Marvin Liu 8410c369b4 net/virtio: fix indirect desc length
When transmitting indirect descriptors, first desc will store net_hdr
and following descs will be mapped to mbuf segments. Total desc number
will be seg_num plus one. Meaning of variable needed is the number of
used descs in packed ring. This value will always be two for indirect
desc. Now use mbuf segments number for calculating correct desc length.

Fixes: b473061b0e1d ("net/virtio: fix indirect descriptors in packed datapaths")
Cc: stable@dpdk.org

Signed-off-by: Marvin Liu <yong.liu@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
2020-10-16 19:48:19 +02:00

951 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef _VIRTQUEUE_H_
#define _VIRTQUEUE_H_
#include <stdint.h>
#include <rte_atomic.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_net.h>
#include "virtio_pci.h"
#include "virtio_ring.h"
#include "virtio_logs.h"
#include "virtio_rxtx.h"
struct rte_mbuf;
#define DEFAULT_TX_FREE_THRESH 32
#define DEFAULT_RX_FREE_THRESH 32
#define VIRTIO_MBUF_BURST_SZ 64
/*
* Per virtio_ring.h in Linux.
* For virtio_pci on SMP, we don't need to order with respect to MMIO
* accesses through relaxed memory I/O windows, so smp_mb() et al are
* sufficient.
*
* For using virtio to talk to real devices (eg. vDPA) we do need real
* barriers.
*/
static inline void
virtio_mb(uint8_t weak_barriers)
{
if (weak_barriers)
rte_smp_mb();
else
rte_mb();
}
static inline void
virtio_rmb(uint8_t weak_barriers)
{
if (weak_barriers)
rte_smp_rmb();
else
rte_io_rmb();
}
static inline void
virtio_wmb(uint8_t weak_barriers)
{
if (weak_barriers)
rte_smp_wmb();
else
rte_io_wmb();
}
static inline uint16_t
virtqueue_fetch_flags_packed(struct vring_packed_desc *dp,
uint8_t weak_barriers)
{
uint16_t flags;
if (weak_barriers) {
/* x86 prefers to using rte_smp_rmb over __atomic_load_n as it reports
* a better perf(~1.5%), which comes from the saved branch by the compiler.
* The if and else branch are identical with the smp and io barriers both
* defined as compiler barriers on x86.
*/
#ifdef RTE_ARCH_X86_64
flags = dp->flags;
rte_smp_rmb();
#else
flags = __atomic_load_n(&dp->flags, __ATOMIC_ACQUIRE);
#endif
} else {
flags = dp->flags;
rte_io_rmb();
}
return flags;
}
static inline void
virtqueue_store_flags_packed(struct vring_packed_desc *dp,
uint16_t flags, uint8_t weak_barriers)
{
if (weak_barriers) {
/* x86 prefers to using rte_smp_wmb over __atomic_store_n as it reports
* a better perf(~1.5%), which comes from the saved branch by the compiler.
* The if and else branch are identical with the smp and io barriers both
* defined as compiler barriers on x86.
*/
#ifdef RTE_ARCH_X86_64
rte_smp_wmb();
dp->flags = flags;
#else
__atomic_store_n(&dp->flags, flags, __ATOMIC_RELEASE);
#endif
} else {
rte_io_wmb();
dp->flags = flags;
}
}
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while(0)
#endif
#define VIRTQUEUE_MAX_NAME_SZ 32
#ifdef RTE_VIRTIO_USER
/**
* Return the physical address (or virtual address in case of
* virtio-user) of mbuf data buffer.
*
* The address is firstly casted to the word size (sizeof(uintptr_t))
* before casting it to uint64_t. This is to make it work with different
* combination of word size (64 bit and 32 bit) and virtio device
* (virtio-pci and virtio-user).
