HNS3_WAIT_SUCCESS,
HNS3_WAIT_TIMEOUT
};
#define HNS3_RESET_SYNC_US 100000
struct hns3_reset_stats {
uint64_t request_cnt; /* Total request reset times */
uint64_t global_cnt; /* Total GLOBAL reset times */
uint64_t imp_cnt; /* Total IMP reset times */
uint64_t exec_cnt; /* Total reset executive times */
uint64_t success_cnt; /* Total reset successful times */
uint64_t fail_cnt; /* Total reset failed times */
uint64_t merge_cnt; /* Total merged in high reset times */
};
typedef bool (*check_completion_func)(struct hns3_hw *hw);
struct hns3_wait_data {
void *hns;
uint64_t end_ms;
uint64_t interval;
int16_t count;
enum hns3_wait_result result;
check_completion_func check_completion;
};
struct hns3_reset_ops {
void (*reset_service)(void *arg);
int (*stop_service)(struct hns3_adapter *hns);
int (*prepare_reset)(struct hns3_adapter *hns);
int (*wait_hardware_ready)(struct hns3_adapter *hns);
int (*reinit_dev)(struct hns3_adapter *hns);
int (*restore_conf)(struct hns3_adapter *hns);
int (*start_service)(struct hns3_adapter *hns);
};
enum hns3_schedule {
SCHEDULE_NONE,
SCHEDULE_PENDING,
SCHEDULE_REQUESTED,
SCHEDULE_DEFERRED,
};
struct hns3_reset_data {
enum hns3_reset_stage stage;
rte_atomic16_t schedule;
/* Reset flag, covering the entire reset process */
rte_atomic16_t resetting;
/* Used to disable sending cmds during reset */
rte_atomic16_t disable_cmd;
/* The reset level being processed */
enum hns3_reset_level level;
/* Reset level set, each bit represents a reset level */
uint64_t pending;
/* Request reset level set, from interrupt or mailbox */
uint64_t request;
int attempts; /* Reset failure retry */
int retries; /* Timeout failure retry in reset_post */
/*
* At the time of global or IMP reset, the command cannot be sent to
* stop the tx/rx queues. Tx/Rx queues may be access mbuf during the
* reset process, so the mbuf is required to be released after the reset
* is completed.The mbuf_deferred_free is used to mark whether mbuf
* needs to be released.
*/
bool mbuf_deferred_free;
struct timeval start_time;
struct hns3_reset_stats stats;
const struct hns3_reset_ops *ops;
struct hns3_wait_data *wait_data;
};
#define HNS3_INTR_MAPPING_VEC_RSV_ONE 0
#define HNS3_INTR_MAPPING_VEC_ALL 1
#define HNS3_INTR_COALESCE_NON_QL 0
#define HNS3_INTR_COALESCE_QL 1
#define HNS3_INTR_COALESCE_GL_UINT_2US 0
#define HNS3_INTR_COALESCE_GL_UINT_1US 1
struct hns3_queue_intr {
/*
* interrupt mapping mode.
* value range:
* HNS3_INTR_MAPPING_VEC_RSV_ONE/HNS3_INTR_MAPPING_VEC_ALL
*
* - HNS3_INTR_MAPPING_VEC_RSV_ONE
* For some versions of hardware network engine, because of the
* hardware constraint, we need implement clearing the mapping
* relationship configurations by binding all queues to the last
* interrupt vector and reserving the last interrupt vector. This
* method results in a decrease of the maximum queues when upper
* applications call the rte_eth_dev_configure API function to
* enable Rx interrupt.
*
* - HNS3_INTR_MAPPING_VEC_ALL
* PMD driver can map/unmmap all interrupt vectors with queues When
* Rx interrupt in enabled.
*/
uint8_t mapping_mode;
/*
* interrupt coalesce mode.
* value range:
* HNS3_INTR_COALESCE_NON_QL/HNS3_INTR_COALESCE_QL
*
* - HNS3_INTR_COALESCE_NON_QL
* For some versions of hardware network engine, hardware doesn't
* support QL(quanity limiter) algorithm for interrupt coalesce
* of queue's interrupt.
