numam-dpdk/drivers/net/bnxt/bnxt_rxr.c
Ajit Khaparde 94eb699bc8 net/bnxt: support flow mark action
Add support for RTE_FLOW_ACTION_TYPE_MARK.
Use the flow_id provided by FW during flow creation to lookup the
mark id provided by the application.

Signed-off-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Reviewed-by: Lance Richardson <lance.richardson@broadcom.com>
2020-01-17 19:46:01 +01:00

937 lines
24 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2018 Broadcom
* All rights reserved.
*/
#include <inttypes.h>
#include <stdbool.h>
#include <rte_bitmap.h>
#include <rte_byteorder.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include "bnxt.h"
#include "bnxt_ring.h"
#include "bnxt_rxr.h"
#include "bnxt_rxq.h"
#include "hsi_struct_def_dpdk.h"
#ifdef RTE_LIBRTE_IEEE1588
#include "bnxt_hwrm.h"
#endif
/*
* RX Ring handling
*/
static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
{
struct rte_mbuf *data;
data = rte_mbuf_raw_alloc(mb);
return data;
}
static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
struct bnxt_rx_ring_info *rxr,
uint16_t prod)
{
struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
struct rte_mbuf *mbuf;
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
if (!mbuf) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return -ENOMEM;
}
rx_buf->mbuf = mbuf;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
return 0;
}
static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
struct bnxt_rx_ring_info *rxr,
uint16_t prod)
{
struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
struct bnxt_sw_rx_bd *rx_buf = &rxr->ag_buf_ring[prod];
struct rte_mbuf *mbuf;
if (rxbd == NULL) {
PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
return -EINVAL;
}
if (rx_buf == NULL) {
PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
return -EINVAL;
}
mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
if (!mbuf) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return -ENOMEM;
}
rx_buf->mbuf = mbuf;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
return 0;
}
static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
struct rte_mbuf *mbuf)
{
uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
struct bnxt_sw_rx_bd *prod_rx_buf;
struct rx_prod_pkt_bd *prod_bd;
prod_rx_buf = &rxr->rx_buf_ring[prod];
RTE_ASSERT(prod_rx_buf->mbuf == NULL);
RTE_ASSERT(mbuf != NULL);
prod_rx_buf->mbuf = mbuf;
prod_bd = &rxr->rx_desc_ring[prod];
prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
rxr->rx_prod = prod;
}
static inline
struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
uint16_t cons)
{
struct bnxt_sw_rx_bd *cons_rx_buf;
struct rte_mbuf *mbuf;
cons_rx_buf = &rxr->rx_buf_ring[cons];
RTE_ASSERT(cons_rx_buf->mbuf != NULL);
mbuf = cons_rx_buf->mbuf;
cons_rx_buf->mbuf = NULL;
return mbuf;
}
static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
struct rx_tpa_start_cmpl *tpa_start,
struct rx_tpa_start_cmpl_hi *tpa_start1)
{
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t agg_id;
uint16_t data_cons;
struct bnxt_tpa_info *tpa_info;
struct rte_mbuf *mbuf;
agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
data_cons = tpa_start->opaque;
tpa_info = &rxr->tpa_info[agg_id];
mbuf = bnxt_consume_rx_buf(rxr, data_cons);
bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
tpa_info->agg_count = 0;
tpa_info->mbuf = mbuf;
tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
mbuf->nb_segs = 1;
mbuf->next = NULL;
mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
mbuf->data_len = mbuf->pkt_len;
mbuf->port = rxq->port_id;
mbuf->ol_flags = PKT_RX_LRO;
if (likely(tpa_start->flags_type &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
mbuf->ol_flags |= PKT_RX_RSS_HASH;
} else {
mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
}
if (tpa_start1->flags2 &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
}
if (likely(tpa_start1->flags2 &
rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
/* recycle next mbuf */
data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
}
static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
uint8_t agg_bufs, uint32_t raw_cp_cons)
{
uint16_t last_cp_cons;
struct rx_pkt_cmpl *agg_cmpl;
raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
cpr->valid = FLIP_VALID(raw_cp_cons,
cpr->cp_ring_struct->ring_mask,
cpr->valid);
return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
}
/* TPA consume agg buffer out of order, allocate connected data only */
static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
{
