numam-dpdk/drivers/net/igc/base/igc_nvm.c
Xiaoyun Li aee2733fe3 net/igc/base: update copyright
Clarify Intel copyright and update the date to 2020.

Fixes: 8cb7c57d9b ("net/igc: support device initialization")
Cc: stable@dpdk.org

Signed-off-by: Xiaoyun Li <xiaoyun.li@intel.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2020-05-18 20:35:57 +02:00

1325 lines
33 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2020 Intel Corporation
*/
#include "igc_api.h"
static void igc_reload_nvm_generic(struct igc_hw *hw);
/**
* igc_init_nvm_ops_generic - Initialize NVM function pointers
* @hw: pointer to the HW structure
*
* Setups up the function pointers to no-op functions
**/
void igc_init_nvm_ops_generic(struct igc_hw *hw)
{
struct igc_nvm_info *nvm = &hw->nvm;
DEBUGFUNC("igc_init_nvm_ops_generic");
/* Initialize function pointers */
nvm->ops.init_params = igc_null_ops_generic;
nvm->ops.acquire = igc_null_ops_generic;
nvm->ops.read = igc_null_read_nvm;
nvm->ops.release = igc_null_nvm_generic;
nvm->ops.reload = igc_reload_nvm_generic;
nvm->ops.update = igc_null_ops_generic;
nvm->ops.valid_led_default = igc_null_led_default;
nvm->ops.validate = igc_null_ops_generic;
nvm->ops.write = igc_null_write_nvm;
}
/**
* igc_null_nvm_read - No-op function, return 0
* @hw: pointer to the HW structure
* @a: dummy variable
* @b: dummy variable
* @c: dummy variable
**/
s32 igc_null_read_nvm(struct igc_hw IGC_UNUSEDARG * hw,
u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
u16 IGC_UNUSEDARG * c)
{
DEBUGFUNC("igc_null_read_nvm");
UNREFERENCED_4PARAMETER(hw, a, b, c);
return IGC_SUCCESS;
}
/**
* igc_null_nvm_generic - No-op function, return void
* @hw: pointer to the HW structure
**/
void igc_null_nvm_generic(struct igc_hw IGC_UNUSEDARG * hw)
{
DEBUGFUNC("igc_null_nvm_generic");
UNREFERENCED_1PARAMETER(hw);
}
/**
* igc_null_led_default - No-op function, return 0
* @hw: pointer to the HW structure
* @data: dummy variable
**/
s32 igc_null_led_default(struct igc_hw IGC_UNUSEDARG * hw,
u16 IGC_UNUSEDARG * data)
{
DEBUGFUNC("igc_null_led_default");
UNREFERENCED_2PARAMETER(hw, data);
return IGC_SUCCESS;
}
/**
* igc_null_write_nvm - No-op function, return 0
* @hw: pointer to the HW structure
* @a: dummy variable
* @b: dummy variable
* @c: dummy variable
**/
s32 igc_null_write_nvm(struct igc_hw IGC_UNUSEDARG * hw,
u16 IGC_UNUSEDARG a, u16 IGC_UNUSEDARG b,
u16 IGC_UNUSEDARG * c)
{
DEBUGFUNC("igc_null_write_nvm");
UNREFERENCED_4PARAMETER(hw, a, b, c);
return IGC_SUCCESS;
}
/**
* igc_raise_eec_clk - Raise EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
* Enable/Raise the EEPROM clock bit.
**/
static void igc_raise_eec_clk(struct igc_hw *hw, u32 *eecd)
{
*eecd = *eecd | IGC_EECD_SK;
IGC_WRITE_REG(hw, IGC_EECD, *eecd);
IGC_WRITE_FLUSH(hw);
usec_delay(hw->nvm.delay_usec);
}
/**
* igc_lower_eec_clk - Lower EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
* Clear/Lower the EEPROM clock bit.