*/
#define VIRTIO_MBUF_ADDR(mb, vq) \
((uint64_t)(*(uintptr_t *)((uintptr_t)(mb) + (vq)->offset)))
#else
#define VIRTIO_MBUF_ADDR(mb, vq) ((mb)->buf_iova)
#endif
/**
* Return the physical address (or virtual address in case of
* virtio-user) of mbuf data buffer, taking care of mbuf data offset
*/
#define VIRTIO_MBUF_DATA_DMA_ADDR(mb, vq) \
(VIRTIO_MBUF_ADDR(mb, vq) + (mb)->data_off)
#define VTNET_SQ_RQ_QUEUE_IDX 0
#define VTNET_SQ_TQ_QUEUE_IDX 1
#define VTNET_SQ_CQ_QUEUE_IDX 2
enum { VTNET_RQ = 0, VTNET_TQ = 1, VTNET_CQ = 2 };
/**
* The maximum virtqueue size is 2^15. Use that value as the end of
* descriptor chain terminator since it will never be a valid index
* in the descriptor table. This is used to verify we are correctly
* handling vq_free_cnt.
*/
#define VQ_RING_DESC_CHAIN_END 32768
/**
* Control the RX mode, ie. promiscuous, allmulti, etc...
* All commands require an "out" sg entry containing a 1 byte
* state value, zero = disable, non-zero = enable. Commands
* 0 and 1 are supported with the VIRTIO_NET_F_CTRL_RX feature.
* Commands 2-5 are added with VIRTIO_NET_F_CTRL_RX_EXTRA.
*/
#define VIRTIO_NET_CTRL_RX 0
#define VIRTIO_NET_CTRL_RX_PROMISC 0
#define VIRTIO_NET_CTRL_RX_ALLMULTI 1
#define VIRTIO_NET_CTRL_RX_ALLUNI 2
#define VIRTIO_NET_CTRL_RX_NOMULTI 3
#define VIRTIO_NET_CTRL_RX_NOUNI 4
#define VIRTIO_NET_CTRL_RX_NOBCAST 5
/**
* Control the MAC
*
* The MAC filter table is managed by the hypervisor, the guest should
* assume the size is infinite. Filtering should be considered
* non-perfect, ie. based on hypervisor resources, the guest may
* received packets from sources not specified in the filter list.
*
* In addition to the class/cmd header, the TABLE_SET command requires
* two out scatterlists. Each contains a 4 byte count of entries followed
* by a concatenated byte stream of the ETH_ALEN MAC addresses. The
* first sg list contains unicast addresses, the second is for multicast.
* This functionality is present if the VIRTIO_NET_F_CTRL_RX feature
* is available.
*
* The ADDR_SET command requests one out scatterlist, it contains a
* 6 bytes MAC address. This functionality is present if the
* VIRTIO_NET_F_CTRL_MAC_ADDR feature is available.
*/
struct virtio_net_ctrl_mac {
uint32_t entries;
uint8_t macs[][RTE_ETHER_ADDR_LEN];
} __rte_packed;
#define VIRTIO_NET_CTRL_MAC 1
#define VIRTIO_NET_CTRL_MAC_TABLE_SET 0
#define VIRTIO_NET_CTRL_MAC_ADDR_SET 1
/**
* Control VLAN filtering
*
* The VLAN filter table is controlled via a simple ADD/DEL interface.
* VLAN IDs not added may be filtered by the hypervisor. Del is the
* opposite of add. Both commands expect an out entry containing a 2
* byte VLAN ID. VLAN filtering is available with the
* VIRTIO_NET_F_CTRL_VLAN feature bit.
*/
#define VIRTIO_NET_CTRL_VLAN 2
#define VIRTIO_NET_CTRL_VLAN_ADD 0
#define VIRTIO_NET_CTRL_VLAN_DEL 1
/*
* Control link announce acknowledgement
*
* The command VIRTIO_NET_CTRL_ANNOUNCE_ACK is used to indicate that
* driver has recevied the notification; device would clear the
* VIRTIO_NET_S_ANNOUNCE bit in the status field after it receives
* this command.