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
/* TODO batch allocation for better performance */
while (rte_bitmap_get(rxr->ag_bitmap, next)) {
if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
PMD_DRV_LOG(ERR,
"agg mbuf alloc failed: prod=0x%x\n", next);
break;
}
rte_bitmap_clear(rxr->ag_bitmap, next);
rxr->ag_prod = next;
next = RING_NEXT(rxr->ag_ring_struct, next);
}
return 0;
}
static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
int i;
uint16_t cp_cons, ag_cons;
struct rx_pkt_cmpl *rxcmp;
struct rte_mbuf *last = mbuf;
bool is_thor_tpa = tpa_info && BNXT_CHIP_THOR(rxq->bp);
for (i = 0; i < agg_buf; i++) {
struct bnxt_sw_rx_bd *ag_buf;
struct rte_mbuf *ag_mbuf;
if (is_thor_tpa) {
rxcmp = (void *)&tpa_info->agg_arr[i];
} else {
*tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
rxcmp = (struct rx_pkt_cmpl *)
&cpr->cp_desc_ring[cp_cons];
}
#ifdef BNXT_DEBUG
bnxt_dump_cmpl(cp_cons, rxcmp);
#endif
ag_cons = rxcmp->opaque;
RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
ag_buf = &rxr->ag_buf_ring[ag_cons];
ag_mbuf = ag_buf->mbuf;
RTE_ASSERT(ag_mbuf != NULL);
ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
mbuf->nb_segs++;
mbuf->pkt_len += ag_mbuf->data_len;
last->next = ag_mbuf;
last = ag_mbuf;
ag_buf->mbuf = NULL;
/*
* As aggregation buffer consumed out of order in TPA module,
* use bitmap to track freed slots to be allocated and notified
* to NIC
*/
rte_bitmap_set(rxr->ag_bitmap, ag_cons);
}
bnxt_prod_ag_mbuf(rxq);
return 0;
}
static inline struct rte_mbuf *bnxt_tpa_end(
struct bnxt_rx_queue *rxq,
uint32_t *raw_cp_cons,
struct rx_tpa_end_cmpl *tpa_end,
struct rx_tpa_end_cmpl_hi *tpa_end1)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint16_t agg_id;
struct rte_mbuf *mbuf;
uint8_t agg_bufs;
uint8_t payload_offset;
struct bnxt_tpa_info *tpa_info;
if (BNXT_CHIP_THOR(rxq->bp)) {
struct rx_tpa_v2_end_cmpl *th_tpa_end;
struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
th_tpa_end = (void *)tpa_end;
th_tpa_end1 = (void *)tpa_end1;
agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
payload_offset = th_tpa_end1->payload_offset;
} else {
agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
return NULL;
payload_offset = tpa_end->payload_offset;
}
tpa_info = &rxr->tpa_info[agg_id];
mbuf = tpa_info->mbuf;
RTE_ASSERT(mbuf != NULL);
rte_prefetch0(mbuf);
if (agg_bufs) {
bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
}
mbuf->l4_len = payload_offset;
struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
RTE_ASSERT(new_data != NULL);
if (!new_data) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return NULL;
}
tpa_info->mbuf = new_data;
return mbuf;
}
static uint32_t
bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
{
uint32_t l3, pkt_type = 0;
uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
uint32_t flags_type;
vlan = !!(rxcmp1->flags2 &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
t_ipcs = !!(rxcmp1->flags2 &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
ip6 = !!(rxcmp1->flags2 &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
flags_type = rxcmp->flags_type &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
if (!t_ipcs && !ip6)
l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
else if (!t_ipcs && ip6)
l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
else if (t_ipcs && !ip6)
l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
else
l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
switch (flags_type) {
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
if (!t_ipcs)
pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
else
pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
break;
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
if (!t_ipcs)
pkt_type |= l3 | RTE_PTYPE_L4_TCP;
else
pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
break;
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
if (!t_ipcs)
pkt_type |= l3 | RTE_PTYPE_L4_UDP;
else
pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
break;
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
pkt_type |= l3;
break;
}
return pkt_type;
}
#ifdef RTE_LIBRTE_IEEE1588
static void
bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl)
{
uint64_t systime_cycles = 0;
if (!BNXT_CHIP_THOR(bp))
return;
/* On Thor, Rx timestamps are provided directly in the
* Rx completion records to the driver. Only 32 bits of
* the timestamp is present in the completion. Driver needs
* to read the current 48 bit free running timer using the
* HWRM_PORT_TS_QUERY command and combine the upper 16 bits