*
* - HNS3_INTR_COALESCE_QL
* In this mode, hardware support QL(quanity limiter) algorithm for
* interrupt coalesce of queue's interrupt.
*/
uint8_t coalesce_mode;
/*
* The unit of GL(gap limiter) configuration for interrupt coalesce of
* queue's interrupt.
* value range:
* HNS3_INTR_COALESCE_GL_UINT_2US/HNS3_INTR_COALESCE_GL_UINT_1US
*/
uint8_t gl_unit;
};
#define HNS3_TSO_SW_CAL_PSEUDO_H_CSUM 0
#define HNS3_TSO_HW_CAL_PSEUDO_H_CSUM 1
struct hns3_hw {
struct rte_eth_dev_data *data;
void *io_base;
uint8_t revision; /* PCI revision, low byte of class word */
struct hns3_cmq cmq;
struct hns3_mbx_resp_status mbx_resp; /* mailbox response */
struct hns3_mbx_arq_ring arq; /* mailbox async rx queue */
pthread_t irq_thread_id;
struct hns3_mac mac;
unsigned int secondary_cnt; /* Number of secondary processes init'd. */
struct hns3_tqp_stats tqp_stats;
/* Include Mac stats | Rx stats | Tx stats */
struct hns3_mac_stats mac_stats;
uint32_t fw_version;
uint16_t num_msi;
uint16_t total_tqps_num; /* total task queue pairs of this PF */
uint16_t tqps_num; /* num task queue pairs of this function */
uint16_t intr_tqps_num; /* num queue pairs mapping interrupt */
uint16_t rss_size_max; /* HW defined max RSS task queue */
uint16_t rx_buf_len; /* hold min hardware rx buf len */
uint16_t num_tx_desc; /* desc num of per tx queue */
uint16_t num_rx_desc; /* desc num of per rx queue */
uint32_t mng_entry_num; /* number of manager table entry */
uint32_t mac_entry_num; /* number of mac-vlan table entry */
struct rte_ether_addr mc_addrs[HNS3_MC_MACADDR_NUM];
int mc_addrs_num; /* Multicast mac addresses number */
/* The configuration info of RSS */
struct hns3_rss_conf rss_info;
bool rss_dis_flag; /* disable rss flag. true: disable, false: enable */
uint16_t rss_ind_tbl_size;
uint16_t rss_key_size;
uint8_t num_tc; /* Total number of enabled TCs */
uint8_t hw_tc_map;
enum hns3_fc_mode current_mode;
enum hns3_fc_mode requested_mode;
struct hns3_dcb_info dcb_info;
enum hns3_fc_status current_fc_status; /* current flow control status */
struct hns3_tc_queue_info tc_queue[HNS3_MAX_TC_NUM];
uint16_t used_rx_queues;
uint16_t used_tx_queues;
/* Config max queue numbers between rx and tx queues from user */
uint16_t cfg_max_queues;
struct hns3_fake_queue_data fkq_data; /* fake queue data */
uint16_t alloc_rss_size; /* RX queue number per TC */
uint16_t tx_qnum_per_tc; /* TX queue number per TC */
uint32_t capability;
uint32_t max_tm_rate;
/*
* The minimum length of the packet supported by hardware in the Tx
* direction.
*/
uint32_t min_tx_pkt_len;
struct hns3_queue_intr intr;
/*
* tso mode.
* value range:
* HNS3_TSO_SW_CAL_PSEUDO_H_CSUM/HNS3_TSO_HW_CAL_PSEUDO_H_CSUM
*
* - HNS3_TSO_SW_CAL_PSEUDO_H_CSUM
* In this mode, because of the hardware constraint, network driver
* software need erase the L4 len value of the TCP pseudo header
* and recalculate the TCP pseudo header checksum of packets that
* need TSO.
