numam-dpdk/drivers/net/mlx5/mlx5_rxtx.c
Sagi Grimberg 15a756b637 net/mlx5: fix possible NULL dereference in Rx path
The user is allowed to call ->rx_pkt_burst() even without free
mbufs in the pool. In this scenario we'll fail allocating a rep mbuf
on the first iteration (where pkt is still NULL). This would cause us
to deref a NULL pkt (reset refcount and free).

Fix this by checking the pkt before freeing it.

Fixes: a1bdb71a32 ("net/mlx5: fix crash in Rx")

Signed-off-by: Sagi Grimberg <sagi@grimberg.me>
Acked-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
2016-09-30 12:27:18 +02:00

1730 lines
46 KiB
C

/*-
* BSD LICENSE
*
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-pedantic"
#endif
#include <infiniband/verbs.h>
#include <infiniband/mlx5_hw.h>
#include <infiniband/arch.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-pedantic"
#endif
/* DPDK headers don't like -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-pedantic"
#endif
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_common.h>
#include <rte_branch_prediction.h>
#include <rte_ether.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-pedantic"
#endif
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
#include "mlx5_prm.h"
#ifndef NDEBUG
/**
* Verify or set magic value in CQE.
*
* @param cqe
* Pointer to CQE.
*
* @return
* 0 the first time.
*/
static inline int
check_cqe64_seen(volatile struct mlx5_cqe64 *cqe)
{
static const uint8_t magic[] = "seen";
volatile uint8_t (*buf)[sizeof(cqe->rsvd40)] = &cqe->rsvd40;
int ret = 1;
unsigned int i;
for (i = 0; i < sizeof(magic) && i < sizeof(*buf); ++i)
if (!ret || (*buf)[i] != magic[i]) {
ret = 0;
(*buf)[i] = magic[i];
}
return ret;
}
#endif /* NDEBUG */
static inline int
check_cqe64(volatile struct mlx5_cqe64 *cqe,
unsigned int cqes_n, const uint16_t ci)
__attribute__((always_inline));
/**
* Check whether CQE is valid.
*
* @param cqe
* Pointer to CQE.
* @param cqes_n
* Size of completion queue.
* @param ci
* Consumer index.
*
* @return
* 0 on success, 1 on failure.
*/
static inline int
check_cqe64(volatile struct mlx5_cqe64 *cqe,
unsigned int cqes_n, const uint16_t ci)
{
uint16_t idx = ci & cqes_n;
uint8_t op_own = cqe->op_own;
uint8_t op_owner = MLX5_CQE_OWNER(op_own);
uint8_t op_code = MLX5_CQE_OPCODE(op_own);
if (unlikely((op_owner != (!!(idx))) || (op_code == MLX5_CQE_INVALID)))
return 1; /* No CQE. */
#ifndef NDEBUG
if ((op_code == MLX5_CQE_RESP_ERR) ||
(op_code == MLX5_CQE_REQ_ERR)) {
volatile struct mlx5_err_cqe *err_cqe = (volatile void *)cqe;
uint8_t syndrome = err_cqe->syndrome;
if ((syndrome == MLX5_CQE_SYNDROME_LOCAL_LENGTH_ERR) ||
(syndrome == MLX5_CQE_SYNDROME_REMOTE_ABORTED_ERR))
return 0;
if (!check_cqe64_seen(cqe))
ERROR("unexpected CQE error %u (0x%02x)"
" syndrome 0x%02x",
op_code, op_code, syndrome);
return 1;
} else if ((op_code != MLX5_CQE_RESP_SEND) &&
(op_code != MLX5_CQE_REQ)) {
if (!check_cqe64_seen(cqe))
ERROR("unexpected CQE opcode %u (0x%02x)",
op_code, op_code);
return 1;
}
#endif /* NDEBUG */
return 0;
}
/**
* Manage TX completions.
*
* When sending a burst, mlx5_tx_burst() posts several WRs.
*
* @param txq
* Pointer to TX queue structure.
*/
static void
txq_complete(struct txq *txq)
{
const unsigned int elts_n = txq->elts_n;
const unsigned int cqe_n = txq->cqe_n;
const unsigned int cqe_cnt = cqe_n - 1;
uint16_t elts_free = txq->elts_tail;
uint16_t elts_tail;
uint16_t cq_ci = txq->cq_ci;
volatile struct mlx5_cqe64 *cqe = NULL;
volatile union mlx5_wqe *wqe;
do {
volatile struct mlx5_cqe64 *tmp;
tmp = &(*txq->cqes)[cq_ci & cqe_cnt].cqe64;
if (check_cqe64(tmp, cqe_n, cq_ci))
break;
cqe = tmp;
#ifndef NDEBUG
if (MLX5_CQE_FORMAT(cqe->op_own) == MLX5_COMPRESSED) {
if (!check_cqe64_seen(cqe))
ERROR("unexpected compressed CQE, TX stopped");
return;
}
if ((MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_RESP_ERR) ||
(MLX5_CQE_OPCODE(cqe->op_own) == MLX5_CQE_REQ_ERR)) {
if (!check_cqe64_seen(cqe))
ERROR("unexpected error CQE, TX stopped");
return;
}
#endif /* NDEBUG */
++cq_ci;
} while (1);
if (unlikely(cqe == NULL))
return;
wqe = &(*txq->wqes)[htons(cqe->wqe_counter) & (txq->wqe_n - 1)];
elts_tail = wqe->wqe.ctrl.data[3];
assert(elts_tail < txq->wqe_n);
/* Free buffers. */
while (elts_free != elts_tail) {
struct rte_mbuf *elt = (*txq->elts)[elts_free];
unsigned int elts_free_next =
(elts_free + 1) & (elts_n - 1);
struct rte_mbuf *elt_next = (*txq->elts)[elts_free_next];
#ifndef NDEBUG
/* Poisoning. */
memset(&(*txq->elts)[elts_free],
0x66,
sizeof((*txq->elts)[elts_free]));
#endif
RTE_MBUF_PREFETCH_TO_FREE(elt_next);
/* Only one segment needs to be freed. */
rte_pktmbuf_free_seg(elt);
elts_free = elts_free_next;
}
txq->cq_ci = cq_ci;
txq->elts_tail = elts_tail;
/* Update the consumer index. */
rte_wmb();
*txq->cq_db = htonl(cq_ci);
}
/**
* Get Memory Pool (MP) from mbuf. If mbuf is indirect, the pool from which
* the cloned mbuf is allocated is returned instead.
*
* @param buf
* Pointer to mbuf.
*
* @return
* Memory pool where data is located for given mbuf.