*/
#define VIRTIO_NET_CTRL_ANNOUNCE 3
#define VIRTIO_NET_CTRL_ANNOUNCE_ACK 0
struct virtio_net_ctrl_hdr {
uint8_t class;
uint8_t cmd;
} __rte_packed;
typedef uint8_t virtio_net_ctrl_ack;
#define VIRTIO_NET_OK 0
#define VIRTIO_NET_ERR 1
#define VIRTIO_MAX_CTRL_DATA 2048
struct virtio_pmd_ctrl {
struct virtio_net_ctrl_hdr hdr;
virtio_net_ctrl_ack status;
uint8_t data[VIRTIO_MAX_CTRL_DATA];
};
struct vq_desc_extra {
void *cookie;
uint16_t ndescs;
uint16_t next;
};
struct virtqueue {
struct virtio_hw *hw; /**< virtio_hw structure pointer. */
union {
struct {
/**< vring keeping desc, used and avail */
struct vring ring;
} vq_split;
struct {
/**< vring keeping descs and events */
struct vring_packed ring;
bool used_wrap_counter;
uint16_t cached_flags; /**< cached flags for descs */
uint16_t event_flags_shadow;
} vq_packed;
};
uint16_t vq_used_cons_idx; /**< last consumed descriptor */
uint16_t vq_nentries; /**< vring desc numbers */
uint16_t vq_free_cnt; /**< num of desc available */
uint16_t vq_avail_idx; /**< sync until needed */
uint16_t vq_free_thresh; /**< free threshold */
void *vq_ring_virt_mem; /**< linear address of vring*/
unsigned int vq_ring_size;
union {
struct virtnet_rx rxq;
struct virtnet_tx txq;
struct virtnet_ctl cq;
};
rte_iova_t vq_ring_mem; /**< physical address of vring,
* or virtual address for virtio_user. */
/**
* Head of the free chain in the descriptor table. If
* there are no free descriptors, this will be set to
* VQ_RING_DESC_CHAIN_END.
*/
uint16_t vq_desc_head_idx;
uint16_t vq_desc_tail_idx;
uint16_t vq_queue_index; /**< PCI queue index */
uint16_t offset; /**< relative offset to obtain addr in mbuf */
uint16_t *notify_addr;
struct rte_mbuf **sw_ring; /**< RX software ring. */
struct vq_desc_extra vq_descx[0];
};
/* If multiqueue is provided by host, then we suppport it. */
#define VIRTIO_NET_CTRL_MQ 4
#define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET 0
#define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MIN 1
#define VIRTIO_NET_CTRL_MQ_VQ_PAIRS_MAX 0x8000
/**
* This is the first element of the scatter-gather list. If you don't
* specify GSO or CSUM features, you can simply ignore the header.
*/
struct virtio_net_hdr {
#define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /**< Use csum_start,csum_offset*/
#define VIRTIO_NET_HDR_F_DATA_VALID 2 /**< Checksum is valid */
uint8_t flags;
#define VIRTIO_NET_HDR_GSO_NONE 0 /**< Not a GSO frame */
#define VIRTIO_NET_HDR_GSO_TCPV4 1 /**< GSO frame, IPv4 TCP (TSO) */
#define VIRTIO_NET_HDR_GSO_UDP 3 /**< GSO frame, IPv4 UDP (UFO) */
#define VIRTIO_NET_HDR_GSO_TCPV6 4 /**< GSO frame, IPv6 TCP */
#define VIRTIO_NET_HDR_GSO_ECN 0x80 /**< TCP has ECN set */
uint8_t gso_type;
uint16_t hdr_len; /**< Ethernet + IP + tcp/udp hdrs */
uint16_t gso_size; /**< Bytes to append to hdr_len per frame */
uint16_t csum_start; /**< Position to start checksumming from */
uint16_t csum_offset; /**< Offset after that to place checksum */
};
/**
* This is the version of the header to use when the MRG_RXBUF
* feature has been negotiated.