**/
static void igc_lower_eec_clk(struct igc_hw *hw, u32 *eecd)
{
*eecd = *eecd & ~IGC_EECD_SK;
IGC_WRITE_REG(hw, IGC_EECD, *eecd);
IGC_WRITE_FLUSH(hw);
usec_delay(hw->nvm.delay_usec);
}
/**
* igc_shift_out_eec_bits - Shift data bits our to the EEPROM
* @hw: pointer to the HW structure
* @data: data to send to the EEPROM
* @count: number of bits to shift out
*
* We need to shift 'count' bits out to the EEPROM. So, the value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
**/
static void igc_shift_out_eec_bits(struct igc_hw *hw, u16 data, u16 count)
{
struct igc_nvm_info *nvm = &hw->nvm;
u32 eecd = IGC_READ_REG(hw, IGC_EECD);
u32 mask;
DEBUGFUNC("igc_shift_out_eec_bits");
mask = 0x01 << (count - 1);
if (nvm->type == igc_nvm_eeprom_microwire)
eecd &= ~IGC_EECD_DO;
else if (nvm->type == igc_nvm_eeprom_spi)
eecd |= IGC_EECD_DO;
do {
eecd &= ~IGC_EECD_DI;
if (data & mask)
eecd |= IGC_EECD_DI;
IGC_WRITE_REG(hw, IGC_EECD, eecd);
IGC_WRITE_FLUSH(hw);
usec_delay(nvm->delay_usec);
igc_raise_eec_clk(hw, &eecd);
igc_lower_eec_clk(hw, &eecd);
mask >>= 1;
} while (mask);
eecd &= ~IGC_EECD_DI;
IGC_WRITE_REG(hw, IGC_EECD, eecd);
}
/**
* igc_shift_in_eec_bits - Shift data bits in from the EEPROM
* @hw: pointer to the HW structure
* @count: number of bits to shift in
*
* In order to read a register from the EEPROM, we need to shift 'count' bits
* in from the EEPROM. Bits are "shifted in" by raising the clock input to
* the EEPROM (setting the SK bit), and then reading the value of the data out
* "DO" bit. During this "shifting in" process the data in "DI" bit should
* always be clear.
**/
static u16 igc_shift_in_eec_bits(struct igc_hw *hw, u16 count)
{
u32 eecd;
u32 i;
u16 data;
DEBUGFUNC("igc_shift_in_eec_bits");
eecd = IGC_READ_REG(hw, IGC_EECD);
eecd &= ~(IGC_EECD_DO | IGC_EECD_DI);
data = 0;
for (i = 0; i < count; i++) {
data <<= 1;
igc_raise_eec_clk(hw, &eecd);
eecd = IGC_READ_REG(hw, IGC_EECD);
eecd &= ~IGC_EECD_DI;
if (eecd & IGC_EECD_DO)
data |= 1;
igc_lower_eec_clk(hw, &eecd);
}
return data;
}
/**
* igc_poll_eerd_eewr_done - Poll for EEPROM read/write completion
* @hw: pointer to the HW structure
* @ee_reg: EEPROM flag for polling
*
* Polls the EEPROM status bit for either read or write completion based
* upon the value of 'ee_reg'.
**/
s32 igc_poll_eerd_eewr_done(struct igc_hw *hw, int ee_reg)
{
u32 attempts = 100000;
u32 i, reg = 0;
DEBUGFUNC("igc_poll_eerd_eewr_done");
for (i = 0; i < attempts; i++) {
if (ee_reg == IGC_NVM_POLL_READ)
reg = IGC_READ_REG(hw, IGC_EERD);
else
reg = IGC_READ_REG(hw, IGC_EEWR);
if (reg & IGC_NVM_RW_REG_DONE)
return IGC_SUCCESS;
usec_delay(5);
}
return -IGC_ERR_NVM;
}
/**
* igc_acquire_nvm_generic - Generic request for access to EEPROM
* @hw: pointer to the HW structure
*
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -IGC_ERR_NVM (-1).
**/
s32 igc_acquire_nvm_generic(struct igc_hw *hw)
{
u32 eecd = IGC_READ_REG(hw, IGC_EECD);
s32 timeout = IGC_NVM_GRANT_ATTEMPTS;
DEBUGFUNC("igc_acquire_nvm_generic");
IGC_WRITE_REG(hw, IGC_EECD, eecd | IGC_EECD_REQ);
eecd = IGC_READ_REG(hw, IGC_EECD);
while (timeout) {
if (eecd & IGC_EECD_GNT)
break;
usec_delay(5);
eecd = IGC_READ_REG(hw, IGC_EECD);
timeout--;
}
if (!timeout) {
eecd &= ~IGC_EECD_REQ;
IGC_WRITE_REG(hw, IGC_EECD, eecd);
DEBUGOUT("Could not acquire NVM grant\n");
return -IGC_ERR_NVM;
}
return IGC_SUCCESS;
}
/**
* igc_standby_nvm - Return EEPROM to standby state
* @hw: pointer to the HW structure
*
* Return the EEPROM to a standby state.