*/
static struct rte_mempool *
txq_mb2mp(struct rte_mbuf *buf)
{
if (unlikely(RTE_MBUF_INDIRECT(buf)))
return rte_mbuf_from_indirect(buf)->pool;
return buf->pool;
}
static inline uint32_t
txq_mp2mr(struct txq *txq, struct rte_mempool *mp)
__attribute__((always_inline));
/**
* Get Memory Region (MR) <-> Memory Pool (MP) association from txq->mp2mr[].
* Add MP to txq->mp2mr[] if it's not registered yet. If mp2mr[] is full,
* remove an entry first.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] mp
* Memory Pool for which a Memory Region lkey must be returned.
*
* @return
* mr->lkey on success, (uint32_t)-1 on failure.
*/
static inline uint32_t
txq_mp2mr(struct txq *txq, struct rte_mempool *mp)
{
unsigned int i;
uint32_t lkey = (uint32_t)-1;
for (i = 0; (i != RTE_DIM(txq->mp2mr)); ++i) {
if (unlikely(txq->mp2mr[i].mp == NULL)) {
/* Unknown MP, add a new MR for it. */
break;
}
if (txq->mp2mr[i].mp == mp) {
assert(txq->mp2mr[i].lkey != (uint32_t)-1);
assert(htonl(txq->mp2mr[i].mr->lkey) ==
txq->mp2mr[i].lkey);
lkey = txq->mp2mr[i].lkey;
break;
}
}
if (unlikely(lkey == (uint32_t)-1))
lkey = txq_mp2mr_reg(txq, mp, i);
return lkey;
}
/**
* Write a regular WQE.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe
* Pointer to the WQE to fill.
* @param addr
* Buffer data address.
* @param length
* Packet length.
* @param lkey
* Memory region lkey.
*/
static inline void
mlx5_wqe_write(struct txq *txq, volatile union mlx5_wqe *wqe,
uintptr_t addr, uint32_t length, uint32_t lkey)
{
wqe->wqe.ctrl.data[0] = htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND);
wqe->wqe.ctrl.data[1] = htonl((txq->qp_num_8s) | 4);
wqe->wqe.ctrl.data[2] = 0;
wqe->wqe.ctrl.data[3] = 0;
wqe->inl.eseg.rsvd0 = 0;
wqe->inl.eseg.rsvd1 = 0;
wqe->inl.eseg.mss = 0;
wqe->inl.eseg.rsvd2 = 0;
wqe->wqe.eseg.inline_hdr_sz = htons(MLX5_ETH_INLINE_HEADER_SIZE);
/* Copy the first 16 bytes into inline header. */
rte_memcpy((uint8_t *)(uintptr_t)wqe->wqe.eseg.inline_hdr_start,
(uint8_t *)(uintptr_t)addr,
MLX5_ETH_INLINE_HEADER_SIZE);
addr += MLX5_ETH_INLINE_HEADER_SIZE;
length -= MLX5_ETH_INLINE_HEADER_SIZE;
/* Store remaining data in data segment. */
wqe->wqe.dseg.byte_count = htonl(length);
wqe->wqe.dseg.lkey = lkey;
wqe->wqe.dseg.addr = htonll(addr);
/* Increment consumer index. */
++txq->wqe_ci;
}
/**
* Write a regular WQE with VLAN.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe
* Pointer to the WQE to fill.
* @param addr
* Buffer data address.
* @param length
* Packet length.
* @param lkey
* Memory region lkey.
* @param vlan_tci
* VLAN field to insert in packet.
*/
static inline void
mlx5_wqe_write_vlan(struct txq *txq, volatile union mlx5_wqe *wqe,
uintptr_t addr, uint32_t length, uint32_t lkey,
uint16_t vlan_tci)
{
uint32_t vlan = htonl(0x81000000 | vlan_tci);
wqe->wqe.ctrl.data[0] = htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND);
wqe->wqe.ctrl.data[1] = htonl((txq->qp_num_8s) | 4);
wqe->wqe.ctrl.data[2] = 0;
wqe->wqe.ctrl.data[3] = 0;
wqe->inl.eseg.rsvd0 = 0;
wqe->inl.eseg.rsvd1 = 0;
wqe->inl.eseg.mss = 0;
wqe->inl.eseg.rsvd2 = 0;
wqe->wqe.eseg.inline_hdr_sz = htons(MLX5_ETH_VLAN_INLINE_HEADER_SIZE);
/*
* Copy 12 bytes of source & destination MAC address.
* Copy 4 bytes of VLAN.
* Copy 2 bytes of Ether type.
*/
rte_memcpy((uint8_t *)(uintptr_t)wqe->wqe.eseg.inline_hdr_start,
(uint8_t *)(uintptr_t)addr, 12);
rte_memcpy((uint8_t *)((uintptr_t)wqe->wqe.eseg.inline_hdr_start + 12),
&vlan, sizeof(vlan));
rte_memcpy((uint8_t *)((uintptr_t)wqe->wqe.eseg.inline_hdr_start + 16),
(uint8_t *)((uintptr_t)addr + 12), 2);
addr += MLX5_ETH_VLAN_INLINE_HEADER_SIZE - sizeof(vlan);
length -= MLX5_ETH_VLAN_INLINE_HEADER_SIZE - sizeof(vlan);
/* Store remaining data in data segment. */
wqe->wqe.dseg.byte_count = htonl(length);
wqe->wqe.dseg.lkey = lkey;
wqe->wqe.dseg.addr = htonll(addr);
/* Increment consumer index. */
++txq->wqe_ci;
}
/**
* Write a inline WQE.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe
* Pointer to the WQE to fill.
* @param addr
* Buffer data address.
* @param length
* Packet length.
* @param lkey
* Memory region lkey.
*/
static inline void
mlx5_wqe_write_inline(struct txq *txq, volatile union mlx5_wqe *wqe,
uintptr_t addr, uint32_t length)
{
uint32_t size;
uint16_t wqe_cnt = txq->wqe_n - 1;
uint16_t wqe_ci = txq->wqe_ci + 1;
/* Copy the first 16 bytes into inline header. */
rte_memcpy((void *)(uintptr_t)wqe->inl.eseg.inline_hdr_start,
(void *)(uintptr_t)addr,
MLX5_ETH_INLINE_HEADER_SIZE);
addr += MLX5_ETH_INLINE_HEADER_SIZE;
length -= MLX5_ETH_INLINE_HEADER_SIZE;
size = 3 + ((4 + length + 15) / 16);
wqe->inl.byte_cnt = htonl(length | MLX5_INLINE_SEG);
rte_memcpy((void *)(uintptr_t)&wqe->inl.data[0],
(void *)addr, MLX5_WQE64_INL_DATA);
addr += MLX5_WQE64_INL_DATA;
length -= MLX5_WQE64_INL_DATA;
while (length) {
volatile union mlx5_wqe *wqe_next =
&(*txq->wqes)[wqe_ci & wqe_cnt];
uint32_t copy_bytes = (length > sizeof(*wqe)) ?
sizeof(*wqe) :
length;
rte_mov64((uint8_t *)(uintptr_t)&wqe_next->data[0],
(uint8_t *)addr);
addr += copy_bytes;
length -= copy_bytes;
++wqe_ci;
}
assert(size < 64);
wqe->inl.ctrl.data[0] = htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND);
wqe->inl.ctrl.data[1] = htonl(txq->qp_num_8s | size);
wqe->inl.ctrl.data[2] = 0;
wqe->inl.ctrl.data[3] = 0;
wqe->inl.eseg.rsvd0 = 0;
wqe->inl.eseg.rsvd1 = 0;
wqe->inl.eseg.mss = 0;
wqe->inl.eseg.rsvd2 = 0;
wqe->inl.eseg.inline_hdr_sz = htons(MLX5_ETH_INLINE_HEADER_SIZE);
/* Increment consumer index. */
txq->wqe_ci = wqe_ci;
}
/**
* Write a inline WQE with VLAN.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe
* Pointer to the WQE to fill.
