numam-dpdk/drivers/net/cxgbe/base/t4vf_hw.c
Rahul Lakkireddy 9986d380fd net/cxgbe: define symbols only when not available
Define symbols only when they are not available.

This fixes following types of issues reported by Intel C++ compiler
in Windows build.

C:\> cxgbe_compat.h(154): warning #47: incompatible redefinition of
macro "min"
        #define min(a, b) RTE_MIN(a, b)
                ^

C:\> t4_hw.c(338): warning #266: function "bzero" declared implicitly
            bzero(p, 0, size);
            ^

C:\> t4_hw.c(5337): warning #266: function "htonl" declared implicitly
            rvc.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
                             ^

C:\> sge.c(361): error : expected an expression
        struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl);
                                  ^

C:\> sge.c(1350): error : identifier "caddr_t" is undefined
  static void inline_tx_mbuf(const struct sge_txq *q, caddr_t from,
                                                      ^
[...]

Build Environment:
1. Target OS: Microsoft Windows Server 2016
2. Compiler: Intel C++ Compiler from Intel Parallel Studio XE 2019 [1]
3. Development Tools:
   3.1 Microsoft Visual Studio 2017 Professional
   3.2 Windows Software Development Kit (SDK) v10.0.17763
   3.3 Windows Driver Kit (WDK) v10.0.17763

[1] https://software.intel.com/en-us/parallel-studio-xe

Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
2018-12-21 16:22:41 +01:00

881 lines
26 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Chelsio Communications.
* All rights reserved.
*/
#include <rte_ethdev_driver.h>
#include <rte_ether.h>
#include "common.h"
#include "t4_regs.h"
/**
* t4vf_wait_dev_ready - wait till to reads of registers work
*
* Wait for the device to become ready (signified by our "who am I" register
* returning a value other than all 1's). Return an error if it doesn't
* become ready ...
*/
static int t4vf_wait_dev_ready(struct adapter *adapter)
{
const u32 whoami = T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI;
const u32 notready1 = 0xffffffff;
const u32 notready2 = 0xeeeeeeee;
u32 val;
val = t4_read_reg(adapter, whoami);
if (val != notready1 && val != notready2)
return 0;
msleep(500);
val = t4_read_reg(adapter, whoami);
if (val != notready1 && val != notready2)
return 0;
dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n",
val);
return -EIO;
}
/*
* Get the reply to a mailbox command and store it in @rpl in big-endian order.
*/
static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
u32 mbox_addr)
{
for ( ; nflit; nflit--, mbox_addr += 8)
*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
}
/**
* t4vf_wr_mbox_core - send a command to FW through the mailbox
* @adapter: the adapter
* @cmd: the command to write
* @size: command length in bytes
* @rpl: where to optionally store the reply
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Sends the given command to FW through the mailbox and waits for the
* FW to execute the command. If @rpl is not %NULL it is used to store
* the FW's reply to the command. The command and its optional reply
* are of the same length. FW can take up to 500 ms to respond.
* @sleep_ok determines whether we may sleep while awaiting the response.
* If sleeping is allowed we use progressive backoff otherwise we spin.
*
* The return value is 0 on success or a negative errno on failure. A
* failure can happen either because we are not able to execute the
* command or FW executes it but signals an error. In the latter case
* the return value is the error code indicated by FW (negated).
*/
int t4vf_wr_mbox_core(struct adapter *adapter,
const void __attribute__((__may_alias__)) *cmd,
int size, void *rpl, bool sleep_ok)
{
/*
* We delay in small increments at first in an effort to maintain
* responsiveness for simple, fast executing commands but then back
* off to larger delays to a maximum retry delay.
*/
static const int delay[] = {
1, 1, 3, 5, 10, 10, 20, 50, 100
};
u32 mbox_ctl = T4VF_CIM_BASE_ADDR + A_CIM_VF_EXT_MAILBOX_CTRL;
__be64 cmd_rpl[MBOX_LEN / 8];
struct mbox_entry entry;
unsigned int delay_idx;
u32 v, mbox_data;
const __be64 *p;
int i, ret;
int ms;
/* In T6, mailbox size is changed to 128 bytes to avoid
* invalidating the entire prefetch buffer.
*/
if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
mbox_data = T4VF_MBDATA_BASE_ADDR;
else
mbox_data = T6VF_MBDATA_BASE_ADDR;
/*
* Commands must be multiples of 16 bytes in length and may not be
* larger than the size of the Mailbox Data register array.