*/
struct virtio_net_hdr_mrg_rxbuf {
struct virtio_net_hdr hdr;
uint16_t num_buffers; /**< Number of merged rx buffers */
};
/* Region reserved to allow for transmit header and indirect ring */
#define VIRTIO_MAX_TX_INDIRECT 8
struct virtio_tx_region {
struct virtio_net_hdr_mrg_rxbuf tx_hdr;
union {
struct vring_desc tx_indir[VIRTIO_MAX_TX_INDIRECT];
struct vring_packed_desc
tx_packed_indir[VIRTIO_MAX_TX_INDIRECT];
} __rte_aligned(16);
};
static inline int
desc_is_used(struct vring_packed_desc *desc, struct virtqueue *vq)
{
uint16_t used, avail, flags;
flags = virtqueue_fetch_flags_packed(desc, vq->hw->weak_barriers);
used = !!(flags & VRING_PACKED_DESC_F_USED);
avail = !!(flags & VRING_PACKED_DESC_F_AVAIL);
return avail == used && used == vq->vq_packed.used_wrap_counter;
}
static inline void
vring_desc_init_packed(struct virtqueue *vq, int n)
{
int i;
for (i = 0; i < n - 1; i++) {
vq->vq_packed.ring.desc[i].id = i;
vq->vq_descx[i].next = i + 1;
}
vq->vq_packed.ring.desc[i].id = i;
vq->vq_descx[i].next = VQ_RING_DESC_CHAIN_END;
}
/* Chain all the descriptors in the ring with an END */
static inline void
vring_desc_init_split(struct vring_desc *dp, uint16_t n)
{
uint16_t i;
for (i = 0; i < n - 1; i++)
dp[i].next = (uint16_t)(i + 1);
dp[i].next = VQ_RING_DESC_CHAIN_END;
}
static inline void
vring_desc_init_indirect_packed(struct vring_packed_desc *dp, int n)
{
int i;
for (i = 0; i < n; i++) {
dp[i].id = (uint16_t)i;
dp[i].flags = VRING_DESC_F_WRITE;
}
}
/**
* Tell the backend not to interrupt us. Implementation for packed virtqueues.
*/
static inline void
virtqueue_disable_intr_packed(struct virtqueue *vq)
{
if (vq->vq_packed.event_flags_shadow != RING_EVENT_FLAGS_DISABLE) {
vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_DISABLE;
vq->vq_packed.ring.driver->desc_event_flags =
vq->vq_packed.event_flags_shadow;
}
}
/**
* Tell the backend not to interrupt us. Implementation for split virtqueues.
*/
static inline void
virtqueue_disable_intr_split(struct virtqueue *vq)
{
vq->vq_split.ring.avail->flags |= VRING_AVAIL_F_NO_INTERRUPT;
}
/**
* Tell the backend not to interrupt us.
*/
static inline void
virtqueue_disable_intr(struct virtqueue *vq)
{
if (vtpci_packed_queue(vq->hw))
virtqueue_disable_intr_packed(vq);
else
virtqueue_disable_intr_split(vq);
}
/**
* Tell the backend to interrupt. Implementation for packed virtqueues.
*/
static inline void
virtqueue_enable_intr_packed(struct virtqueue *vq)
{
if (vq->vq_packed.event_flags_shadow == RING_EVENT_FLAGS_DISABLE) {
vq->vq_packed.event_flags_shadow = RING_EVENT_FLAGS_ENABLE;
vq->vq_packed.ring.driver->desc_event_flags =
vq->vq_packed.event_flags_shadow;
}
}
/**
* Tell the backend to interrupt. Implementation for split virtqueues.
*/
static inline void
virtqueue_enable_intr_split(struct virtqueue *vq)
{
vq->vq_split.ring.avail->flags &= (~VRING_AVAIL_F_NO_INTERRUPT);
}
/**
* Tell the backend to interrupt us.
*/
static inline void
virtqueue_enable_intr(struct virtqueue *vq)
{
if (vtpci_packed_queue(vq->hw))
virtqueue_enable_intr_packed(vq);
else
virtqueue_enable_intr_split(vq);
}
/**
* Dump virtqueue internal structures, for debug purpose only.
*/
void virtqueue_dump(struct virtqueue *vq);
/**
* Get all mbufs to be freed.
*/
struct rte_mbuf *virtqueue_detach_unused(struct virtqueue *vq);
/* Flush the elements in the used ring. */
void virtqueue_rxvq_flush(struct virtqueue *vq);
int virtqueue_rxvq_reset_packed(struct virtqueue *vq);
int virtqueue_txvq_reset_packed(struct virtqueue *vq);
static inline int
virtqueue_full(const struct virtqueue *vq)
{
return vq->vq_free_cnt == 0;
}
static inline int
virtio_get_queue_type(struct virtio_hw *hw, uint16_t vtpci_queue_idx)
{
if (vtpci_queue_idx == hw->max_queue_pairs * 2)
return VTNET_CQ;
else if (vtpci_queue_idx % 2 == 0)
return VTNET_RQ;
else
return VTNET_TQ;
}
/* virtqueue_nused has load-acquire or rte_io_rmb insed */
static inline uint16_t
virtqueue_nused(const struct virtqueue *vq)
{
uint16_t idx;
if (vq->hw->weak_barriers) {
/**
* x86 prefers to using rte_smp_rmb over __atomic_load_n as it
* reports a slightly better perf, which comes from the saved
* branch by the compiler.