*
* - HNS3_TSO_HW_CAL_PSEUDO_H_CSUM
* In this mode, hardware support recalculate the TCP pseudo header
* checksum of packets that need TSO, so network driver software
* not need to recalculate it.
*/
uint8_t tso_mode;
/*
* vlan mode.
* value range:
* HNS3_SW_SHIFT_AND_DISCARD_MODE/HNS3_HW_SHFIT_AND_DISCARD_MODE
*
* - HNS3_SW_SHIFT_AND_DISCARD_MODE
* For some versions of hardware network engine, because of the
* hardware limitation, PMD driver needs to detect the PVID status
* to work with haredware to implement PVID-related functions.
* For example, driver need discard the stripped PVID tag to ensure
* the PVID will not report to mbuf and shift the inserted VLAN tag
* to avoid port based VLAN covering it.
*
* - HNS3_HW_SHIT_AND_DISCARD_MODE
* PMD driver does not need to process PVID-related functions in
* I/O process, Hardware will adjust the sequence between port based
* VLAN tag and BD VLAN tag automatically and VLAN tag stripped by
* PVID will be invisible to driver. And in this mode, hns3 is able
* to send a multi-layer VLAN packets when hw VLAN insert offload
* is enabled.
*/
uint8_t vlan_mode;
uint8_t max_non_tso_bd_num; /* max BD number of one non-TSO packet */
struct hns3_port_base_vlan_config port_base_vlan_cfg;
/*
* PMD setup and configuration is not thread safe. Since it is not
* performance sensitive, it is better to guarantee thread-safety
* and add device level lock. Adapter control operations which
* change its state should acquire the lock.
*/
rte_spinlock_t lock;
enum hns3_adapter_state adapter_state;
struct hns3_reset_data reset;
};
#define HNS3_FLAG_TC_BASE_SCH_MODE 1
#define HNS3_FLAG_VNET_BASE_SCH_MODE 2
struct hns3_err_msix_intr_stats {
uint64_t mac_afifo_tnl_int_cnt;
uint64_t ppu_mpf_abn_int_st2_msix_cnt;
uint64_t ssu_port_based_pf_int_cnt;
uint64_t ppp_pf_abnormal_int_cnt;
uint64_t ppu_pf_abnormal_int_msix_cnt;
uint64_t imp_tcm_ecc_int_cnt;
uint64_t cmdq_mem_ecc_int_cnt;
uint64_t imp_rd_poison_int_cnt;
uint64_t tqp_int_ecc_int_cnt;
uint64_t msix_ecc_int_cnt;
uint64_t ssu_ecc_multi_bit_int_0_cnt;
uint64_t ssu_ecc_multi_bit_int_1_cnt;
uint64_t ssu_common_ecc_int_cnt;
uint64_t igu_int_cnt;
uint64_t ppp_mpf_abnormal_int_st1_cnt;
uint64_t ppp_mpf_abnormal_int_st3_cnt;
uint64_t ppu_mpf_abnormal_int_st1_cnt;
uint64_t ppu_mpf_abn_int_st2_ras_cnt;
uint64_t ppu_mpf_abnormal_int_st3_cnt;
uint64_t tm_sch_int_cnt;
uint64_t qcn_fifo_int_cnt;
uint64_t qcn_ecc_int_cnt;
uint64_t ncsi_ecc_int_cnt;
uint64_t ssu_port_based_err_int_cnt;
uint64_t ssu_fifo_overflow_int_cnt;
uint64_t ssu_ets_tcg_int_cnt;
uint64_t igu_egu_tnl_int_cnt;
uint64_t ppu_pf_abnormal_int_ras_cnt;
};
/* vlan entry information. */
struct hns3_user_vlan_table {
LIST_ENTRY(hns3_user_vlan_table) next;
bool hd_tbl_status;
uint16_t vlan_id;
};
/* Vlan tag configuration for RX direction */
struct hns3_rx_vtag_cfg {
bool rx_vlan_offload_en; /* Whether enable rx vlan offload */
bool strip_tag1_en; /* Whether strip inner vlan tag */
bool strip_tag2_en; /* Whether strip outer vlan tag */
/*
* If strip_tag_en is enabled, this bit decide whether to map the vlan
* tag to descriptor.