*/
if ((size % 16) != 0 ||
size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
return -EINVAL;
/*
* Queue ourselves onto the mailbox access list. When our entry is at
* the front of the list, we have rights to access the mailbox. So we
* wait [for a while] till we're at the front [or bail out with an
* EBUSY] ...
*/
t4_os_atomic_add_tail(&entry, &adapter->mbox_list, &adapter->mbox_lock);
delay_idx = 0;
ms = delay[0];
for (i = 0; ; i += ms) {
/*
* If we've waited too long, return a busy indication. This
* really ought to be based on our initial position in the
* mailbox access list but this is a start. We very rarely
* contend on access to the mailbox ...
*/
if (i > (2 * FW_CMD_MAX_TIMEOUT)) {
t4_os_atomic_list_del(&entry, &adapter->mbox_list,
&adapter->mbox_lock);
ret = -EBUSY;
return ret;
}
/*
* If we're at the head, break out and start the mailbox
* protocol.
*/
if (t4_os_list_first_entry(&adapter->mbox_list) == &entry)
break;
/*
* Delay for a bit before checking again ...
*/
if (sleep_ok) {
ms = delay[delay_idx]; /* last element may repeat */
if (delay_idx < ARRAY_SIZE(delay) - 1)
delay_idx++;
msleep(ms);
} else {
rte_delay_ms(ms);
}
}
/*
* Loop trying to get ownership of the mailbox. Return an error
* if we can't gain ownership.
*/
v = G_MBOWNER(t4_read_reg(adapter, mbox_ctl));
for (i = 0; v == X_MBOWNER_NONE && i < 3; i++)
v = G_MBOWNER(t4_read_reg(adapter, mbox_ctl));
if (v != X_MBOWNER_PL) {
t4_os_atomic_list_del(&entry, &adapter->mbox_list,
&adapter->mbox_lock);
ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
return ret;
}
/*
* Write the command array into the Mailbox Data register array and
* transfer ownership of the mailbox to the firmware.
*/
for (i = 0, p = cmd; i < size; i += 8)
t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
t4_read_reg(adapter, mbox_data); /* flush write */
t4_write_reg(adapter, mbox_ctl,
F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
t4_read_reg(adapter, mbox_ctl); /* flush write */
delay_idx = 0;
ms = delay[0];
/*
* Spin waiting for firmware to acknowledge processing our command.
*/
for (i = 0; i < FW_CMD_MAX_TIMEOUT; i++) {
if (sleep_ok) {
ms = delay[delay_idx]; /* last element may repeat */
if (delay_idx < ARRAY_SIZE(delay) - 1)
delay_idx++;
msleep(ms);
} else {
rte_delay_ms(ms);
}
/*
* If we're the owner, see if this is the reply we wanted.
*/
v = t4_read_reg(adapter, mbox_ctl);
if (G_MBOWNER(v) == X_MBOWNER_PL) {
/*
* If the Message Valid bit isn't on, revoke ownership
* of the mailbox and continue waiting for our reply.
*/
if ((v & F_MBMSGVALID) == 0) {
t4_write_reg(adapter, mbox_ctl,
V_MBOWNER(X_MBOWNER_NONE));
continue;
}
/*
* We now have our reply. Extract the command return
* value, copy the reply back to our caller's buffer
* (if specified) and revoke ownership of the mailbox.
* We return the (negated) firmware command return
* code (this depends on FW_SUCCESS == 0). (Again we
* avoid clogging the log with FW_VI_STATS_CMD
* reply results.)
*/
/*
* Retrieve the command reply and release the mailbox.
*/
get_mbox_rpl(adapter, cmd_rpl, size / 8, mbox_data);
t4_write_reg(adapter, mbox_ctl,
V_MBOWNER(X_MBOWNER_NONE));
t4_os_atomic_list_del(&entry, &adapter->mbox_list,
&adapter->mbox_lock);
/* return value in high-order host-endian word */
v = be64_to_cpu(cmd_rpl[0]);
if (rpl) {
/* request bit in high-order BE word */
WARN_ON((be32_to_cpu(*(const u32 *)cmd)
& F_FW_CMD_REQUEST) == 0);
memcpy(rpl, cmd_rpl, size);
}
return -((int)G_FW_CMD_RETVAL(v));
}
}
/*
* We timed out. Return the error ...