* The if and else branches are identical with the smp and io
* barriers both defined as compiler barriers on x86.
*/
#ifdef RTE_ARCH_X86_64
idx = vq->vq_split.ring.used->idx;
rte_smp_rmb();
#else
idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx,
__ATOMIC_ACQUIRE);
#endif
} else {
idx = vq->vq_split.ring.used->idx;
rte_io_rmb();
}
return idx - vq->vq_used_cons_idx;
}
void vq_ring_free_chain(struct virtqueue *vq, uint16_t desc_idx);
void vq_ring_free_chain_packed(struct virtqueue *vq, uint16_t used_idx);
void vq_ring_free_inorder(struct virtqueue *vq, uint16_t desc_idx,
uint16_t num);
static inline void
vq_update_avail_idx(struct virtqueue *vq)
{
if (vq->hw->weak_barriers) {
/* x86 prefers to using rte_smp_wmb over __atomic_store_n as
* it reports a slightly better perf, which comes from the
* saved branch by the compiler.
* The if and else branches are identical with the smp and
* io barriers both defined as compiler barriers on x86.
*/
#ifdef RTE_ARCH_X86_64
rte_smp_wmb();
vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
#else
__atomic_store_n(&vq->vq_split.ring.avail->idx,
vq->vq_avail_idx, __ATOMIC_RELEASE);
#endif
} else {
rte_io_wmb();
vq->vq_split.ring.avail->idx = vq->vq_avail_idx;
}
}
static inline void
vq_update_avail_ring(struct virtqueue *vq, uint16_t desc_idx)
{
uint16_t avail_idx;
/*
* Place the head of the descriptor chain into the next slot and make
* it usable to the host. The chain is made available now rather than
* deferring to virtqueue_notify() in the hopes that if the host is
* currently running on another CPU, we can keep it processing the new
* descriptor.
*/
avail_idx = (uint16_t)(vq->vq_avail_idx & (vq->vq_nentries - 1));
if (unlikely(vq->vq_split.ring.avail->ring[avail_idx] != desc_idx))
vq->vq_split.ring.avail->ring[avail_idx] = desc_idx;
vq->vq_avail_idx++;
}
static inline int
virtqueue_kick_prepare(struct virtqueue *vq)
{
/*
* Ensure updated avail->idx is visible to vhost before reading
* the used->flags.
*/
virtio_mb(vq->hw->weak_barriers);
return !(vq->vq_split.ring.used->flags & VRING_USED_F_NO_NOTIFY);
}
static inline int
virtqueue_kick_prepare_packed(struct virtqueue *vq)
{
uint16_t flags;
/*
* Ensure updated data is visible to vhost before reading the flags.
*/
virtio_mb(vq->hw->weak_barriers);
flags = vq->vq_packed.ring.device->desc_event_flags;
return flags != RING_EVENT_FLAGS_DISABLE;
}
/*
* virtqueue_kick_prepare*() or the virtio_wmb() should be called
* before this function to be sure that all the data is visible to vhost.