**/
static void igc_standby_nvm(struct igc_hw *hw)
{
struct igc_nvm_info *nvm = &hw->nvm;
u32 eecd = IGC_READ_REG(hw, IGC_EECD);
DEBUGFUNC("igc_standby_nvm");
if (nvm->type == igc_nvm_eeprom_microwire) {
eecd &= ~(IGC_EECD_CS | IGC_EECD_SK);
IGC_WRITE_REG(hw, IGC_EECD, eecd);
IGC_WRITE_FLUSH(hw);
usec_delay(nvm->delay_usec);
igc_raise_eec_clk(hw, &eecd);
/* Select EEPROM */
eecd |= IGC_EECD_CS;
IGC_WRITE_REG(hw, IGC_EECD, eecd);
IGC_WRITE_FLUSH(hw);
usec_delay(nvm->delay_usec);
igc_lower_eec_clk(hw, &eecd);
} else if (nvm->type == igc_nvm_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= IGC_EECD_CS;
IGC_WRITE_REG(hw, IGC_EECD, eecd);
IGC_WRITE_FLUSH(hw);
usec_delay(nvm->delay_usec);
eecd &= ~IGC_EECD_CS;
IGC_WRITE_REG(hw, IGC_EECD, eecd);
IGC_WRITE_FLUSH(hw);
usec_delay(nvm->delay_usec);
}
}
/**
* igc_stop_nvm - Terminate EEPROM command
* @hw: pointer to the HW structure
*
* Terminates the current command by inverting the EEPROM's chip select pin.
**/
void igc_stop_nvm(struct igc_hw *hw)
{
u32 eecd;
DEBUGFUNC("igc_stop_nvm");
eecd = IGC_READ_REG(hw, IGC_EECD);
if (hw->nvm.type == igc_nvm_eeprom_spi) {
/* Pull CS high */
eecd |= IGC_EECD_CS;
igc_lower_eec_clk(hw, &eecd);
} else if (hw->nvm.type == igc_nvm_eeprom_microwire) {
/* CS on Microwire is active-high */
eecd &= ~(IGC_EECD_CS | IGC_EECD_DI);
IGC_WRITE_REG(hw, IGC_EECD, eecd);
igc_raise_eec_clk(hw, &eecd);
igc_lower_eec_clk(hw, &eecd);
}
}
/**
* igc_release_nvm_generic - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
**/
void igc_release_nvm_generic(struct igc_hw *hw)
{
u32 eecd;
DEBUGFUNC("igc_release_nvm_generic");
igc_stop_nvm(hw);
eecd = IGC_READ_REG(hw, IGC_EECD);
eecd &= ~IGC_EECD_REQ;
IGC_WRITE_REG(hw, IGC_EECD, eecd);
}
/**
* igc_ready_nvm_eeprom - Prepares EEPROM for read/write
* @hw: pointer to the HW structure
*
* Setups the EEPROM for reading and writing.
**/
static s32 igc_ready_nvm_eeprom(struct igc_hw *hw)
{
struct igc_nvm_info *nvm = &hw->nvm;
u32 eecd = IGC_READ_REG(hw, IGC_EECD);
u8 spi_stat_reg;
DEBUGFUNC("igc_ready_nvm_eeprom");
if (nvm->type == igc_nvm_eeprom_microwire) {
/* Clear SK and DI */
eecd &= ~(IGC_EECD_DI | IGC_EECD_SK);
IGC_WRITE_REG(hw, IGC_EECD, eecd);
/* Set CS */
eecd |= IGC_EECD_CS;
IGC_WRITE_REG(hw, IGC_EECD, eecd);
} else if (nvm->type == igc_nvm_eeprom_spi) {
u16 timeout = NVM_MAX_RETRY_SPI;
/* Clear SK and CS */
eecd &= ~(IGC_EECD_CS | IGC_EECD_SK);
IGC_WRITE_REG(hw, IGC_EECD, eecd);
IGC_WRITE_FLUSH(hw);
usec_delay(1);
/* Read "Status Register" repeatedly until the LSB is cleared.
* The EEPROM will signal that the command has been completed
* by clearing bit 0 of the internal status register. If it's
* not cleared within 'timeout', then error out.
