numam-dpdk/lib/librte_distributor/rte_distributor_v20.c
Anatoly Burakov 028669bc9f eal: hide shared memory config
Now that everything that has ever accessed the shared memory
config is doing so through the public API's, we can make it
internal. Since we're removing quite a few headers from
rte_eal_memconfig.h, we need to add them back in places
where this header is used.

This bumps the ABI, so also change all build files and make
update documentation.

Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: David Marchand <david.marchand@redhat.com>
2019-07-06 10:32:34 +02:00

403 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <sys/queue.h>
#include <string.h>
#include <rte_mbuf.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_errno.h>
#include <rte_compat.h>
#include <rte_string_fns.h>
#include <rte_eal_memconfig.h>
#include <rte_pause.h>
#include <rte_tailq.h>
#include "rte_distributor_v20.h"
#include "rte_distributor_private.h"
TAILQ_HEAD(rte_distributor_list, rte_distributor_v20);
static struct rte_tailq_elem rte_distributor_tailq = {
.name = "RTE_DISTRIBUTOR",
};
EAL_REGISTER_TAILQ(rte_distributor_tailq)
/**** APIs called by workers ****/
void
rte_distributor_request_pkt_v20(struct rte_distributor_v20 *d,
unsigned worker_id, struct rte_mbuf *oldpkt)
{
union rte_distributor_buffer_v20 *buf = &d->bufs[worker_id];
int64_t req = (((int64_t)(uintptr_t)oldpkt) << RTE_DISTRIB_FLAG_BITS)
| RTE_DISTRIB_GET_BUF;
while (unlikely(buf->bufptr64 & RTE_DISTRIB_FLAGS_MASK))
rte_pause();
buf->bufptr64 = req;
}
VERSION_SYMBOL(rte_distributor_request_pkt, _v20, 2.0);
struct rte_mbuf *
rte_distributor_poll_pkt_v20(struct rte_distributor_v20 *d,
unsigned worker_id)
{
union rte_distributor_buffer_v20 *buf = &d->bufs[worker_id];
if (buf->bufptr64 & RTE_DISTRIB_GET_BUF)
return NULL;
/* since bufptr64 is signed, this should be an arithmetic shift */
int64_t ret = buf->bufptr64 >> RTE_DISTRIB_FLAG_BITS;
return (struct rte_mbuf *)((uintptr_t)ret);
}
VERSION_SYMBOL(rte_distributor_poll_pkt, _v20, 2.0);
struct rte_mbuf *
rte_distributor_get_pkt_v20(struct rte_distributor_v20 *d,
unsigned worker_id, struct rte_mbuf *oldpkt)
{
struct rte_mbuf *ret;
rte_distributor_request_pkt_v20(d, worker_id, oldpkt);
while ((ret = rte_distributor_poll_pkt_v20(d, worker_id)) == NULL)
rte_pause();
return ret;
}
VERSION_SYMBOL(rte_distributor_get_pkt, _v20, 2.0);
int
rte_distributor_return_pkt_v20(struct rte_distributor_v20 *d,
unsigned worker_id, struct rte_mbuf *oldpkt)
{
union rte_distributor_buffer_v20 *buf = &d->bufs[worker_id];
uint64_t req = (((int64_t)(uintptr_t)oldpkt) << RTE_DISTRIB_FLAG_BITS)
| RTE_DISTRIB_RETURN_BUF;
buf->bufptr64 = req;
return 0;
}
VERSION_SYMBOL(rte_distributor_return_pkt, _v20, 2.0);
/**** APIs called on distributor core ***/
/* as name suggests, adds a packet to the backlog for a particular worker */
static int
add_to_backlog(struct rte_distributor_backlog *bl, int64_t item)
{
if (bl->count == RTE_DISTRIB_BACKLOG_SIZE)
return -1;
bl->pkts[(bl->start + bl->count++) & (RTE_DISTRIB_BACKLOG_MASK)]
= item;
return 0;
}
/* takes the next packet for a worker off the backlog */
static int64_t
backlog_pop(struct rte_distributor_backlog *bl)
{
bl->count--;
return bl->pkts[bl->start++ & RTE_DISTRIB_BACKLOG_MASK];
}
/* stores a packet returned from a worker inside the returns array */
static inline void
store_return(uintptr_t oldbuf, struct rte_distributor_v20 *d,