*/
static inline void
virtqueue_notify(struct virtqueue *vq)
{
VTPCI_OPS(vq->hw)->notify_queue(vq->hw, vq);
}
#ifdef RTE_LIBRTE_VIRTIO_DEBUG_DUMP
#define VIRTQUEUE_DUMP(vq) do { \
uint16_t used_idx, nused; \
used_idx = __atomic_load_n(&(vq)->vq_split.ring.used->idx, \
__ATOMIC_RELAXED); \
nused = (uint16_t)(used_idx - (vq)->vq_used_cons_idx); \
if (vtpci_packed_queue((vq)->hw)) { \
PMD_INIT_LOG(DEBUG, \
"VQ: - size=%d; free=%d; used_cons_idx=%d; avail_idx=%d;" \
" cached_flags=0x%x; used_wrap_counter=%d", \
(vq)->vq_nentries, (vq)->vq_free_cnt, (vq)->vq_used_cons_idx, \
(vq)->vq_avail_idx, (vq)->vq_packed.cached_flags, \
(vq)->vq_packed.used_wrap_counter); \
break; \
} \
PMD_INIT_LOG(DEBUG, \
"VQ: - size=%d; free=%d; used=%d; desc_head_idx=%d;" \
" avail.idx=%d; used_cons_idx=%d; used.idx=%d;" \
" avail.flags=0x%x; used.flags=0x%x", \
(vq)->vq_nentries, (vq)->vq_free_cnt, nused, (vq)->vq_desc_head_idx, \
(vq)->vq_split.ring.avail->idx, (vq)->vq_used_cons_idx, \
__atomic_load_n(&(vq)->vq_split.ring.used->idx, __ATOMIC_RELAXED), \
(vq)->vq_split.ring.avail->flags, (vq)->vq_split.ring.used->flags); \
} while (0)
#else
#define VIRTQUEUE_DUMP(vq) do { } while (0)
#endif
/* avoid write operation when necessary, to lessen cache issues */
#define ASSIGN_UNLESS_EQUAL(var, val) do { \
typeof(var) *const var_ = &(var); \
typeof(val) const val_ = (val); \
if (*var_ != val_) \
*var_ = val_; \
} while (0)
#define virtqueue_clear_net_hdr(hdr) do { \
typeof(hdr) hdr_ = (hdr); \
ASSIGN_UNLESS_EQUAL((hdr_)->csum_start, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->csum_offset, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->flags, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->gso_type, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->gso_size, 0); \
ASSIGN_UNLESS_EQUAL((hdr_)->hdr_len, 0); \
} while (0)
static inline void
virtqueue_xmit_offload(struct virtio_net_hdr *hdr,
struct rte_mbuf *cookie,
bool offload)
{
if (offload) {
if (cookie->ol_flags & PKT_TX_TCP_SEG)
cookie->ol_flags |= PKT_TX_TCP_CKSUM;
switch (cookie->ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_UDP_CKSUM:
hdr->csum_start = cookie->l2_len + cookie->l3_len;
hdr->csum_offset = offsetof(struct rte_udp_hdr,
dgram_cksum);
hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
break;
case PKT_TX_TCP_CKSUM:
hdr->csum_start = cookie->l2_len + cookie->l3_len;
hdr->csum_offset = offsetof(struct rte_tcp_hdr, cksum);
hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
break;
default:
ASSIGN_UNLESS_EQUAL(hdr->csum_start, 0);
ASSIGN_UNLESS_EQUAL(hdr->csum_offset, 0);
ASSIGN_UNLESS_EQUAL(hdr->flags, 0);
break;
}
/* TCP Segmentation Offload */
if (cookie->ol_flags & PKT_TX_TCP_SEG) {
hdr->gso_type = (cookie->ol_flags & PKT_TX_IPV6) ?