*/
while (timeout) {
igc_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
hw->nvm.opcode_bits);
spi_stat_reg = (u8)igc_shift_in_eec_bits(hw, 8);
if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
break;
usec_delay(5);
igc_standby_nvm(hw);
timeout--;
}
if (!timeout) {
DEBUGOUT("SPI NVM Status error\n");
return -IGC_ERR_NVM;
}
}
return IGC_SUCCESS;
}
/**
* igc_read_nvm_spi - Read EEPROM's using SPI
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM.
**/
s32 igc_read_nvm_spi(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
{
struct igc_nvm_info *nvm = &hw->nvm;
u32 i = 0;
s32 ret_val;
u16 word_in;
u8 read_opcode = NVM_READ_OPCODE_SPI;
DEBUGFUNC("igc_read_nvm_spi");
/* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
words == 0) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
return -IGC_ERR_NVM;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = igc_ready_nvm_eeprom(hw);
if (ret_val)
goto release;
igc_standby_nvm(hw);
if (nvm->address_bits == 8 && offset >= 128)
read_opcode |= NVM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
igc_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
igc_shift_out_eec_bits(hw, (u16)(offset * 2), nvm->address_bits);
/* Read the data. SPI NVMs increment the address with each byte
* read and will roll over if reading beyond the end. This allows
* us to read the whole NVM from any offset
*/
for (i = 0; i < words; i++) {
word_in = igc_shift_in_eec_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
release:
nvm->ops.release(hw);
return ret_val;
}
/**
* igc_read_nvm_microwire - Reads EEPROM's using microwire
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM.
**/
s32 igc_read_nvm_microwire(struct igc_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct igc_nvm_info *nvm = &hw->nvm;
u32 i = 0;
s32 ret_val;
u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
DEBUGFUNC("igc_read_nvm_microwire");
/* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
words == 0) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
return -IGC_ERR_NVM;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = igc_ready_nvm_eeprom(hw);
if (ret_val)
goto release;
for (i = 0; i < words; i++) {
/* Send the READ command (opcode + addr) */
igc_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
igc_shift_out_eec_bits(hw, (u16)(offset + i),
nvm->address_bits);
/* Read the data. For microwire, each word requires the
* overhead of setup and tear-down.
*/
data[i] = igc_shift_in_eec_bits(hw, 16);
igc_standby_nvm(hw);
}
release:
nvm->ops.release(hw);
return ret_val;
}
/**
* igc_read_nvm_eerd - Reads EEPROM using EERD register
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM using the EERD register.
**/
s32 igc_read_nvm_eerd(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
{
struct igc_nvm_info *nvm = &hw->nvm;
u32 i, eerd = 0;
s32 ret_val = IGC_SUCCESS;
DEBUGFUNC("igc_read_nvm_eerd");
/* A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
words == 0) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
return -IGC_ERR_NVM;
}
for (i = 0; i < words; i++) {
eerd = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) +
IGC_NVM_RW_REG_START;
IGC_WRITE_REG(hw, IGC_EERD, eerd);
ret_val = igc_poll_eerd_eewr_done(hw, IGC_NVM_POLL_READ);
if (ret_val)
break;
data[i] = (IGC_READ_REG(hw, IGC_EERD) >>
IGC_NVM_RW_REG_DATA);
}
if (ret_val)
DEBUGOUT1("NVM read error: %d\n", ret_val);
return ret_val;
}
/**
* igc_write_nvm_spi - Write to EEPROM using SPI
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the EEPROM
*
* Writes data to EEPROM at offset using SPI interface.
*
* If igc_update_nvm_checksum is not called after this function , the
* EEPROM will most likely contain an invalid checksum.
**/
s32 igc_write_nvm_spi(struct igc_hw *hw, u16 offset, u16 words, u16 *data)
{
struct igc_nvm_info *nvm = &hw->nvm;
s32 ret_val = -IGC_ERR_NVM;
u16 widx = 0;
DEBUGFUNC("igc_write_nvm_spi");
/* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
words == 0) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
return -IGC_ERR_NVM;
}
while (widx < words) {
u8 write_opcode = NVM_WRITE_OPCODE_SPI;
ret_val = nvm->ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = igc_ready_nvm_eeprom(hw);
if (ret_val) {
nvm->ops.release(hw);
return ret_val;
}
igc_standby_nvm(hw);
/* Send the WRITE ENABLE command (8 bit opcode) */
igc_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
nvm->opcode_bits);
igc_standby_nvm(hw);
/* Some SPI eeproms use the 8th address bit embedded in the
* opcode
*/
if (nvm->address_bits == 8 && offset >= 128)
write_opcode |= NVM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
igc_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
igc_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
nvm->address_bits);
/* Loop to allow for up to whole page write of eeprom */
while (widx < words) {
u16 word_out = data[widx];
word_out = (word_out >> 8) | (word_out << 8);
igc_shift_out_eec_bits(hw, word_out, 16);
widx++;
if ((((offset + widx) * 2) % nvm->page_size) == 0) {
igc_standby_nvm(hw);
break;
}
}
msec_delay(10);
nvm->ops.release(hw);
}
return ret_val;
}
/**
* igc_write_nvm_microwire - Writes EEPROM using microwire
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the EEPROM
*
* Writes data to EEPROM at offset using microwire interface.