* from the HWRM response with the lower 32 bits in the
* Rx completion to produce the 48 bit timestamp for the Rx packet
*/
bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
&systime_cycles);
bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
}
#endif
static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
{
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
struct rx_pkt_cmpl *rxcmp;
struct rx_pkt_cmpl_hi *rxcmp1;
uint32_t tmp_raw_cons = *raw_cons;
uint16_t cons, prod, cp_cons =
RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
struct rte_mbuf *mbuf;
int rc = 0;
uint8_t agg_buf = 0;
uint16_t cmp_type;
uint32_t flags2_f = 0;
uint16_t flags_type;
rxcmp = (struct rx_pkt_cmpl *)
&cpr->cp_desc_ring[cp_cons];
cmp_type = CMP_TYPE(rxcmp);
if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
struct bnxt_tpa_info *tpa_info;
tpa_info = &rxr->tpa_info[agg_id];
RTE_ASSERT(tpa_info->agg_count < 16);
tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
rc = -EINVAL; /* Continue w/o new mbuf */
goto next_rx;
}
tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
return -EBUSY;
cpr->valid = FLIP_VALID(cp_cons,
cpr->cp_ring_struct->ring_mask,
cpr->valid);
if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
(struct rx_tpa_start_cmpl_hi *)rxcmp1);
rc = -EINVAL; /* Continue w/o new mbuf */
goto next_rx;
} else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
(struct rx_tpa_end_cmpl *)rxcmp,
(struct rx_tpa_end_cmpl_hi *)rxcmp1);
if (unlikely(!mbuf))
return -EBUSY;
*rx_pkt = mbuf;
goto next_rx;
} else if (cmp_type != 0x11) {
rc = -EINVAL;
goto next_rx;
}
agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
>> RX_PKT_CMPL_AGG_BUFS_SFT;
if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
return -EBUSY;
prod = rxr->rx_prod;
cons = rxcmp->opaque;
mbuf = bnxt_consume_rx_buf(rxr, cons);
if (mbuf == NULL)
return -EBUSY;
rte_prefetch0(mbuf);
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->nb_segs = 1;
mbuf->next = NULL;
mbuf->pkt_len = rxcmp->len;
mbuf->data_len = mbuf->pkt_len;
mbuf->port = rxq->port_id;
mbuf->ol_flags = 0;
flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
mbuf->hash.rss = rxcmp->rss_hash;
mbuf->ol_flags |= PKT_RX_RSS_HASH;
} else {
mbuf->hash.fdir.id = bnxt_get_cfa_code_or_mark_id(rxq->bp,
rxcmp1);
mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
}
#ifdef RTE_LIBRTE_IEEE1588
if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder);
}
#endif
if (agg_buf)
bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
mbuf->vlan_tci = rxcmp1->metadata &
(RX_PKT_CMPL_METADATA_VID_MASK |
RX_PKT_CMPL_METADATA_DE |
RX_PKT_CMPL_METADATA_PRI_MASK);
mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
}
flags2_f = flags2_0xf(rxcmp1);
/* IP Checksum */
if (likely(IS_IP_NONTUNNEL_PKT(flags2_f))) {
if (unlikely(RX_CMP_IP_CS_ERROR(rxcmp1)))
mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
else
mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
} else if (IS_IP_TUNNEL_PKT(flags2_f)) {
if (unlikely(RX_CMP_IP_OUTER_CS_ERROR(rxcmp1) ||
RX_CMP_IP_CS_ERROR(rxcmp1)))
mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
else
mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
}
/* L4 Checksum */
if (likely(IS_L4_NONTUNNEL_PKT(flags2_f))) {
if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
else
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
} else if (IS_L4_TUNNEL_PKT(flags2_f)) {
if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
else
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
} else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
(flags2_f))) {
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
} else {
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
}
} else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
}
mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
#ifdef BNXT_DEBUG
if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
/* Re-install the mbuf back to the rx ring */
bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
rc = -EIO;
goto next_rx;
}
#endif
/*
* TODO: Redesign this....
* If the allocation fails, the packet does not get received.
* Simply returning this will result in slowly falling behind
* on the producer ring buffers.
* Instead, "filling up" the producer just before ringing the
* doorbell could be a better solution since it will let the
* producer ring starve until memory is available again pushing
* the drops into hardware and getting them out of the driver
* allowing recovery to a full producer ring.