*/
bool strip_tag1_discard_en;
bool strip_tag2_discard_en;
/*
* If this bit is enabled, only map inner/outer priority to descriptor
* and the vlan tag is always 0.
*/
bool vlan1_vlan_prionly;
bool vlan2_vlan_prionly;
};
/* Vlan tag configuration for TX direction */
struct hns3_tx_vtag_cfg {
bool accept_tag1; /* Whether accept tag1 packet from host */
bool accept_untag1; /* Whether accept untag1 packet from host */
bool accept_tag2;
bool accept_untag2;
bool insert_tag1_en; /* Whether insert outer vlan tag */
bool insert_tag2_en; /* Whether insert inner vlan tag */
/*
* In shift mode, hw will shift the sequence of port based VLAN and
* BD VLAN.
*/
bool tag_shift_mode_en; /* hw shift vlan tag automatically */
uint16_t default_tag1; /* The default outer vlan tag to insert */
uint16_t default_tag2; /* The default inner vlan tag to insert */
};
struct hns3_vtag_cfg {
struct hns3_rx_vtag_cfg rx_vcfg;
struct hns3_tx_vtag_cfg tx_vcfg;
};
/* Request types for IPC. */
enum hns3_mp_req_type {
HNS3_MP_REQ_START_RXTX = 1,
HNS3_MP_REQ_STOP_RXTX,
HNS3_MP_REQ_MAX
};
/* Pameters for IPC. */
struct hns3_mp_param {
enum hns3_mp_req_type type;
int port_id;
int result;
};
/* Request timeout for IPC. */
#define HNS3_MP_REQ_TIMEOUT_SEC 5
/* Key string for IPC. */
#define HNS3_MP_NAME "net_hns3_mp"
#define HNS3_L2TBL_NUM 4
#define HNS3_L3TBL_NUM 16
#define HNS3_L4TBL_NUM 16
#define HNS3_OL3TBL_NUM 16
#define HNS3_OL4TBL_NUM 16
struct hns3_ptype_table {
uint32_t l2table[HNS3_L2TBL_NUM];
uint32_t l3table[HNS3_L3TBL_NUM];
uint32_t l4table[HNS3_L4TBL_NUM];
uint32_t inner_l2table[HNS3_L2TBL_NUM];
uint32_t inner_l3table[HNS3_L3TBL_NUM];
uint32_t inner_l4table[HNS3_L4TBL_NUM];
uint32_t ol3table[HNS3_OL3TBL_NUM];
uint32_t ol4table[HNS3_OL4TBL_NUM];
};
struct hns3_pf {
struct hns3_adapter *adapter;
bool is_main_pf;
uint16_t func_num; /* num functions of this pf, include pf and vfs */
uint32_t pkt_buf_size; /* Total pf buf size for tx/rx */
uint32_t tx_buf_size; /* Tx buffer size for each TC */
uint32_t dv_buf_size; /* Dv buffer size for each TC */
uint16_t mps; /* Max packet size */
uint8_t tx_sch_mode;
uint8_t tc_max; /* max number of tc driver supported */
uint8_t local_max_tc; /* max number of local tc */
uint8_t pfc_max;
uint8_t prio_tc[HNS3_MAX_USER_PRIO]; /* TC indexed by prio */
uint16_t pause_time;
bool support_fc_autoneg; /* support FC autonegotiate */
uint16_t wanted_umv_size;
uint16_t max_umv_size;
uint16_t used_umv_size;
/* Statistics information for abnormal interrupt */
struct hns3_err_msix_intr_stats abn_int_stats;
bool support_sfp_query;
struct hns3_vtag_cfg vtag_config;
LIST_HEAD(vlan_tbl, hns3_user_vlan_table) vlan_list;
struct hns3_fdir_info fdir; /* flow director info */
LIST_HEAD(counters, hns3_flow_counter) flow_counters;
};
struct hns3_vf {
struct hns3_adapter *adapter;
};
struct hns3_adapter {
struct hns3_hw hw;
/* Specific for PF or VF */
bool is_vf; /* false - PF, true - VF */
union {
struct hns3_pf pf;
struct hns3_vf vf;
};
bool rx_simple_allowed;
bool rx_vec_allowed;
bool tx_simple_allowed;
bool tx_vec_allowed;
struct hns3_ptype_table ptype_tbl __rte_cache_min_aligned;
};
#define HNS3_DEV_SUPPORT_DCB_B 0x0