*
* If igc_update_nvm_checksum is not called after this function , the
* EEPROM will most likely contain an invalid checksum.
**/
s32 igc_write_nvm_microwire(struct igc_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct igc_nvm_info *nvm = &hw->nvm;
s32 ret_val;
u32 eecd;
u16 words_written = 0;
u16 widx = 0;
DEBUGFUNC("igc_write_nvm_microwire");
/* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if (offset >= nvm->word_size || words > (nvm->word_size - offset) ||
words == 0) {
DEBUGOUT("nvm parameter(s) out of bounds\n");
return -IGC_ERR_NVM;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = igc_ready_nvm_eeprom(hw);
if (ret_val)
goto release;
igc_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
(u16)(nvm->opcode_bits + 2));
igc_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
igc_standby_nvm(hw);
while (words_written < words) {
igc_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
nvm->opcode_bits);
igc_shift_out_eec_bits(hw, (u16)(offset + words_written),
nvm->address_bits);
igc_shift_out_eec_bits(hw, data[words_written], 16);
igc_standby_nvm(hw);
for (widx = 0; widx < 200; widx++) {
eecd = IGC_READ_REG(hw, IGC_EECD);
if (eecd & IGC_EECD_DO)
break;
usec_delay(50);
}
if (widx == 200) {
DEBUGOUT("NVM Write did not complete\n");
ret_val = -IGC_ERR_NVM;
goto release;
}
igc_standby_nvm(hw);
words_written++;
}
igc_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
(u16)(nvm->opcode_bits + 2));
igc_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
release:
nvm->ops.release(hw);
return ret_val;
}
/**
* igc_read_pba_string_generic - Read device part number
* @hw: pointer to the HW structure
* @pba_num: pointer to device part number
* @pba_num_size: size of part number buffer
*
* Reads the product board assembly (PBA) number from the EEPROM and stores
* the value in pba_num.
**/
s32 igc_read_pba_string_generic(struct igc_hw *hw, u8 *pba_num,
u32 pba_num_size)
{
s32 ret_val;
u16 nvm_data;
u16 pba_ptr;
u16 offset;
u16 length;
DEBUGFUNC("igc_read_pba_string_generic");
if (pba_num == NULL) {
DEBUGOUT("PBA string buffer was null\n");
return -IGC_ERR_INVALID_ARGUMENT;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
/* if nvm_data is not ptr guard the PBA must be in legacy format which
* means pba_ptr is actually our second data word for the PBA number
* and we can decode it into an ascii string
*/
if (nvm_data != NVM_PBA_PTR_GUARD) {
DEBUGOUT("NVM PBA number is not stored as string\n");
/* make sure callers buffer is big enough to store the PBA */
if (pba_num_size < IGC_PBANUM_LENGTH) {
DEBUGOUT("PBA string buffer too small\n");
return IGC_ERR_NO_SPACE;
}
/* extract hex string from data and pba_ptr */
pba_num[0] = (nvm_data >> 12) & 0xF;
pba_num[1] = (nvm_data >> 8) & 0xF;
pba_num[2] = (nvm_data >> 4) & 0xF;
pba_num[3] = nvm_data & 0xF;
pba_num[4] = (pba_ptr >> 12) & 0xF;
pba_num[5] = (pba_ptr >> 8) & 0xF;
pba_num[6] = '-';
pba_num[7] = 0;
pba_num[8] = (pba_ptr >> 4) & 0xF;
pba_num[9] = pba_ptr & 0xF;
/* put a null character on the end of our string */
pba_num[10] = '\0';
/* switch all the data but the '-' to hex char */
for (offset = 0; offset < 10; offset++) {
if (pba_num[offset] < 0xA)
pba_num[offset] += '0';
else if (pba_num[offset] < 0x10)
pba_num[offset] += 'A' - 0xA;
}
return IGC_SUCCESS;
}
ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
if (length == 0xFFFF || length == 0) {
DEBUGOUT("NVM PBA number section invalid length\n");
return -IGC_ERR_NVM_PBA_SECTION;
}
/* check if pba_num buffer is big enough */
if (pba_num_size < (((u32)length * 2) - 1)) {
DEBUGOUT("PBA string buffer too small\n");
return -IGC_ERR_NO_SPACE;
}
/* trim pba length from start of string */
pba_ptr++;
length--;
for (offset = 0; offset < length; offset++) {
ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
pba_num[offset * 2] = (u8)(nvm_data >> 8);
pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
}
pba_num[offset * 2] = '\0';
return IGC_SUCCESS;
}
/**
* igc_read_pba_length_generic - Read device part number length
* @hw: pointer to the HW structure
* @pba_num_size: size of part number buffer
*
* Reads the product board assembly (PBA) number length from the EEPROM and
* stores the value in pba_num_size.