* @param addr
* Buffer data address.
* @param length
* Packet length.
* @param lkey
* Memory region lkey.
* @param vlan_tci
* VLAN field to insert in packet.
*/
static inline void
mlx5_wqe_write_inline_vlan(struct txq *txq, volatile union mlx5_wqe *wqe,
uintptr_t addr, uint32_t length, uint16_t vlan_tci)
{
uint32_t size;
uint32_t wqe_cnt = txq->wqe_n - 1;
uint16_t wqe_ci = txq->wqe_ci + 1;
uint32_t vlan = htonl(0x81000000 | vlan_tci);
/*
* Copy 12 bytes of source & destination MAC address.
* Copy 4 bytes of VLAN.
* Copy 2 bytes of Ether type.
*/
rte_memcpy((uint8_t *)(uintptr_t)wqe->inl.eseg.inline_hdr_start,
(uint8_t *)addr, 12);
rte_memcpy((uint8_t *)(uintptr_t)wqe->inl.eseg.inline_hdr_start + 12,
&vlan, sizeof(vlan));
rte_memcpy((uint8_t *)((uintptr_t)wqe->inl.eseg.inline_hdr_start + 16),
(uint8_t *)(addr + 12), 2);
addr += MLX5_ETH_VLAN_INLINE_HEADER_SIZE - sizeof(vlan);
length -= MLX5_ETH_VLAN_INLINE_HEADER_SIZE - sizeof(vlan);
size = (sizeof(wqe->inl.ctrl.ctrl) +
sizeof(wqe->inl.eseg) +
sizeof(wqe->inl.byte_cnt) +
length + 15) / 16;
wqe->inl.byte_cnt = htonl(length | MLX5_INLINE_SEG);
rte_memcpy((void *)(uintptr_t)&wqe->inl.data[0],
(void *)addr, MLX5_WQE64_INL_DATA);
addr += MLX5_WQE64_INL_DATA;
length -= MLX5_WQE64_INL_DATA;
while (length) {
volatile union mlx5_wqe *wqe_next =
&(*txq->wqes)[wqe_ci & wqe_cnt];
uint32_t copy_bytes = (length > sizeof(*wqe)) ?
sizeof(*wqe) :
length;
rte_mov64((uint8_t *)(uintptr_t)&wqe_next->data[0],
(uint8_t *)addr);
addr += copy_bytes;
length -= copy_bytes;
++wqe_ci;
}
assert(size < 64);
wqe->inl.ctrl.data[0] = htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND);
wqe->inl.ctrl.data[1] = htonl(txq->qp_num_8s | size);
wqe->inl.ctrl.data[2] = 0;
wqe->inl.ctrl.data[3] = 0;
wqe->inl.eseg.rsvd0 = 0;
wqe->inl.eseg.rsvd1 = 0;
wqe->inl.eseg.mss = 0;
wqe->inl.eseg.rsvd2 = 0;
wqe->inl.eseg.inline_hdr_sz = htons(MLX5_ETH_VLAN_INLINE_HEADER_SIZE);
/* Increment consumer index. */
txq->wqe_ci = wqe_ci;
}
/**
* Ring TX queue doorbell.
*
* @param txq
* Pointer to TX queue structure.
*/
static inline void
mlx5_tx_dbrec(struct txq *txq)
{
uint8_t *dst = (uint8_t *)((uintptr_t)txq->bf_reg + txq->bf_offset);
uint32_t data[4] = {
htonl((txq->wqe_ci << 8) | MLX5_OPCODE_SEND),
htonl(txq->qp_num_8s),
0,
0,
};
rte_wmb();
*txq->qp_db = htonl(txq->wqe_ci);
/* Ensure ordering between DB record and BF copy. */
rte_wmb();
rte_mov16(dst, (uint8_t *)data);
txq->bf_offset ^= txq->bf_buf_size;
}
/**
* Prefetch a CQE.
*
* @param txq
* Pointer to TX queue structure.
* @param cqe_ci
* CQE consumer index.
*/
static inline void
tx_prefetch_cqe(struct txq *txq, uint16_t ci)
{
volatile struct mlx5_cqe64 *cqe;
cqe = &(*txq->cqes)[ci & (txq->cqe_n - 1)].cqe64;
rte_prefetch0(cqe);
}
/**
* Prefetch a WQE.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe_ci
* WQE consumer index.
*/
static inline void
tx_prefetch_wqe(struct txq *txq, uint16_t ci)
{
volatile union mlx5_wqe *wqe;
wqe = &(*txq->wqes)[ci & (txq->wqe_n - 1)];
rte_prefetch0(wqe);
}
/**
* DPDK callback for TX.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
uint16_t elts_head = txq->elts_head;
const unsigned int elts_n = txq->elts_n;
unsigned int i = 0;
unsigned int j = 0;
unsigned int max;
unsigned int comp;
volatile union mlx5_wqe *wqe = NULL;
if (unlikely(!pkts_n))
return 0;
/* Prefetch first packet cacheline. */
tx_prefetch_cqe(txq, txq->cq_ci);
tx_prefetch_cqe(txq, txq->cq_ci + 1);
rte_prefetch0(*pkts);
/* Start processing. */
txq_complete(txq);
max = (elts_n - (elts_head - txq->elts_tail));
if (max > elts_n)
max -= elts_n;
do {
struct rte_mbuf *buf = *(pkts++);
unsigned int elts_head_next;
uintptr_t addr;
uint32_t length;
uint32_t lkey;
unsigned int segs_n = buf->nb_segs;
volatile struct mlx5_wqe_data_seg *dseg;
unsigned int ds = sizeof(*wqe) / 16;
/*
* Make sure there is enough room to store this packet and
* that one ring entry remains unused.