VIRTIO_NET_HDR_GSO_TCPV6 :
VIRTIO_NET_HDR_GSO_TCPV4;
hdr->gso_size = cookie->tso_segsz;
hdr->hdr_len =
cookie->l2_len +
cookie->l3_len +
cookie->l4_len;
} else {
ASSIGN_UNLESS_EQUAL(hdr->gso_type, 0);
ASSIGN_UNLESS_EQUAL(hdr->gso_size, 0);
ASSIGN_UNLESS_EQUAL(hdr->hdr_len, 0);
}
}
}
static inline void
virtqueue_enqueue_xmit_packed(struct virtnet_tx *txvq, struct rte_mbuf *cookie,
uint16_t needed, int use_indirect, int can_push,
int in_order)
{
struct virtio_tx_region *txr = txvq->virtio_net_hdr_mz->addr;
struct vq_desc_extra *dxp;
struct virtqueue *vq = txvq->vq;
struct vring_packed_desc *start_dp, *head_dp;
uint16_t idx, id, head_idx, head_flags;
int16_t head_size = vq->hw->vtnet_hdr_size;
struct virtio_net_hdr *hdr;
uint16_t prev;
bool prepend_header = false;
uint16_t seg_num = cookie->nb_segs;
id = in_order ? vq->vq_avail_idx : vq->vq_desc_head_idx;
dxp = &vq->vq_descx[id];
dxp->ndescs = needed;
dxp->cookie = cookie;
head_idx = vq->vq_avail_idx;
idx = head_idx;
prev = head_idx;
start_dp = vq->vq_packed.ring.desc;
head_dp = &vq->vq_packed.ring.desc[idx];
head_flags = cookie->next ? VRING_DESC_F_NEXT : 0;
head_flags |= vq->vq_packed.cached_flags;
if (can_push) {
/* prepend cannot fail, checked by caller */
hdr = rte_pktmbuf_mtod_offset(cookie, struct virtio_net_hdr *,
-head_size);
prepend_header = true;
/* if offload disabled, it is not zeroed below, do it now */
if (!vq->hw->has_tx_offload)
virtqueue_clear_net_hdr(hdr);
} else if (use_indirect) {
/* setup tx ring slot to point to indirect
* descriptor list stored in reserved region.
*
* the first slot in indirect ring is already preset
* to point to the header in reserved region
*/
start_dp[idx].addr = txvq->virtio_net_hdr_mem +
RTE_PTR_DIFF(&txr[idx].tx_packed_indir, txr);
start_dp[idx].len = (seg_num + 1) *
sizeof(struct vring_packed_desc);
/* reset flags for indirect desc */
head_flags = VRING_DESC_F_INDIRECT;
head_flags |= vq->vq_packed.cached_flags;
hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
/* loop below will fill in rest of the indirect elements */
start_dp = txr[idx].tx_packed_indir;
idx = 1;
} else {
/* setup first tx ring slot to point to header
* stored in reserved region.
*/
start_dp[idx].addr = txvq->virtio_net_hdr_mem +
RTE_PTR_DIFF(&txr[idx].tx_hdr, txr);
start_dp[idx].len = vq->hw->vtnet_hdr_size;
hdr = (struct virtio_net_hdr *)&txr[idx].tx_hdr;
idx++;
if (idx >= vq->vq_nentries) {
idx -= vq->vq_nentries;
vq->vq_packed.cached_flags ^=
VRING_PACKED_DESC_F_AVAIL_USED;
}
}
virtqueue_xmit_offload(hdr, cookie, vq->hw->has_tx_offload);
do {
uint16_t flags;
start_dp[idx].addr = VIRTIO_MBUF_DATA_DMA_ADDR(cookie, vq);
start_dp[idx].len = cookie->data_len;
if (prepend_header) {
start_dp[idx].addr -= head_size;
start_dp[idx].len += head_size;
prepend_header = false;
}
if (likely(idx != head_idx)) {
flags = cookie->next ? VRING_DESC_F_NEXT : 0;
flags |= vq->vq_packed.cached_flags;
start_dp[idx].flags = flags;
}
prev = idx;
idx++;
if (idx >= vq->vq_nentries) {
idx -= vq->vq_nentries;
vq->vq_packed.cached_flags ^=
VRING_PACKED_DESC_F_AVAIL_USED;
}
} while ((cookie = cookie->next) != NULL);
start_dp[prev].id = id;
if (use_indirect) {
idx = head_idx;
if (++idx >= vq->vq_nentries) {
idx -= vq->vq_nentries;
vq->vq_packed.cached_flags ^=
VRING_PACKED_DESC_F_AVAIL_USED;
}
}
vq->vq_free_cnt = (uint16_t)(vq->vq_free_cnt - needed);
vq->vq_avail_idx = idx;
if (!in_order) {
vq->vq_desc_head_idx = dxp->next;
if (vq->vq_desc_head_idx == VQ_RING_DESC_CHAIN_END)
vq->vq_desc_tail_idx = VQ_RING_DESC_CHAIN_END;
}
virtqueue_store_flags_packed(head_dp, head_flags,
vq->hw->weak_barriers);
}
static void
vq_ring_free_id_packed(struct virtqueue *vq, uint16_t id)
{
struct vq_desc_extra *dxp;
dxp = &vq->vq_descx[id];
vq->vq_free_cnt += dxp->ndescs;
if (vq->vq_desc_tail_idx == VQ_RING_DESC_CHAIN_END)
vq->vq_desc_head_idx = id;
else
vq->vq_descx[vq->vq_desc_tail_idx].next = id;
vq->vq_desc_tail_idx = id;
dxp->next = VQ_RING_DESC_CHAIN_END;
}
static void
virtio_xmit_cleanup_inorder_packed(struct virtqueue *vq, int num)
{
uint16_t used_idx, id, curr_id, free_cnt = 0;
uint16_t size = vq->vq_nentries;
struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
struct vq_desc_extra *dxp;
used_idx = vq->vq_used_cons_idx;
/* desc_is_used has a load-acquire or rte_io_rmb inside
* and wait for used desc in virtqueue.