**/
s32 igc_read_pba_length_generic(struct igc_hw *hw, u32 *pba_num_size)
{
s32 ret_val;
u16 nvm_data;
u16 pba_ptr;
u16 length;
DEBUGFUNC("igc_read_pba_length_generic");
if (pba_num_size == NULL) {
DEBUGOUT("PBA buffer size was null\n");
return -IGC_ERR_INVALID_ARGUMENT;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
/* if data is not ptr guard the PBA must be in legacy format */
if (nvm_data != NVM_PBA_PTR_GUARD) {
*pba_num_size = IGC_PBANUM_LENGTH;
return IGC_SUCCESS;
}
ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
if (length == 0xFFFF || length == 0) {
DEBUGOUT("NVM PBA number section invalid length\n");
return -IGC_ERR_NVM_PBA_SECTION;
}
/* Convert from length in u16 values to u8 chars, add 1 for NULL,
* and subtract 2 because length field is included in length.
*/
*pba_num_size = ((u32)length * 2) - 1;
return IGC_SUCCESS;
}
/**
* igc_read_pba_num_generic - Read device part number
* @hw: pointer to the HW structure
* @pba_num: pointer to device part number
*
* Reads the product board assembly (PBA) number from the EEPROM and stores
* the value in pba_num.
**/
s32 igc_read_pba_num_generic(struct igc_hw *hw, u32 *pba_num)
{
s32 ret_val;
u16 nvm_data;
DEBUGFUNC("igc_read_pba_num_generic");
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
} else if (nvm_data == NVM_PBA_PTR_GUARD) {
DEBUGOUT("NVM Not Supported\n");
return -IGC_NOT_IMPLEMENTED;
}
*pba_num = (u32)(nvm_data << 16);
ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
*pba_num |= nvm_data;
return IGC_SUCCESS;
}
/**
* igc_read_pba_raw
* @hw: pointer to the HW structure
* @eeprom_buf: optional pointer to EEPROM image
* @eeprom_buf_size: size of EEPROM image in words
* @max_pba_block_size: PBA block size limit
* @pba: pointer to output PBA structure
*
* Reads PBA from EEPROM image when eeprom_buf is not NULL.
* Reads PBA from physical EEPROM device when eeprom_buf is NULL.
*
**/
s32 igc_read_pba_raw(struct igc_hw *hw, u16 *eeprom_buf,
u32 eeprom_buf_size, u16 max_pba_block_size,
struct igc_pba *pba)
{
s32 ret_val;
u16 pba_block_size;
if (pba == NULL)
return -IGC_ERR_PARAM;
if (eeprom_buf == NULL) {
ret_val = igc_read_nvm(hw, NVM_PBA_OFFSET_0, 2,
&pba->word[0]);
if (ret_val)
return ret_val;
} else {
if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
pba->word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
pba->word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
} else {
return -IGC_ERR_PARAM;
}
}
if (pba->word[0] == NVM_PBA_PTR_GUARD) {
if (pba->pba_block == NULL)
return -IGC_ERR_PARAM;
ret_val = igc_get_pba_block_size(hw, eeprom_buf,
eeprom_buf_size,
&pba_block_size);
if (ret_val)
return ret_val;
if (pba_block_size > max_pba_block_size)
return -IGC_ERR_PARAM;
if (eeprom_buf == NULL) {
ret_val = igc_read_nvm(hw, pba->word[1],
pba_block_size,
pba->pba_block);
if (ret_val)
return ret_val;
} else {
if (eeprom_buf_size > (u32)(pba->word[1] +
pba_block_size)) {
memcpy(pba->pba_block,
&eeprom_buf[pba->word[1]],
pba_block_size * sizeof(u16));
} else {
return -IGC_ERR_PARAM;
}
}
}
return IGC_SUCCESS;
}
/**
* igc_write_pba_raw
* @hw: pointer to the HW structure
* @eeprom_buf: optional pointer to EEPROM image
* @eeprom_buf_size: size of EEPROM image in words
* @pba: pointer to PBA structure
*
* Writes PBA to EEPROM image when eeprom_buf is not NULL.