*/
assert(segs_n);
if (max < segs_n + 1)
break;
max -= segs_n;
--pkts_n;
elts_head_next = (elts_head + 1) & (elts_n - 1);
wqe = &(*txq->wqes)[txq->wqe_ci & (txq->wqe_n - 1)];
dseg = &wqe->wqe.dseg;
rte_prefetch0(wqe);
if (pkts_n)
rte_prefetch0(*pkts);
/* Retrieve buffer information. */
addr = rte_pktmbuf_mtod(buf, uintptr_t);
length = DATA_LEN(buf);
/* Update element. */
(*txq->elts)[elts_head] = buf;
/* Prefetch next buffer data. */
if (pkts_n)
rte_prefetch0(rte_pktmbuf_mtod(*pkts,
volatile void *));
/* Retrieve Memory Region key for this memory pool. */
lkey = txq_mp2mr(txq, txq_mb2mp(buf));
if (buf->ol_flags & PKT_TX_VLAN_PKT)
mlx5_wqe_write_vlan(txq, wqe, addr, length, lkey,
buf->vlan_tci);
else
mlx5_wqe_write(txq, wqe, addr, length, lkey);
/* Should we enable HW CKSUM offload */
if (buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
wqe->wqe.eseg.cs_flags =
MLX5_ETH_WQE_L3_CSUM |
MLX5_ETH_WQE_L4_CSUM;
} else {
wqe->wqe.eseg.cs_flags = 0;
}
while (--segs_n) {
/*
* Spill on next WQE when the current one does not have
* enough room left. Size of WQE must a be a multiple
* of data segment size.
*/
assert(!(sizeof(*wqe) % sizeof(*dseg)));
if (!(ds % (sizeof(*wqe) / 16)))
dseg = (volatile void *)
&(*txq->wqes)[txq->wqe_ci++ &
(txq->wqe_n - 1)];
else
++dseg;
++ds;
buf = buf->next;
assert(buf);
/* Store segment information. */
dseg->byte_count = htonl(DATA_LEN(buf));
dseg->lkey = txq_mp2mr(txq, txq_mb2mp(buf));
dseg->addr = htonll(rte_pktmbuf_mtod(buf, uintptr_t));
(*txq->elts)[elts_head_next] = buf;
elts_head_next = (elts_head_next + 1) & (elts_n - 1);
#ifdef MLX5_PMD_SOFT_COUNTERS
length += DATA_LEN(buf);
#endif
++j;
}
/* Update DS field in WQE. */
wqe->wqe.ctrl.data[1] &= htonl(0xffffffc0);
wqe->wqe.ctrl.data[1] |= htonl(ds & 0x3f);
elts_head = elts_head_next;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += length;
#endif
elts_head = elts_head_next;
++i;
} while (pkts_n);
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Check whether completion threshold has been reached. */
comp = txq->elts_comp + i + j;
if (comp >= MLX5_TX_COMP_THRESH) {
/* Request completion on last WQE. */
wqe->wqe.ctrl.data[2] = htonl(8);
/* Save elts_head in unused "immediate" field of WQE. */
wqe->wqe.ctrl.data[3] = elts_head;
txq->elts_comp = 0;
} else {
txq->elts_comp = comp;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
mlx5_tx_dbrec(txq);
txq->elts_head = elts_head;
return i;
}
/**
* DPDK callback for TX with inline support.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst_inline(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
uint16_t elts_head = txq->elts_head;
const unsigned int elts_n = txq->elts_n;
unsigned int i = 0;
unsigned int j = 0;
unsigned int max;
unsigned int comp;
volatile union mlx5_wqe *wqe = NULL;
unsigned int max_inline = txq->max_inline;
if (unlikely(!pkts_n))
return 0;
/* Prefetch first packet cacheline. */
tx_prefetch_cqe(txq, txq->cq_ci);
tx_prefetch_cqe(txq, txq->cq_ci + 1);
rte_prefetch0(*pkts);
/* Start processing. */
txq_complete(txq);
max = (elts_n - (elts_head - txq->elts_tail));
if (max > elts_n)
max -= elts_n;
do {
struct rte_mbuf *buf = *(pkts++);
unsigned int elts_head_next;
uintptr_t addr;
uint32_t length;
uint32_t lkey;
unsigned int segs_n = buf->nb_segs;
volatile struct mlx5_wqe_data_seg *dseg;
unsigned int ds = sizeof(*wqe) / 16;
/*
* Make sure there is enough room to store this packet and
* that one ring entry remains unused.
*/
assert(segs_n);
if (max < segs_n + 1)
break;
max -= segs_n;
--pkts_n;
elts_head_next = (elts_head + 1) & (elts_n - 1);
wqe = &(*txq->wqes)[txq->wqe_ci & (txq->wqe_n - 1)];
dseg = &wqe->wqe.dseg;
tx_prefetch_wqe(txq, txq->wqe_ci);
tx_prefetch_wqe(txq, txq->wqe_ci + 1);
if (pkts_n)
rte_prefetch0(*pkts);
/* Should we enable HW CKSUM offload */
if (buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
wqe->inl.eseg.cs_flags =
MLX5_ETH_WQE_L3_CSUM |
MLX5_ETH_WQE_L4_CSUM;
} else {
wqe->inl.eseg.cs_flags = 0;
}
/* Retrieve buffer information. */
addr = rte_pktmbuf_mtod(buf, uintptr_t);
length = DATA_LEN(buf);
/* Update element. */
(*txq->elts)[elts_head] = buf;
/* Prefetch next buffer data. */
if (pkts_n)
rte_prefetch0(rte_pktmbuf_mtod(*pkts,
volatile void *));
if ((length <= max_inline) && (segs_n == 1)) {
if (buf->ol_flags & PKT_TX_VLAN_PKT)
mlx5_wqe_write_inline_vlan(txq, wqe,
addr, length,
buf->vlan_tci);
else
mlx5_wqe_write_inline(txq, wqe, addr, length);
goto skip_segs;
} else {
/* Retrieve Memory Region key for this memory pool. */
lkey = txq_mp2mr(txq, txq_mb2mp(buf));
if (buf->ol_flags & PKT_TX_VLAN_PKT)
mlx5_wqe_write_vlan(txq, wqe, addr, length,
lkey, buf->vlan_tci);
else
mlx5_wqe_write(txq, wqe, addr, length, lkey);
}
while (--segs_n) {
/*
* Spill on next WQE when the current one does not have
* enough room left. Size of WQE must a be a multiple
* of data segment size.