*/
dev_err(adapter, "command %#x timed out\n",
*(const u8 *)cmd);
dev_err(adapter, " Control = %#x\n", t4_read_reg(adapter, mbox_ctl));
t4_os_atomic_list_del(&entry, &adapter->mbox_list, &adapter->mbox_lock);
ret = -ETIMEDOUT;
return ret;
}
/**
* t4vf_fw_reset - issue a reset to FW
* @adapter: the adapter
*
* Issues a reset command to FW. For a Physical Function this would
* result in the Firmware resetting all of its state. For a Virtual
* Function this just resets the state associated with the VF.
*/
int t4vf_fw_reset(struct adapter *adapter)
{
struct fw_reset_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RESET_CMD) |
F_FW_CMD_WRITE);
cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(FW_LEN16(cmd)));
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_prep_adapter - prepare SW and HW for operation
* @adapter: the adapter
*
* Initialize adapter SW state for the various HW modules, set initial
* values for some adapter tunables, take PHYs out of reset, and
* initialize the MDIO interface.
*/
int t4vf_prep_adapter(struct adapter *adapter)
{
u32 pl_vf_rev;
int ret, ver;
ret = t4vf_wait_dev_ready(adapter);
if (ret < 0)
return ret;
/*
* Default port and clock for debugging in case we can't reach
* firmware.
*/
adapter->params.nports = 1;
adapter->params.vfres.pmask = 1;
adapter->params.vpd.cclk = 50000;
pl_vf_rev = G_REV(t4_read_reg(adapter, A_PL_VF_REV));
adapter->params.pci.device_id = adapter->pdev->id.device_id;
adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
/*
* WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
* ADAPTER (VERSION << 4 | REVISION)
*/
ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
adapter->params.chip = 0;
switch (ver) {
case CHELSIO_T5:
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5,
pl_vf_rev);
adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
adapter->params.arch.mps_tcam_size =
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
break;
case CHELSIO_T6:
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6,
pl_vf_rev);
adapter->params.arch.sge_fl_db = 0;
adapter->params.arch.mps_tcam_size =
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
break;
default:
dev_err(adapter, "%s: Device %d is not supported\n",
__func__, adapter->params.pci.device_id);
return -EINVAL;
}
return 0;
}
/**
* t4vf_query_params - query FW or device parameters
* @adapter: the adapter
* @nparams: the number of parameters
* @params: the parameter names
* @vals: the parameter values
*
* Reads the values of firmware or device parameters. Up to 7 parameters
* can be queried at once.
*/
int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
const u32 *params, u32 *vals)
{
struct fw_params_cmd cmd, rpl;
struct fw_params_param *p;
unsigned int i;
size_t len16;
int ret;
if (nparams > 7)
return -EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_READ);
len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
param[nparams]), 16);
cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16));
for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
p->mnem = cpu_to_be32(*params++);
ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (ret == 0)
for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
*vals++ = be32_to_cpu(p->val);
return ret;
}
/**
* t4vf_get_vpd_params - retrieve device VPD paremeters
* @adapter: the adapter
*
* Retrives various device Vital Product Data parameters. The parameters
* are stored in @adapter->params.vpd.
*/
int t4vf_get_vpd_params(struct adapter *adapter)
{
struct vpd_params *vpd_params = &adapter->params.vpd;
u32 params[7], vals[7];
int v;
params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
v = t4vf_query_params(adapter, 1, params, vals);
if (v != FW_SUCCESS)
return v;
vpd_params->cclk = vals[0];
dev_debug(adapter, "%s: vpd_params->cclk = %u\n",
__func__, vpd_params->cclk);
return 0;
}
/**
* t4vf_get_dev_params - retrieve device paremeters
* @adapter: the adapter
*
* Retrives fw and tp version.
*/
int t4vf_get_dev_params(struct adapter *adapter)
{
u32 params[7], vals[7];
int v;
params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
v = t4vf_query_params(adapter, 2, params, vals);
if (v != FW_SUCCESS)
return v;
adapter->params.fw_vers = vals[0];
adapter->params.tp_vers = vals[1];
dev_info(adapter, "Firmware version: %u.%u.%u.%u\n",
G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers),
G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers),
G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers),
G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers));
dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n",
G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers),
G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers),
G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers),
G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers));
return 0;
}
/**
* t4vf_set_params - sets FW or device parameters
* @adapter: the adapter
* @nparams: the number of parameters
* @params: the parameter names
* @vals: the parameter values
*
* Sets the values of firmware or device parameters. Up to 7 parameters
* can be specified at once.