*/
while (num > 0 && desc_is_used(&desc[used_idx], vq)) {
id = desc[used_idx].id;
do {
curr_id = used_idx;
dxp = &vq->vq_descx[used_idx];
used_idx += dxp->ndescs;
free_cnt += dxp->ndescs;
num -= dxp->ndescs;
if (used_idx >= size) {
used_idx -= size;
vq->vq_packed.used_wrap_counter ^= 1;
}
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
} while (curr_id != id);
}
vq->vq_used_cons_idx = used_idx;
vq->vq_free_cnt += free_cnt;
}
static void
virtio_xmit_cleanup_normal_packed(struct virtqueue *vq, int num)
{
uint16_t used_idx, id;
uint16_t size = vq->vq_nentries;
struct vring_packed_desc *desc = vq->vq_packed.ring.desc;
struct vq_desc_extra *dxp;
used_idx = vq->vq_used_cons_idx;
/* desc_is_used has a load-acquire or rte_io_rmb inside
* and wait for used desc in virtqueue.
*/
while (num-- && desc_is_used(&desc[used_idx], vq)) {
id = desc[used_idx].id;
dxp = &vq->vq_descx[id];
vq->vq_used_cons_idx += dxp->ndescs;
if (vq->vq_used_cons_idx >= size) {
vq->vq_used_cons_idx -= size;
vq->vq_packed.used_wrap_counter ^= 1;
}
vq_ring_free_id_packed(vq, id);
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
used_idx = vq->vq_used_cons_idx;
}
}
/* Cleanup from completed transmits. */
static inline void
virtio_xmit_cleanup_packed(struct virtqueue *vq, int num, int in_order)
{
if (in_order)
virtio_xmit_cleanup_inorder_packed(vq, num);
else
virtio_xmit_cleanup_normal_packed(vq, num);
}
static inline void
virtio_xmit_cleanup(struct virtqueue *vq, uint16_t num)
{
uint16_t i, used_idx, desc_idx;
for (i = 0; i < num; i++) {
struct vring_used_elem *uep;
struct vq_desc_extra *dxp;
used_idx = (uint16_t)(vq->vq_used_cons_idx &
(vq->vq_nentries - 1));
uep = &vq->vq_split.ring.used->ring[used_idx];
desc_idx = (uint16_t)uep->id;
dxp = &vq->vq_descx[desc_idx];
vq->vq_used_cons_idx++;
vq_ring_free_chain(vq, desc_idx);
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
}
}
/* Cleanup from completed inorder transmits. */
static __rte_always_inline void
virtio_xmit_cleanup_inorder(struct virtqueue *vq, uint16_t num)
{
uint16_t i, idx = vq->vq_used_cons_idx;
int16_t free_cnt = 0;
struct vq_desc_extra *dxp = NULL;
if (unlikely(num == 0))
return;
for (i = 0; i < num; i++) {
dxp = &vq->vq_descx[idx++ & (vq->vq_nentries - 1)];
free_cnt += dxp->ndescs;
if (dxp->cookie != NULL) {
rte_pktmbuf_free(dxp->cookie);
dxp->cookie = NULL;
}
}
vq->vq_free_cnt += free_cnt;
vq->vq_used_cons_idx = idx;
}
#endif /* _VIRTQUEUE_H_ */