*
* This could also help with cache usage by preventing per-packet
* calls in favour of a tight loop with the same function being called
* in it.
*/
prod = RING_NEXT(rxr->rx_ring_struct, prod);
if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
rc = -ENOMEM;
goto rx;
}
rxr->rx_prod = prod;
/*
* All MBUFs are allocated with the same size under DPDK,
* no optimization for rx_copy_thresh
*/
rx:
*rx_pkt = mbuf;
next_rx:
*raw_cons = tmp_raw_cons;
return rc;
}
uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct bnxt_rx_queue *rxq = rx_queue;
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint32_t raw_cons = cpr->cp_raw_cons;
uint32_t cons;
int nb_rx_pkts = 0;
struct rx_pkt_cmpl *rxcmp;
uint16_t prod = rxr->rx_prod;
uint16_t ag_prod = rxr->ag_prod;
int rc = 0;
bool evt = false;
if (unlikely(is_bnxt_in_error(rxq->bp)))
return 0;
/* If Rx Q was stopped return */
if (unlikely(!rxq->rx_started ||
!rte_spinlock_trylock(&rxq->lock)))
return 0;
/* Handle RX burst request */
while (1) {
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
rte_prefetch0(&cpr->cp_desc_ring[cons]);
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
break;
cpr->valid = FLIP_VALID(cons,
cpr->cp_ring_struct->ring_mask,
cpr->valid);
/* TODO: Avoid magic numbers... */
if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
if (likely(!rc) || rc == -ENOMEM)
nb_rx_pkts++;
if (rc == -EBUSY) /* partial completion */
break;
} else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
evt =
bnxt_event_hwrm_resp_handler(rxq->bp,
(struct cmpl_base *)rxcmp);
/* If the async event is Fatal error, return */
if (unlikely(is_bnxt_in_error(rxq->bp)))
goto done;
}
raw_cons = NEXT_RAW_CMP(raw_cons);
if (nb_rx_pkts == nb_pkts || evt)
break;
/* Post some Rx buf early in case of larger burst processing */
if (nb_rx_pkts == BNXT_RX_POST_THRESH)
bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
}
cpr->cp_raw_cons = raw_cons;
if (!nb_rx_pkts && !evt) {
/*
* For PMD, there is no need to keep on pushing to REARM
* the doorbell if there are no new completions
*/
goto done;
}
if (prod != rxr->rx_prod)
bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
/* Ring the AGG ring DB */
if (ag_prod != rxr->ag_prod)
bnxt_db_write(&rxr->ag_db, rxr->ag_prod);
bnxt_db_cq(cpr);
/* Attempt to alloc Rx buf in case of a previous allocation failure. */
if (rc == -ENOMEM) {
int i;
for (i = prod; i <= nb_rx_pkts;
i = RING_NEXT(rxr->rx_ring_struct, i)) {
struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i];
/* Buffer already allocated for this index. */
if (rx_buf->mbuf != NULL)
continue;
/* This slot is empty. Alloc buffer for Rx */
if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
rxr->rx_prod = i;
bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
} else {
PMD_DRV_LOG(ERR, "Alloc mbuf failed\n");
break;
}
}
}
done:
rte_spinlock_unlock(&rxq->lock);
return nb_rx_pkts;
}
/*
* Dummy DPDK callback for RX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*/
uint16_t
bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
struct rte_mbuf **rx_pkts __rte_unused,
uint16_t nb_pkts __rte_unused)
{
return 0;
}
void bnxt_free_rx_rings(struct bnxt *bp)
{
int i;
struct bnxt_rx_queue *rxq;
if (!bp->rx_queues)
return;
for (i = 0; i < (int)bp->rx_nr_rings; i++) {
rxq = bp->rx_queues[i];
if (!rxq)
continue;
bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
rte_free(rxq->rx_ring->rx_ring_struct);
/* Free the Aggregator ring */
bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
rte_free(rxq->rx_ring->ag_ring_struct);
rxq->rx_ring->ag_ring_struct = NULL;
rte_free(rxq->rx_ring);
bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
rte_free(rxq->cp_ring->cp_ring_struct);
rte_free(rxq->cp_ring);
rte_free(rxq);
bp->rx_queues[i] = NULL;
}
}
int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
{
struct bnxt_cp_ring_info *cpr;
struct bnxt_rx_ring_info *rxr;
struct bnxt_ring *ring;
rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
rxr = rte_zmalloc_socket("bnxt_rx_ring",
sizeof(struct bnxt_rx_ring_info),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxr == NULL)