*/
assert(!(sizeof(*wqe) % sizeof(*dseg)));
if (!(ds % (sizeof(*wqe) / 16)))
dseg = (volatile void *)
&(*txq->wqes)[txq->wqe_ci++ &
(txq->wqe_n - 1)];
else
++dseg;
++ds;
buf = buf->next;
assert(buf);
/* Store segment information. */
dseg->byte_count = htonl(DATA_LEN(buf));
dseg->lkey = txq_mp2mr(txq, txq_mb2mp(buf));
dseg->addr = htonll(rte_pktmbuf_mtod(buf, uintptr_t));
(*txq->elts)[elts_head_next] = buf;
elts_head_next = (elts_head_next + 1) & (elts_n - 1);
#ifdef MLX5_PMD_SOFT_COUNTERS
length += DATA_LEN(buf);
#endif
++j;
}
/* Update DS field in WQE. */
wqe->inl.ctrl.data[1] &= htonl(0xffffffc0);
wqe->inl.ctrl.data[1] |= htonl(ds & 0x3f);
skip_segs:
elts_head = elts_head_next;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += length;
#endif
++i;
} while (pkts_n);
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Check whether completion threshold has been reached. */
comp = txq->elts_comp + i + j;
if (comp >= MLX5_TX_COMP_THRESH) {
/* Request completion on last WQE. */
wqe->inl.ctrl.data[2] = htonl(8);
/* Save elts_head in unused "immediate" field of WQE. */
wqe->inl.ctrl.data[3] = elts_head;
txq->elts_comp = 0;
} else {
txq->elts_comp = comp;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
mlx5_tx_dbrec(txq);
txq->elts_head = elts_head;
return i;
}
/**
* Open a MPW session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
* @param length
* Packet length.
*/
static inline void
mlx5_mpw_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
{
uint16_t idx = txq->wqe_ci & (txq->wqe_n - 1);
volatile struct mlx5_wqe_data_seg (*dseg)[MLX5_MPW_DSEG_MAX] =
(volatile struct mlx5_wqe_data_seg (*)[])
(uintptr_t)&(*txq->wqes)[(idx + 1) & (txq->wqe_n - 1)];
mpw->state = MLX5_MPW_STATE_OPENED;
mpw->pkts_n = 0;
mpw->len = length;
mpw->total_len = 0;
mpw->wqe = &(*txq->wqes)[idx];
mpw->wqe->mpw.eseg.mss = htons(length);
mpw->wqe->mpw.eseg.inline_hdr_sz = 0;
mpw->wqe->mpw.eseg.rsvd0 = 0;
mpw->wqe->mpw.eseg.rsvd1 = 0;
mpw->wqe->mpw.eseg.rsvd2 = 0;
mpw->wqe->mpw.ctrl.data[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
(txq->wqe_ci << 8) |
MLX5_OPCODE_LSO_MPW);
mpw->wqe->mpw.ctrl.data[2] = 0;
mpw->wqe->mpw.ctrl.data[3] = 0;
mpw->data.dseg[0] = &mpw->wqe->mpw.dseg[0];
mpw->data.dseg[1] = &mpw->wqe->mpw.dseg[1];
mpw->data.dseg[2] = &(*dseg)[0];
mpw->data.dseg[3] = &(*dseg)[1];
mpw->data.dseg[4] = &(*dseg)[2];
}
/**
* Close a MPW session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
*/
static inline void
mlx5_mpw_close(struct txq *txq, struct mlx5_mpw *mpw)
{
unsigned int num = mpw->pkts_n;
/*
* Store size in multiple of 16 bytes. Control and Ethernet segments
* count as 2.
*/
mpw->wqe->mpw.ctrl.data[1] = htonl(txq->qp_num_8s | (2 + num));
mpw->state = MLX5_MPW_STATE_CLOSED;
if (num < 3)
++txq->wqe_ci;
else
txq->wqe_ci += 2;
tx_prefetch_wqe(txq, txq->wqe_ci);
tx_prefetch_wqe(txq, txq->wqe_ci + 1);
}
/**
* DPDK callback for TX with MPW support.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst_mpw(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
uint16_t elts_head = txq->elts_head;
const unsigned int elts_n = txq->elts_n;
unsigned int i = 0;
unsigned int j = 0;
unsigned int max;
unsigned int comp;
struct mlx5_mpw mpw = {
.state = MLX5_MPW_STATE_CLOSED,
};
if (unlikely(!pkts_n))
return 0;
/* Prefetch first packet cacheline. */
tx_prefetch_cqe(txq, txq->cq_ci);
tx_prefetch_wqe(txq, txq->wqe_ci);
tx_prefetch_wqe(txq, txq->wqe_ci + 1);
/* Start processing. */
txq_complete(txq);
max = (elts_n - (elts_head - txq->elts_tail));
if (max > elts_n)
max -= elts_n;
do {
struct rte_mbuf *buf = *(pkts++);
unsigned int elts_head_next;
uint32_t length;
unsigned int segs_n = buf->nb_segs;
uint32_t cs_flags = 0;
/*
* Make sure there is enough room to store this packet and
* that one ring entry remains unused.
*/
assert(segs_n);
if (max < segs_n + 1)
break;
/* Do not bother with large packets MPW cannot handle. */
if (segs_n > MLX5_MPW_DSEG_MAX)
break;
max -= segs_n;
--pkts_n;
/* Should we enable HW CKSUM offload */
if (buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
/* Retrieve packet information. */
length = PKT_LEN(buf);
assert(length);
/* Start new session if packet differs. */
if ((mpw.state == MLX5_MPW_STATE_OPENED) &&
((mpw.len != length) ||
(segs_n != 1) ||
(mpw.wqe->mpw.eseg.cs_flags != cs_flags)))
mlx5_mpw_close(txq, &mpw);
if (mpw.state == MLX5_MPW_STATE_CLOSED) {
mlx5_mpw_new(txq, &mpw, length);
mpw.wqe->mpw.eseg.cs_flags = cs_flags;
}
/* Multi-segment packets must be alone in their MPW. */
assert((segs_n == 1) || (mpw.pkts_n == 0));
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length = 0;
#endif
do {
volatile struct mlx5_wqe_data_seg *dseg;
uintptr_t addr;
elts_head_next = (elts_head + 1) & (elts_n - 1);
assert(buf);
(*txq->elts)[elts_head] = buf;
dseg = mpw.data.dseg[mpw.pkts_n];
addr = rte_pktmbuf_mtod(buf, uintptr_t);
*dseg = (struct mlx5_wqe_data_seg){
.byte_count = htonl(DATA_LEN(buf)),
.lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
.addr = htonll(addr),
};
elts_head = elts_head_next;
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length += DATA_LEN(buf);
#endif
buf = buf->next;
++mpw.pkts_n;
++j;
} while (--segs_n);
assert(length == mpw.len);
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
mlx5_mpw_close(txq, &mpw);
elts_head = elts_head_next;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += length;
#endif
++i;
} while (pkts_n);
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Check whether completion threshold has been reached. */
/* "j" includes both packets and segments. */
comp = txq->elts_comp + j;
if (comp >= MLX5_TX_COMP_THRESH) {
volatile union mlx5_wqe *wqe = mpw.wqe;
/* Request completion on last WQE. */
wqe->mpw.ctrl.data[2] = htonl(8);
/* Save elts_head in unused "immediate" field of WQE. */
wqe->mpw.ctrl.data[3] = elts_head;
txq->elts_comp = 0;
} else {
txq->elts_comp = comp;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
if (mpw.state == MLX5_MPW_STATE_OPENED)
mlx5_mpw_close(txq, &mpw);
mlx5_tx_dbrec(txq);
txq->elts_head = elts_head;
return i;
}
/**
* Open a MPW inline session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
* @param length
* Packet length.