#define HNS3_DEV_SUPPORT_COPPER_B 0x1
#define HNS3_DEV_SUPPORT_UDP_GSO_B 0x2
#define HNS3_DEV_SUPPORT_FD_QUEUE_REGION_B 0x3
#define HNS3_DEV_SUPPORT_PTP_B 0x4
#define HNS3_DEV_SUPPORT_TX_PUSH_B 0x5
#define HNS3_DEV_SUPPORT_INDEP_TXRX_B 0x6
#define HNS3_DEV_SUPPORT_STASH_B 0x7
#define hns3_dev_dcb_supported(hw) \
hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_DCB_B)
/* Support copper media type */
#define hns3_dev_copper_supported(hw) \
hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_COPPER_B)
/* Support UDP GSO offload */
#define hns3_dev_udp_gso_supported(hw) \
hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_UDP_GSO_B)
/* Support the queue region action rule of flow directory */
#define hns3_dev_fd_queue_region_supported(hw) \
hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_FD_QUEUE_REGION_B)
/* Support PTP timestamp offload */
#define hns3_dev_ptp_supported(hw) \
hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_PTP_B)
#define hns3_dev_tx_push_supported(hw) \
hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_TX_PUSH_B)
/* Support to Independently enable/disable/reset Tx or Rx queues */
#define hns3_dev_indep_txrx_supported(hw) \
hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_INDEP_TXRX_B)
#define hns3_dev_stash_supported(hw) \
hns3_get_bit((hw)->capability, HNS3_DEV_SUPPORT_STASH_B)
#define HNS3_DEV_PRIVATE_TO_HW(adapter) \
(&((struct hns3_adapter *)adapter)->hw)
#define HNS3_DEV_PRIVATE_TO_ADAPTER(adapter) \
((struct hns3_adapter *)adapter)
#define HNS3_DEV_PRIVATE_TO_PF(adapter) \
(&((struct hns3_adapter *)adapter)->pf)
#define HNS3VF_DEV_PRIVATE_TO_VF(adapter) \
(&((struct hns3_adapter *)adapter)->vf)
#define HNS3_DEV_HW_TO_ADAPTER(hw) \
container_of(hw, struct hns3_adapter, hw)
#define hns3_set_field(origin, mask, shift, val) \
do { \
(origin) &= (~(mask)); \
(origin) |= ((val) << (shift)) & (mask); \
} while (0)
#define hns3_get_field(origin, mask, shift) \
(((origin) & (mask)) >> (shift))
#define hns3_set_bit(origin, shift, val) \
hns3_set_field((origin), (0x1UL << (shift)), (shift), (val))
#define hns3_get_bit(origin, shift) \
hns3_get_field((origin), (0x1UL << (shift)), (shift))
/*
* upper_32_bits - return bits 32-63 of a number
* A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
* the "right shift count >= width of type" warning when that quantity is
* 32-bits.
*/
#define upper_32_bits(n) ((uint32_t)(((n) >> 16) >> 16))
/* lower_32_bits - return bits 0-31 of a number */
#define lower_32_bits(n) ((uint32_t)(n))
#define BIT(nr) (1UL << (nr))
#define BIT_ULL(x) (1ULL << (x))
#define BITS_PER_LONG (__SIZEOF_LONG__ * 8)
#define GENMASK(h, l) \
(((~0UL) << (l)) & (~0UL >> (BITS_PER_LONG - 1 - (h))))
#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
#define rounddown(x, y) ((x) - ((x) % (y)))
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
/*
* Because hardware always access register in little-endian mode based on hns3
* network engine, so driver should also call rte_cpu_to_le_32 to convert data
* in little-endian mode before writing register and call rte_le_to_cpu_32 to
* convert data after reading from register.