* Writes PBA to physical EEPROM device when eeprom_buf is NULL.
*
**/
s32 igc_write_pba_raw(struct igc_hw *hw, u16 *eeprom_buf,
u32 eeprom_buf_size, struct igc_pba *pba)
{
s32 ret_val;
if (pba == NULL)
return -IGC_ERR_PARAM;
if (eeprom_buf == NULL) {
ret_val = igc_write_nvm(hw, NVM_PBA_OFFSET_0, 2,
&pba->word[0]);
if (ret_val)
return ret_val;
} else {
if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
eeprom_buf[NVM_PBA_OFFSET_0] = pba->word[0];
eeprom_buf[NVM_PBA_OFFSET_1] = pba->word[1];
} else {
return -IGC_ERR_PARAM;
}
}
if (pba->word[0] == NVM_PBA_PTR_GUARD) {
if (pba->pba_block == NULL)
return -IGC_ERR_PARAM;
if (eeprom_buf == NULL) {
ret_val = igc_write_nvm(hw, pba->word[1],
pba->pba_block[0],
pba->pba_block);
if (ret_val)
return ret_val;
} else {
if (eeprom_buf_size > (u32)(pba->word[1] +
pba->pba_block[0])) {
memcpy(&eeprom_buf[pba->word[1]],
pba->pba_block,
pba->pba_block[0] * sizeof(u16));
} else {
return -IGC_ERR_PARAM;
}
}
}
return IGC_SUCCESS;
}
/**
* igc_get_pba_block_size
* @hw: pointer to the HW structure
* @eeprom_buf: optional pointer to EEPROM image
* @eeprom_buf_size: size of EEPROM image in words
* @pba_data_size: pointer to output variable
*
* Returns the size of the PBA block in words. Function operates on EEPROM
* image if the eeprom_buf pointer is not NULL otherwise it accesses physical
* EEPROM device.
*
**/
s32 igc_get_pba_block_size(struct igc_hw *hw, u16 *eeprom_buf,
u32 eeprom_buf_size, u16 *pba_block_size)
{
s32 ret_val;
u16 pba_word[2];
u16 length;
DEBUGFUNC("igc_get_pba_block_size");
if (eeprom_buf == NULL) {
ret_val = igc_read_nvm(hw, NVM_PBA_OFFSET_0, 2, &pba_word[0]);
if (ret_val)
return ret_val;
} else {
if (eeprom_buf_size > NVM_PBA_OFFSET_1) {
pba_word[0] = eeprom_buf[NVM_PBA_OFFSET_0];
pba_word[1] = eeprom_buf[NVM_PBA_OFFSET_1];
} else {
return -IGC_ERR_PARAM;
}
}
if (pba_word[0] == NVM_PBA_PTR_GUARD) {
if (eeprom_buf == NULL) {
ret_val = igc_read_nvm(hw, pba_word[1] + 0, 1,
&length);
if (ret_val)
return ret_val;
} else {
if (eeprom_buf_size > pba_word[1])
length = eeprom_buf[pba_word[1] + 0];
else
return -IGC_ERR_PARAM;
}
if (length == 0xFFFF || length == 0)
return -IGC_ERR_NVM_PBA_SECTION;
} else {
/* PBA number in legacy format, there is no PBA Block. */
length = 0;
}
if (pba_block_size != NULL)
*pba_block_size = length;
return IGC_SUCCESS;
}
/**
* igc_read_mac_addr_generic - Read device MAC address
* @hw: pointer to the HW structure
*
* Reads the device MAC address from the EEPROM and stores the value.
* Since devices with two ports use the same EEPROM, we increment the
* last bit in the MAC address for the second port.