*/
static inline void
mlx5_mpw_inline_new(struct txq *txq, struct mlx5_mpw *mpw, uint32_t length)
{
uint16_t idx = txq->wqe_ci & (txq->wqe_n - 1);
mpw->state = MLX5_MPW_INL_STATE_OPENED;
mpw->pkts_n = 0;
mpw->len = length;
mpw->total_len = 0;
mpw->wqe = &(*txq->wqes)[idx];
mpw->wqe->mpw_inl.ctrl.data[0] = htonl((MLX5_OPC_MOD_MPW << 24) |
(txq->wqe_ci << 8) |
MLX5_OPCODE_LSO_MPW);
mpw->wqe->mpw_inl.ctrl.data[2] = 0;
mpw->wqe->mpw_inl.ctrl.data[3] = 0;
mpw->wqe->mpw_inl.eseg.mss = htons(length);
mpw->wqe->mpw_inl.eseg.inline_hdr_sz = 0;
mpw->wqe->mpw_inl.eseg.cs_flags = 0;
mpw->wqe->mpw_inl.eseg.rsvd0 = 0;
mpw->wqe->mpw_inl.eseg.rsvd1 = 0;
mpw->wqe->mpw_inl.eseg.rsvd2 = 0;
mpw->data.raw = &mpw->wqe->mpw_inl.data[0];
}
/**
* Close a MPW inline session.
*
* @param txq
* Pointer to TX queue structure.
* @param mpw
* Pointer to MPW session structure.
*/
static inline void
mlx5_mpw_inline_close(struct txq *txq, struct mlx5_mpw *mpw)
{
unsigned int size;
size = sizeof(*mpw->wqe) - MLX5_MWQE64_INL_DATA + mpw->total_len;
/*
* Store size in multiple of 16 bytes. Control and Ethernet segments
* count as 2.
*/
mpw->wqe->mpw_inl.ctrl.data[1] =
htonl(txq->qp_num_8s | ((size + 15) / 16));
mpw->state = MLX5_MPW_STATE_CLOSED;
mpw->wqe->mpw_inl.byte_cnt = htonl(mpw->total_len | MLX5_INLINE_SEG);
txq->wqe_ci += (size + (sizeof(*mpw->wqe) - 1)) / sizeof(*mpw->wqe);
}
/**
* DPDK callback for TX with MPW inline support.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
mlx5_tx_burst_mpw_inline(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n)
{
struct txq *txq = (struct txq *)dpdk_txq;
uint16_t elts_head = txq->elts_head;
const unsigned int elts_n = txq->elts_n;
unsigned int i = 0;
unsigned int j = 0;
unsigned int max;
unsigned int comp;
unsigned int inline_room = txq->max_inline;
struct mlx5_mpw mpw = {
.state = MLX5_MPW_STATE_CLOSED,
};
if (unlikely(!pkts_n))
return 0;
/* Prefetch first packet cacheline. */
tx_prefetch_cqe(txq, txq->cq_ci);
tx_prefetch_wqe(txq, txq->wqe_ci);
tx_prefetch_wqe(txq, txq->wqe_ci + 1);
/* Start processing. */
txq_complete(txq);
max = (elts_n - (elts_head - txq->elts_tail));
if (max > elts_n)
max -= elts_n;
do {
struct rte_mbuf *buf = *(pkts++);
unsigned int elts_head_next;
uintptr_t addr;
uint32_t length;
unsigned int segs_n = buf->nb_segs;
uint32_t cs_flags = 0;
/*
* Make sure there is enough room to store this packet and
* that one ring entry remains unused.
*/
assert(segs_n);
if (max < segs_n + 1)
break;
/* Do not bother with large packets MPW cannot handle. */
if (segs_n > MLX5_MPW_DSEG_MAX)
break;
max -= segs_n;
--pkts_n;
/* Should we enable HW CKSUM offload */
if (buf->ol_flags &
(PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM))
cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM;
/* Retrieve packet information. */
length = PKT_LEN(buf);
/* Start new session if packet differs. */
if (mpw.state == MLX5_MPW_STATE_OPENED) {
if ((mpw.len != length) ||
(segs_n != 1) ||
(mpw.wqe->mpw.eseg.cs_flags != cs_flags))
mlx5_mpw_close(txq, &mpw);
} else if (mpw.state == MLX5_MPW_INL_STATE_OPENED) {
if ((mpw.len != length) ||
(segs_n != 1) ||
(length > inline_room) ||
(mpw.wqe->mpw_inl.eseg.cs_flags != cs_flags)) {
mlx5_mpw_inline_close(txq, &mpw);
inline_room = txq->max_inline;
}
}
if (mpw.state == MLX5_MPW_STATE_CLOSED) {
if ((segs_n != 1) ||
(length > inline_room)) {
mlx5_mpw_new(txq, &mpw, length);
mpw.wqe->mpw.eseg.cs_flags = cs_flags;
} else {
mlx5_mpw_inline_new(txq, &mpw, length);
mpw.wqe->mpw_inl.eseg.cs_flags = cs_flags;
}
}
/* Multi-segment packets must be alone in their MPW. */
assert((segs_n == 1) || (mpw.pkts_n == 0));
if (mpw.state == MLX5_MPW_STATE_OPENED) {
assert(inline_room == txq->max_inline);
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length = 0;
#endif
do {
volatile struct mlx5_wqe_data_seg *dseg;
elts_head_next =
(elts_head + 1) & (elts_n - 1);
assert(buf);
(*txq->elts)[elts_head] = buf;
dseg = mpw.data.dseg[mpw.pkts_n];
addr = rte_pktmbuf_mtod(buf, uintptr_t);
*dseg = (struct mlx5_wqe_data_seg){
.byte_count = htonl(DATA_LEN(buf)),
.lkey = txq_mp2mr(txq, txq_mb2mp(buf)),
.addr = htonll(addr),
};
elts_head = elts_head_next;
#if defined(MLX5_PMD_SOFT_COUNTERS) || !defined(NDEBUG)
length += DATA_LEN(buf);
#endif
buf = buf->next;
++mpw.pkts_n;
++j;
} while (--segs_n);
assert(length == mpw.len);
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX)
mlx5_mpw_close(txq, &mpw);
} else {
unsigned int max;
assert(mpw.state == MLX5_MPW_INL_STATE_OPENED);
assert(length <= inline_room);
assert(length == DATA_LEN(buf));
elts_head_next = (elts_head + 1) & (elts_n - 1);
addr = rte_pktmbuf_mtod(buf, uintptr_t);
(*txq->elts)[elts_head] = buf;
/* Maximum number of bytes before wrapping. */
max = ((uintptr_t)&(*txq->wqes)[txq->wqe_n] -
(uintptr_t)mpw.data.raw);
if (length > max) {
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