*/
int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
const u32 *params, const u32 *vals)
{
struct fw_params_param *p;
struct fw_params_cmd cmd;
unsigned int i;
size_t len16;
if (nparams > 7)
return -EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE);
len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
param[nparams]), 16);
cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16));
for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
p->mnem = cpu_to_be32(*params++);
p->val = cpu_to_be32(*vals++);
}
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_fl_pkt_align - return the fl packet alignment
* @adapter: the adapter
*
* T4 has a single field to specify the packing and padding boundary.
* T5 onwards has separate fields for this and hence the alignment for
* next packet offset is maximum of these two.
*/
int t4vf_fl_pkt_align(struct adapter *adapter, u32 sge_control,
u32 sge_control2)
{
unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
/* T4 uses a single control field to specify both the PCIe Padding and
* Packing Boundary. T5 introduced the ability to specify these
* separately. The actual Ingress Packet Data alignment boundary
* within Packed Buffer Mode is the maximum of these two
* specifications.
*/
if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
ingpad_shift = X_INGPADBOUNDARY_SHIFT;
else
ingpad_shift = X_T6_INGPADBOUNDARY_SHIFT;
ingpadboundary = 1 << (G_INGPADBOUNDARY(sge_control) + ingpad_shift);
fl_align = ingpadboundary;
if (!is_t4(adapter->params.chip)) {
ingpackboundary = G_INGPACKBOUNDARY(sge_control2);
if (ingpackboundary == X_INGPACKBOUNDARY_16B)
ingpackboundary = 16;
else
ingpackboundary = 1 << (ingpackboundary +
X_INGPACKBOUNDARY_SHIFT);
fl_align = max(ingpadboundary, ingpackboundary);
}
return fl_align;
}
unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
{
u32 whoami;
whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI);
return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami));
}
/**
* t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
* @adapter: the adapter
*
* Retrieves global RSS mode and parameters with which we have to live
* and stores them in the @adapter's RSS parameters.
*/
int t4vf_get_rss_glb_config(struct adapter *adapter)
{
struct rss_params *rss = &adapter->params.rss;
struct fw_rss_glb_config_cmd cmd, rpl;
int v;
/*
* Execute an RSS Global Configuration read command to retrieve
* our RSS configuration.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_READ);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (v != FW_SUCCESS)
return v;
/*
* Translate the big-endian RSS Global Configuration into our
* cpu-endian format based on the RSS mode. We also do first level
* filtering at this point to weed out modes which don't support
* VF Drivers ...
*/
rss->mode = G_FW_RSS_GLB_CONFIG_CMD_MODE
(be32_to_cpu(rpl.u.manual.mode_pkd));
switch (rss->mode) {
case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
u32 word = be32_to_cpu
(rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
rss->u.basicvirtual.synmapen =
((word & F_FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
rss->u.basicvirtual.syn4tupenipv6 =
((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
rss->u.basicvirtual.syn2tupenipv6 =
((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
rss->u.basicvirtual.syn4tupenipv4 =
((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
rss->u.basicvirtual.syn2tupenipv4 =
((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
rss->u.basicvirtual.ofdmapen =
((word & F_FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
rss->u.basicvirtual.tnlmapen =
((word & F_FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
rss->u.basicvirtual.tnlalllookup =
((word & F_FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
rss->u.basicvirtual.hashtoeplitz =
((word & F_FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
/* we need at least Tunnel Map Enable to be set */
if (!rss->u.basicvirtual.tnlmapen)
return -EINVAL;
break;
}
default:
/* all unknown/unsupported RSS modes result in an error */
return -EINVAL;
}
return 0;
}
/**
* t4vf_get_vfres - retrieve VF resource limits
* @adapter: the adapter
*
* Retrieves configured resource limits and capabilities for a virtual
* function. The results are stored in @adapter->vfres.
*/
int t4vf_get_vfres(struct adapter *adapter)
{
struct vf_resources *vfres = &adapter->params.vfres;
struct fw_pfvf_cmd cmd, rpl;
u32 word;
int v;
/*
* Execute PFVF Read command to get VF resource limits; bail out early
* with error on command failure.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_READ);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (v != FW_SUCCESS)
return v;
/*
* Extract VF resource limits and return success.