*
* Here the driver encapsulates the data conversion operation in the register
* read/write operation function as below:
* hns3_write_reg
* hns3_write_reg_opt
* hns3_read_reg
* Therefore, when calling these functions, conversion is not required again.
*/
static inline void hns3_write_reg(void *base, uint32_t reg, uint32_t value)
{
rte_write32(rte_cpu_to_le_32(value),
(volatile void *)((char *)base + reg));
}
/*
* The optimized function for writing registers used in the '.rx_pkt_burst' and
* '.tx_pkt_burst' ops implementation function.
*/
static inline void hns3_write_reg_opt(volatile void *addr, uint32_t value)
{
rte_io_wmb();
rte_write32_relaxed(rte_cpu_to_le_32(value), addr);
}
static inline uint32_t hns3_read_reg(void *base, uint32_t reg)
{
uint32_t read_val = rte_read32((volatile void *)((char *)base + reg));
return rte_le_to_cpu_32(read_val);
}
#define hns3_write_dev(a, reg, value) \
hns3_write_reg((a)->io_base, (reg), (value))
#define hns3_read_dev(a, reg) \
hns3_read_reg((a)->io_base, (reg))
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#define NEXT_ITEM_OF_ACTION(act, actions, index) \
do { \
act = (actions) + (index); \
while (act->type == RTE_FLOW_ACTION_TYPE_VOID) { \
(index)++; \
act = actions + index; \
} \
} while (0)
#define MSEC_PER_SEC 1000L
#define USEC_PER_MSEC 1000L
static inline uint64_t
get_timeofday_ms(void)
{
struct timeval tv;
(void)gettimeofday(&tv, NULL);
return (uint64_t)tv.tv_sec * MSEC_PER_SEC + tv.tv_usec / USEC_PER_MSEC;
}
static inline uint64_t
hns3_atomic_test_bit(unsigned int nr, volatile uint64_t *addr)
{
uint64_t res;
res = (__atomic_load_n(addr, __ATOMIC_RELAXED) & (1UL << nr)) != 0;
return res;
}
static inline void
hns3_atomic_set_bit(unsigned int nr, volatile uint64_t *addr)
{
__atomic_fetch_or(addr, (1UL << nr), __ATOMIC_RELAXED);
}
static inline void
hns3_atomic_clear_bit(unsigned int nr, volatile uint64_t *addr)
{
__atomic_fetch_and(addr, ~(1UL << nr), __ATOMIC_RELAXED);
}
static inline int64_t
hns3_test_and_clear_bit(unsigned int nr, volatile uint64_t *addr)
{
uint64_t mask = (1UL << nr);
return __atomic_fetch_and(addr, ~mask, __ATOMIC_RELAXED) & mask;
}
int hns3_buffer_alloc(struct hns3_hw *hw);
int hns3_dev_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op, void *arg);
bool hns3_is_reset_pending(struct hns3_adapter *hns);
bool hns3vf_is_reset_pending(struct hns3_adapter *hns);
void hns3_update_link_status(struct hns3_hw *hw);
static inline bool
is_reset_pending(struct hns3_adapter *hns)
{
bool ret;
if (hns->is_vf)
ret = hns3vf_is_reset_pending(hns);
else
ret = hns3_is_reset_pending(hns);
return ret;
}
static inline uint64_t
hns3_txvlan_cap_get(struct hns3_hw *hw)
{
if (hw->port_base_vlan_cfg.state)
return DEV_TX_OFFLOAD_VLAN_INSERT;
else
return DEV_TX_OFFLOAD_VLAN_INSERT | DEV_TX_OFFLOAD_QINQ_INSERT;
}
#endif /* _HNS3_ETHDEV_H_ */