(void *)addr,
max);
mpw.data.raw =
(volatile void *)&(*txq->wqes)[0];
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
(void *)(addr + max),
length - max);
mpw.data.raw += length - max;
} else {
rte_memcpy((void *)(uintptr_t)mpw.data.raw,
(void *)addr,
length);
mpw.data.raw += length;
}
if ((uintptr_t)mpw.data.raw ==
(uintptr_t)&(*txq->wqes)[txq->wqe_n])
mpw.data.raw =
(volatile void *)&(*txq->wqes)[0];
++mpw.pkts_n;
++j;
if (mpw.pkts_n == MLX5_MPW_DSEG_MAX) {
mlx5_mpw_inline_close(txq, &mpw);
inline_room = txq->max_inline;
} else {
inline_room -= length;
}
}
mpw.total_len += length;
elts_head = elts_head_next;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent bytes counter. */
txq->stats.obytes += length;
#endif
++i;
} while (pkts_n);
/* Take a shortcut if nothing must be sent. */
if (unlikely(i == 0))
return 0;
/* Check whether completion threshold has been reached. */
/* "j" includes both packets and segments. */
comp = txq->elts_comp + j;
if (comp >= MLX5_TX_COMP_THRESH) {
volatile union mlx5_wqe *wqe = mpw.wqe;
/* Request completion on last WQE. */
wqe->mpw_inl.ctrl.data[2] = htonl(8);
/* Save elts_head in unused "immediate" field of WQE. */
wqe->mpw_inl.ctrl.data[3] = elts_head;
txq->elts_comp = 0;
} else {
txq->elts_comp = comp;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += i;
#endif
/* Ring QP doorbell. */
if (mpw.state == MLX5_MPW_INL_STATE_OPENED)
mlx5_mpw_inline_close(txq, &mpw);
else if (mpw.state == MLX5_MPW_STATE_OPENED)
mlx5_mpw_close(txq, &mpw);
mlx5_tx_dbrec(txq);
txq->elts_head = elts_head;
return i;
}
/**
* Translate RX completion flags to packet type.
*
* @param[in] cqe
* Pointer to CQE.
*
* @note: fix mlx5_dev_supported_ptypes_get() if any change here.
*
* @return
* Packet type for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_pkt_type(volatile struct mlx5_cqe64 *cqe)
{
uint32_t pkt_type;
uint8_t flags = cqe->l4_hdr_type_etc;
uint8_t info = cqe->rsvd0[0];
if (info & IBV_EXP_CQ_RX_TUNNEL_PACKET)
pkt_type =
TRANSPOSE(flags,
IBV_EXP_CQ_RX_OUTER_IPV4_PACKET,
RTE_PTYPE_L3_IPV4) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_OUTER_IPV6_PACKET,
RTE_PTYPE_L3_IPV6) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_IPV4_PACKET,
RTE_PTYPE_INNER_L3_IPV4) |
TRANSPOSE(flags,
IBV_EXP_CQ_RX_IPV6_PACKET,
RTE_PTYPE_INNER_L3_IPV6);
else
pkt_type =
TRANSPOSE(flags,
MLX5_CQE_L3_HDR_TYPE_IPV6,
RTE_PTYPE_L3_IPV6) |
TRANSPOSE(flags,
MLX5_CQE_L3_HDR_TYPE_IPV4,
RTE_PTYPE_L3_IPV4);
return pkt_type;
}
/**
* Get size of the next packet for a given CQE. For compressed CQEs, the
* consumer index is updated only once all packets of the current one have
* been processed.
*
* @param rxq
* Pointer to RX queue.
* @param cqe
* CQE to process.
*
* @return
* Packet size in bytes (0 if there is none), -1 in case of completion
* with error.
*/
static inline int
mlx5_rx_poll_len(struct rxq *rxq, volatile struct mlx5_cqe64 *cqe,
uint16_t cqe_cnt)
{
struct rxq_zip *zip = &rxq->zip;
uint16_t cqe_n = cqe_cnt + 1;
int len = 0;
/* Process compressed data in the CQE and mini arrays. */
if (zip->ai) {
volatile struct mlx5_mini_cqe8 (*mc)[8] =
(volatile struct mlx5_mini_cqe8 (*)[8])
(uintptr_t)(&(*rxq->cqes)[zip->ca & cqe_cnt].cqe64);
len = ntohl((*mc)[zip->ai & 7].byte_cnt);
if ((++zip->ai & 7) == 0) {
/*
* Increment consumer index to skip the number of
* CQEs consumed. Hardware leaves holes in the CQ
* ring for software use.
*/
zip->ca = zip->na;
zip->na += 8;
}
if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
uint16_t idx = rxq->cq_ci;
uint16_t end = zip->cq_ci;
while (idx != end) {
(*rxq->cqes)[idx & cqe_cnt].cqe64.op_own =
MLX5_CQE_INVALIDATE;
++idx;
}
rxq->cq_ci = zip->cq_ci;
zip->ai = 0;
}
/* No compressed data, get next CQE and verify if it is compressed. */
} else {
int ret;
int8_t op_own;
ret = check_cqe64(cqe, cqe_n, rxq->cq_ci);
if (unlikely(ret == 1))
return 0;
++rxq->cq_ci;
op_own = cqe->op_own;
if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
volatile struct mlx5_mini_cqe8 (*mc)[8] =
(volatile struct mlx5_mini_cqe8 (*)[8])
(uintptr_t)(&(*rxq->cqes)[rxq->cq_ci &
cqe_cnt].cqe64);
/* Fix endianness. */
zip->cqe_cnt = ntohl(cqe->byte_cnt);
/*
* Current mini array position is the one returned by
* check_cqe64().
*
* If completion comprises several mini arrays, as a
* special case the second one is located 7 CQEs after
* the initial CQE instead of 8 for subsequent ones.
*/
zip->ca = rxq->cq_ci & cqe_cnt;
zip->na = zip->ca + 7;
/* Compute the next non compressed CQE. */
--rxq->cq_ci;
zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
/* Get packet size to return. */
len = ntohl((*mc)[0].byte_cnt);
zip->ai = 1;
} else {
len = ntohl(cqe->byte_cnt);
}
/* Error while receiving packet. */
if (unlikely(MLX5_CQE_OPCODE(op_own) == MLX5_CQE_RESP_ERR))
return -1;
}
return len;
}
/**
* Translate RX completion flags to offload flags.