*/
word = be32_to_cpu(rpl.niqflint_niq);
vfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
vfres->niq = G_FW_PFVF_CMD_NIQ(word);
word = be32_to_cpu(rpl.type_to_neq);
vfres->neq = G_FW_PFVF_CMD_NEQ(word);
vfres->pmask = G_FW_PFVF_CMD_PMASK(word);
word = be32_to_cpu(rpl.tc_to_nexactf);
vfres->tc = G_FW_PFVF_CMD_TC(word);
vfres->nvi = G_FW_PFVF_CMD_NVI(word);
vfres->nexactf = G_FW_PFVF_CMD_NEXACTF(word);
word = be32_to_cpu(rpl.r_caps_to_nethctrl);
vfres->r_caps = G_FW_PFVF_CMD_R_CAPS(word);
vfres->wx_caps = G_FW_PFVF_CMD_WX_CAPS(word);
vfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word);
return 0;
}
/**
* t4vf_get_port_stats_fw - collect "port" statistics via Firmware
* @adapter: the adapter
* @pidx: the port index
* @s: the stats structure to fill
*
* Collect statistics for the "port"'s Virtual Interface via Firmware
* commands.
*/
static int t4vf_get_port_stats_fw(struct adapter *adapter, int pidx,
struct port_stats *p)
{
struct port_info *pi = adap2pinfo(adapter, pidx);
unsigned int rem = VI_VF_NUM_STATS;
struct fw_vi_stats_vf fwstats;
__be64 *fwsp = (__be64 *)&fwstats;
/*
* Grab the Virtual Interface statistics a chunk at a time via mailbox
* commands. We could use a Work Request and get all of them at once
* but that's an asynchronous interface which is awkward to use.
*/
while (rem) {
unsigned int ix = VI_VF_NUM_STATS - rem;
unsigned int nstats = min(6U, rem);
struct fw_vi_stats_cmd cmd, rpl;
size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
sizeof(struct fw_vi_stats_ctl));
size_t len16 = DIV_ROUND_UP(len, 16);
int ret;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_STATS_CMD) |
V_FW_VI_STATS_CMD_VIID(pi->viid) |
F_FW_CMD_REQUEST |
F_FW_CMD_READ);
cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16));
cmd.u.ctl.nstats_ix =
cpu_to_be16(V_FW_VI_STATS_CMD_IX(ix) |
V_FW_VI_STATS_CMD_NSTATS(nstats));
ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
if (ret != FW_SUCCESS)
return ret;
memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
rem -= nstats;
fwsp += nstats;
}
/*
* Translate firmware statistics into host native statistics.
*/
p->tx_octets = be64_to_cpu(fwstats.tx_bcast_bytes) +
be64_to_cpu(fwstats.tx_mcast_bytes) +
be64_to_cpu(fwstats.tx_ucast_bytes);
p->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
p->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
p->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
p->tx_drop = be64_to_cpu(fwstats.tx_drop_frames);
p->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
p->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
p->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
p->rx_len_err = be64_to_cpu(fwstats.rx_err_frames);
return 0;
}
/**
* t4vf_get_port_stats - collect "port" statistics
* @adapter: the adapter
* @pidx: the port index
* @s: the stats structure to fill
*
* Collect statistics for the "port"'s Virtual Interface.
*/
void t4vf_get_port_stats(struct adapter *adapter, int pidx,
struct port_stats *p)
{
/*
* If this is not the first Virtual Interface for our Virtual
* Function, we need to use Firmware commands to retrieve its
* MPS statistics.
*/
if (pidx != 0)
t4vf_get_port_stats_fw(adapter, pidx, p);
/*
* But for the first VI, we can grab its statistics via the MPS
* register mapped into the VF register space.