**/
s32 igc_read_mac_addr_generic(struct igc_hw *hw)
{
u32 rar_high;
u32 rar_low;
u16 i;
rar_high = IGC_READ_REG(hw, IGC_RAH(0));
rar_low = IGC_READ_REG(hw, IGC_RAL(0));
for (i = 0; i < IGC_RAL_MAC_ADDR_LEN; i++)
hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
for (i = 0; i < IGC_RAH_MAC_ADDR_LEN; i++)
hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
for (i = 0; i < ETH_ADDR_LEN; i++)
hw->mac.addr[i] = hw->mac.perm_addr[i];
return IGC_SUCCESS;
}
/**
* igc_validate_nvm_checksum_generic - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
**/
s32 igc_validate_nvm_checksum_generic(struct igc_hw *hw)
{
s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
DEBUGFUNC("igc_validate_nvm_checksum_generic");
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
checksum += nvm_data;
}
if (checksum != (u16)NVM_SUM) {
DEBUGOUT("NVM Checksum Invalid\n");
return -IGC_ERR_NVM;
}
return IGC_SUCCESS;
}
/**
* igc_update_nvm_checksum_generic - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM.
**/
s32 igc_update_nvm_checksum_generic(struct igc_hw *hw)
{
s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
DEBUGFUNC("igc_update_nvm_checksum");
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error while updating checksum.\n");
return ret_val;
}
checksum += nvm_data;
}
checksum = (u16)NVM_SUM - checksum;
ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
if (ret_val)
DEBUGOUT("NVM Write Error while updating checksum.\n");
return ret_val;
}
/**
* igc_reload_nvm_generic - Reloads EEPROM
* @hw: pointer to the HW structure
*
* Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
* extended control register.
**/
static void igc_reload_nvm_generic(struct igc_hw *hw)
{
u32 ctrl_ext;
DEBUGFUNC("igc_reload_nvm_generic");
usec_delay(10);
ctrl_ext = IGC_READ_REG(hw, IGC_CTRL_EXT);
ctrl_ext |= IGC_CTRL_EXT_EE_RST;
IGC_WRITE_REG(hw, IGC_CTRL_EXT, ctrl_ext);
IGC_WRITE_FLUSH(hw);
}
/**
* igc_get_fw_version - Get firmware version information
* @hw: pointer to the HW structure
* @fw_vers: pointer to output version structure
*
* unsupported/not present features return 0 in version structure
**/
void igc_get_fw_version(struct igc_hw *hw, struct igc_fw_version *fw_vers)
{
u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
u8 q, hval, rem, result;
u16 comb_verh, comb_verl, comb_offset;
memset(fw_vers, 0, sizeof(struct igc_fw_version));
/*
* basic eeprom version numbers, bits used vary by part and by tool
* used to create the nvm images. Check which data format we have.
*/
switch (hw->mac.type) {
case igc_i225:
hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
/* find combo image version */
hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
if (comb_offset && comb_offset != NVM_VER_INVALID) {
hw->nvm.ops.read(hw, NVM_COMB_VER_OFF + comb_offset + 1,
1, &comb_verh);
hw->nvm.ops.read(hw, NVM_COMB_VER_OFF + comb_offset,
1, &comb_verl);
/* get Option Rom version if it exists and is valid */
if (comb_verh && comb_verl &&
comb_verh != NVM_VER_INVALID &&
comb_verl != NVM_VER_INVALID) {
fw_vers->or_valid = true;
fw_vers->or_major = comb_verl >>
NVM_COMB_VER_SHFT;
fw_vers->or_build = (comb_verl <<
NVM_COMB_VER_SHFT) |
(comb_verh >>
NVM_COMB_VER_SHFT);
fw_vers->or_patch = comb_verh &
NVM_COMB_VER_MASK;
}
}
break;
default:
hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
return;
}
hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
>> NVM_MAJOR_SHIFT;
/* check for old style version format in newer images*/
if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
} else {
eeprom_verl = (fw_version & NVM_MINOR_MASK)
>> NVM_MINOR_SHIFT;
}
/* Convert minor value to hex before assigning to output struct
* Val to be converted will not be higher than 99, per tool output
*/
q = eeprom_verl / NVM_HEX_CONV;
hval = q * NVM_HEX_TENS;
rem = eeprom_verl % NVM_HEX_CONV;
result = hval + rem;
fw_vers->eep_minor = result;
if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
| eeprom_verl;
} else if ((etrack_test & NVM_ETRACK_VALID) == 0) {
hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) |
eeprom_verl;
}
}