*
* @param[in] rxq
* Pointer to RX queue structure.
* @param[in] cqe
* Pointer to CQE.
*
* @return
* Offload flags (ol_flags) for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_ol_flags(struct rxq *rxq, volatile struct mlx5_cqe64 *cqe)
{
uint32_t ol_flags = 0;
uint8_t l3_hdr = (cqe->l4_hdr_type_etc) & MLX5_CQE_L3_HDR_TYPE_MASK;
uint8_t l4_hdr = (cqe->l4_hdr_type_etc) & MLX5_CQE_L4_HDR_TYPE_MASK;
uint8_t info = cqe->rsvd0[0];
if ((l3_hdr == MLX5_CQE_L3_HDR_TYPE_IPV4) ||
(l3_hdr == MLX5_CQE_L3_HDR_TYPE_IPV6))
ol_flags |=
(!(cqe->hds_ip_ext & MLX5_CQE_L3_OK) *
PKT_RX_IP_CKSUM_BAD);
if ((l4_hdr == MLX5_CQE_L4_HDR_TYPE_TCP) ||
(l4_hdr == MLX5_CQE_L4_HDR_TYPE_TCP_EMP_ACK) ||
(l4_hdr == MLX5_CQE_L4_HDR_TYPE_TCP_ACK) ||
(l4_hdr == MLX5_CQE_L4_HDR_TYPE_UDP))
ol_flags |=
(!(cqe->hds_ip_ext & MLX5_CQE_L4_OK) *
PKT_RX_L4_CKSUM_BAD);
/*
* PKT_RX_IP_CKSUM_BAD and PKT_RX_L4_CKSUM_BAD are used in place
* of PKT_RX_EIP_CKSUM_BAD because the latter is not functional
* (its value is 0).
*/
if ((info & IBV_EXP_CQ_RX_TUNNEL_PACKET) && (rxq->csum_l2tun))
ol_flags |=
TRANSPOSE(~cqe->l4_hdr_type_etc,
IBV_EXP_CQ_RX_OUTER_IP_CSUM_OK,
PKT_RX_IP_CKSUM_BAD) |
TRANSPOSE(~cqe->l4_hdr_type_etc,
IBV_EXP_CQ_RX_OUTER_TCP_UDP_CSUM_OK,
PKT_RX_L4_CKSUM_BAD);
return ol_flags;
}
/**
* DPDK callback for RX.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct rxq *rxq = dpdk_rxq;
const unsigned int wqe_cnt = rxq->elts_n - 1;
const unsigned int cqe_cnt = rxq->cqe_n - 1;
const unsigned int sges_n = rxq->sges_n;
struct rte_mbuf *pkt = NULL;
struct rte_mbuf *seg = NULL;
volatile struct mlx5_cqe64 *cqe =
&(*rxq->cqes)[rxq->cq_ci & cqe_cnt].cqe64;
unsigned int i = 0;
unsigned int rq_ci = rxq->rq_ci << sges_n;
int len;
while (pkts_n) {
unsigned int idx = rq_ci & wqe_cnt;
volatile struct mlx5_wqe_data_seg *wqe = &(*rxq->wqes)[idx];
struct rte_mbuf *rep = (*rxq->elts)[idx];
if (pkt)
NEXT(seg) = rep;
seg = rep;
rte_prefetch0(seg);
rte_prefetch0(cqe);
rte_prefetch0(wqe);
rep = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
++rxq->stats.rx_nombuf;
if (!pkt) {
/*
* no buffers before we even started,
* bail out silently.
*/
break;
}
while (pkt != seg) {
assert(pkt != (*rxq->elts)[idx]);
seg = NEXT(pkt);
rte_mbuf_refcnt_set(pkt, 0);
__rte_mbuf_raw_free(pkt);
pkt = seg;
}
break;
}
if (!pkt) {
cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt].cqe64;
len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt);
if (len == 0) {
rte_mbuf_refcnt_set(rep, 0);
__rte_mbuf_raw_free(rep);
break;
}
if (unlikely(len == -1)) {
/* RX error, packet is likely too large. */
rte_mbuf_refcnt_set(rep, 0);
__rte_mbuf_raw_free(rep);
++rxq->stats.idropped;
goto skip;
}
pkt = seg;
assert(len >= (rxq->crc_present << 2));
/* Update packet information. */
pkt->packet_type = 0;
pkt->ol_flags = 0;
if (rxq->csum | rxq->csum_l2tun | rxq->vlan_strip |
rxq->crc_present) {
if (rxq->csum) {
pkt->packet_type =
rxq_cq_to_pkt_type(cqe);
pkt->ol_flags =
rxq_cq_to_ol_flags(rxq, cqe);
}
if (cqe->l4_hdr_type_etc &
MLX5_CQE_VLAN_STRIPPED) {
pkt->ol_flags |= PKT_RX_VLAN_PKT |
PKT_RX_VLAN_STRIPPED;
pkt->vlan_tci = ntohs(cqe->vlan_info);
}
if (rxq->crc_present)
len -= ETHER_CRC_LEN;
}
PKT_LEN(pkt) = len;
}
DATA_LEN(rep) = DATA_LEN(seg);
PKT_LEN(rep) = PKT_LEN(seg);
SET_DATA_OFF(rep, DATA_OFF(seg));
NB_SEGS(rep) = NB_SEGS(seg);
PORT(rep) = PORT(seg);
NEXT(rep) = NULL;
(*rxq->elts)[idx] = rep;
/*
* Fill NIC descriptor with the new buffer. The lkey and size
* of the buffers are already known, only the buffer address
* changes.
*/
wqe->addr = htonll(rte_pktmbuf_mtod(rep, uintptr_t));
if (len > DATA_LEN(seg)) {
len -= DATA_LEN(seg);
++NB_SEGS(pkt);
++rq_ci;
continue;
}
DATA_LEN(seg) = len;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment bytes counter. */
rxq->stats.ibytes += PKT_LEN(pkt);
#endif
/* Return packet. */
*(pkts++) = pkt;
pkt = NULL;
--pkts_n;
++i;
skip:
/* Align consumer index to the next stride. */
rq_ci >>= sges_n;
++rq_ci;
rq_ci <<= sges_n;
}
if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
return 0;
/* Update the consumer index. */
rxq->rq_ci = rq_ci >> sges_n;
rte_wmb();
*rxq->cq_db = htonl(rxq->cq_ci);
rte_wmb();
*rxq->rq_db = htonl(rxq->rq_ci);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment packets counter. */
rxq->stats.ipackets += i;
#endif
return i;
}
/**
* Dummy DPDK callback for TX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_txq;
(void)pkts;
(void)pkts_n;
return 0;
}
/**
* Dummy DPDK callback for RX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
removed_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
(void)dpdk_rxq;
(void)pkts;
(void)pkts_n;
return 0;
}