*/
#define GET_STAT(name) \
t4_read_reg64(adapter, \
T4VF_MPS_BASE_ADDR + A_MPS_VF_STAT_##name##_L)
p->tx_octets = GET_STAT(TX_VF_BCAST_BYTES) +
GET_STAT(TX_VF_MCAST_BYTES) +
GET_STAT(TX_VF_UCAST_BYTES);
p->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
p->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
p->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
p->tx_drop = GET_STAT(TX_VF_DROP_FRAMES);
p->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
p->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
p->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
p->rx_len_err = GET_STAT(RX_VF_ERR_FRAMES);
#undef GET_STAT
}
static int t4vf_alloc_vi(struct adapter *adapter, int port_id)
{
struct fw_vi_cmd cmd, rpl;
int v;
/*
* Execute a VI command to allocate Virtual Interface and return its
* VIID.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_WRITE |
F_FW_CMD_EXEC);
cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
F_FW_VI_CMD_ALLOC);
cmd.portid_pkd = V_FW_VI_CMD_PORTID(port_id);
v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (v != FW_SUCCESS)
return v;
return G_FW_VI_CMD_VIID(be16_to_cpu(rpl.type_to_viid));
}
int t4vf_port_init(struct adapter *adapter)
{
unsigned int fw_caps = adapter->params.fw_caps_support;
struct fw_port_cmd port_cmd, port_rpl;
struct fw_vi_cmd vi_cmd, vi_rpl;
fw_port_cap32_t pcaps, acaps;
enum fw_port_type port_type;
int mdio_addr;
int ret, i;
for_each_port(adapter, i) {
struct port_info *p = adap2pinfo(adapter, i);
/*
* If we haven't yet determined if we're talking to Firmware
* which knows the new 32-bit Port Caps, it's time to find
* out now. This will also tell new Firmware to send us Port
* Status Updates using the new 32-bit Port Capabilities
* version of the Port Information message.
*/
if (fw_caps == FW_CAPS_UNKNOWN) {
u32 param, val;
param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) |
V_FW_PARAMS_PARAM_X
(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
val = 1;
ret = t4vf_set_params(adapter, 1, &param, &val);
fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
adapter->params.fw_caps_support = fw_caps;
}
ret = t4vf_alloc_vi(adapter, p->port_id);
if (ret < 0) {
dev_err(&pdev->dev, "cannot allocate VI for port %d:"
" err=%d\n", p->port_id, ret);
return ret;
}
p->viid = ret;
/*
* Execute a VI Read command to get our Virtual Interface
* information like MAC address, etc.
*/
memset(&vi_cmd, 0, sizeof(vi_cmd));
vi_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
F_FW_CMD_REQUEST |
F_FW_CMD_READ);
vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
vi_cmd.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(p->viid));
ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
if (ret != FW_SUCCESS)
return ret;
p->rss_size = G_FW_VI_CMD_RSSSIZE
(be16_to_cpu(vi_rpl.norss_rsssize));
t4_os_set_hw_addr(adapter, i, vi_rpl.mac);
/*
* If we don't have read access to our port information, we're
* done now. Else, execute a PORT Read command to get it ...
*/
if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
return 0;
memset(&port_cmd, 0, sizeof(port_cmd));
port_cmd.op_to_portid = cpu_to_be32
(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
F_FW_CMD_READ |
V_FW_PORT_CMD_PORTID(p->port_id));
port_cmd.action_to_len16 = cpu_to_be32
(V_FW_PORT_CMD_ACTION(fw_caps == FW_CAPS16 ?
FW_PORT_ACTION_GET_PORT_INFO :
FW_PORT_ACTION_GET_PORT_INFO32) |
FW_LEN16(port_cmd));
ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd),
&port_rpl);
if (ret != FW_SUCCESS)
return ret;
/*
* Extract the various fields from the Port Information message.
*/
if (fw_caps == FW_CAPS16) {
u32 lstatus = be32_to_cpu
(port_rpl.u.info.lstatus_to_modtype);
port_type = G_FW_PORT_CMD_PTYPE(lstatus);
mdio_addr = ((lstatus & F_FW_PORT_CMD_MDIOCAP) ?
(int)G_FW_PORT_CMD_MDIOADDR(lstatus) :
-1);
pcaps = fwcaps16_to_caps32
(be16_to_cpu(port_rpl.u.info.pcap));
acaps = fwcaps16_to_caps32
(be16_to_cpu(port_rpl.u.info.acap));
} else {
u32 lstatus32 = be32_to_cpu
(port_rpl.u.info32.lstatus32_to_cbllen32);
port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32);
mdio_addr = ((lstatus32 & F_FW_PORT_CMD_MDIOCAP32) ?
(int)G_FW_PORT_CMD_MDIOADDR32(lstatus32) :
-1);
pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
}
p->port_type = port_type;
p->mdio_addr = mdio_addr;
p->mod_type = FW_PORT_MOD_TYPE_NA;
init_link_config(&p->link_cfg, pcaps, acaps);
}
return 0;
}