return -ENOMEM;
rxq->rx_ring = rxr;
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
rxr->rx_ring_struct = ring;
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)rxr->rx_desc_ring;
ring->bd_dma = rxr->rx_desc_mapping;
ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
ring->vmem = (void **)&rxr->rx_buf_ring;
cpr = rte_zmalloc_socket("bnxt_rx_ring",
sizeof(struct bnxt_cp_ring_info),
RTE_CACHE_LINE_SIZE, socket_id);
if (cpr == NULL)
return -ENOMEM;
rxq->cp_ring = cpr;
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
cpr->cp_ring_struct = ring;
ring->ring_size = rte_align32pow2(rxr->rx_ring_struct->ring_size *
(2 + AGG_RING_SIZE_FACTOR));
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)cpr->cp_desc_ring;
ring->bd_dma = cpr->cp_desc_mapping;
ring->vmem_size = 0;
ring->vmem = NULL;
/* Allocate Aggregator rings */
ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
sizeof(struct bnxt_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (ring == NULL)
return -ENOMEM;
rxr->ag_ring_struct = ring;
ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
AGG_RING_SIZE_FACTOR);
ring->ring_mask = ring->ring_size - 1;
ring->bd = (void *)rxr->ag_desc_ring;
ring->bd_dma = rxr->ag_desc_mapping;
ring->vmem_size = ring->ring_size * sizeof(struct bnxt_sw_rx_bd);
ring->vmem = (void **)&rxr->ag_buf_ring;
return 0;
}
static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
uint16_t len)
{
uint32_t j;
struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
if (!rx_bd_ring)
return;
for (j = 0; j < ring->ring_size; j++) {
rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
rx_bd_ring[j].len = rte_cpu_to_le_16(len);
rx_bd_ring[j].opaque = j;
}
}
int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
{
struct bnxt_rx_ring_info *rxr;
struct bnxt_ring *ring;
uint32_t prod, type;
unsigned int i;
uint16_t size;
size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
rxr = rxq->rx_ring;
ring = rxr->rx_ring_struct;
bnxt_init_rxbds(ring, type, size);
prod = rxr->rx_prod;
for (i = 0; i < ring->ring_size; i++) {
if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
PMD_DRV_LOG(WARNING,
"init'ed rx ring %d with %d/%d mbufs only\n",
rxq->queue_id, i, ring->ring_size);
break;
}
rxr->rx_prod = prod;
prod = RING_NEXT(rxr->rx_ring_struct, prod);
}
ring = rxr->ag_ring_struct;
type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
bnxt_init_rxbds(ring, type, size);
prod = rxr->ag_prod;
for (i = 0; i < ring->ring_size; i++) {
if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
PMD_DRV_LOG(WARNING,
"init'ed AG ring %d with %d/%d mbufs only\n",
rxq->queue_id, i, ring->ring_size);
break;
}
rxr->ag_prod = prod;
prod = RING_NEXT(rxr->ag_ring_struct, prod);
}
PMD_DRV_LOG(DEBUG, "AGG Done!\n");
if (rxr->tpa_info) {
unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
for (i = 0; i < max_aggs; i++) {
rxr->tpa_info[i].mbuf =
__bnxt_alloc_rx_data(rxq->mb_pool);
if (!rxr->tpa_info[i].mbuf) {
rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
return -ENOMEM;
}
}
}
PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
return 0;
}
uint32_t bnxt_get_cfa_code_or_mark_id(struct bnxt *bp,
struct rx_pkt_cmpl_hi *rxcmp1)
{
uint32_t cfa_code = 0;
uint8_t meta_fmt = 0;
uint16_t flags2 = 0;
uint32_t meta = 0;
cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
if (!cfa_code)
return 0;
if (cfa_code && !bp->mark_table[cfa_code])
return cfa_code;
flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
meta = rte_le_to_cpu_32(rxcmp1->metadata);
if (meta) {
meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
/*
* The flags field holds extra bits of info from [6:4]
* which indicate if the flow is in TCAM or EM or EEM
*/
meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
BNXT_CFA_META_FMT_SHFT;
/*
* meta_fmt == 4 => 'b100 => 'b10x => EM.
* meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
* meta_fmt == 6 => 'b110 => 'b11x => EEM
* meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
*/
meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
}
return bp->mark_table[cfa_code];
}