unsigned *ret_start, unsigned *ret_count)
{
/* store returns in a circular buffer - code is branch-free */
d->returns.mbufs[(*ret_start + *ret_count) & RTE_DISTRIB_RETURNS_MASK]
= (void *)oldbuf;
*ret_start += (*ret_count == RTE_DISTRIB_RETURNS_MASK) & !!(oldbuf);
*ret_count += (*ret_count != RTE_DISTRIB_RETURNS_MASK) & !!(oldbuf);
}
static inline void
handle_worker_shutdown(struct rte_distributor_v20 *d, unsigned int wkr)
{
d->in_flight_tags[wkr] = 0;
d->in_flight_bitmask &= ~(1UL << wkr);
d->bufs[wkr].bufptr64 = 0;
if (unlikely(d->backlog[wkr].count != 0)) {
/* On return of a packet, we need to move the
* queued packets for this core elsewhere.
* Easiest solution is to set things up for
* a recursive call. That will cause those
* packets to be queued up for the next free
* core, i.e. it will return as soon as a
* core becomes free to accept the first
* packet, as subsequent ones will be added to
* the backlog for that core.
*/
struct rte_mbuf *pkts[RTE_DISTRIB_BACKLOG_SIZE];
unsigned i;
struct rte_distributor_backlog *bl = &d->backlog[wkr];
for (i = 0; i < bl->count; i++) {
unsigned idx = (bl->start + i) &
RTE_DISTRIB_BACKLOG_MASK;
pkts[i] = (void *)((uintptr_t)(bl->pkts[idx] >>
RTE_DISTRIB_FLAG_BITS));
}
/* recursive call.
* Note that the tags were set before first level call
* to rte_distributor_process.
*/
rte_distributor_process_v20(d, pkts, i);
bl->count = bl->start = 0;
}
}
/* this function is called when process() fn is called without any new
* packets. It goes through all the workers and clears any returned packets
* to do a partial flush.
*/
static int
process_returns(struct rte_distributor_v20 *d)
{
unsigned wkr;
unsigned flushed = 0;
unsigned ret_start = d->returns.start,
ret_count = d->returns.count;
for (wkr = 0; wkr < d->num_workers; wkr++) {
const int64_t data = d->bufs[wkr].bufptr64;
uintptr_t oldbuf = 0;
if (data & RTE_DISTRIB_GET_BUF) {
flushed++;
if (d->backlog[wkr].count)
d->bufs[wkr].bufptr64 =
backlog_pop(&d->backlog[wkr]);
else {
d->bufs[wkr].bufptr64 = RTE_DISTRIB_GET_BUF;
d->in_flight_tags[wkr] = 0;
d->in_flight_bitmask &= ~(1UL << wkr);
}
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
} else if (data & RTE_DISTRIB_RETURN_BUF) {
handle_worker_shutdown(d, wkr);
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
}
store_return(oldbuf, d, &ret_start, &ret_count);
}
d->returns.start = ret_start;
d->returns.count = ret_count;
return flushed;
}
/* process a set of packets to distribute them to workers */
int
rte_distributor_process_v20(struct rte_distributor_v20 *d,
struct rte_mbuf **mbufs, unsigned num_mbufs)
{
unsigned next_idx = 0;
unsigned wkr = 0;
struct rte_mbuf *next_mb = NULL;
int64_t next_value = 0;
uint32_t new_tag = 0;
unsigned ret_start = d->returns.start,
ret_count = d->returns.count;
if (unlikely(num_mbufs == 0))
return process_returns(d);
while (next_idx < num_mbufs || next_mb != NULL) {
int64_t data = d->bufs[wkr].bufptr64;
uintptr_t oldbuf = 0;
if (!next_mb) {
next_mb = mbufs[next_idx++];
next_value = (((int64_t)(uintptr_t)next_mb)
<< RTE_DISTRIB_FLAG_BITS);
/*
* User is advocated to set tag value for each
* mbuf before calling rte_distributor_process.
* User defined tags are used to identify flows,
* or sessions.
*/
new_tag = next_mb->hash.usr;
/*
* Note that if RTE_DISTRIB_MAX_WORKERS is larger than 64
* then the size of match has to be expanded.
*/
uint64_t match = 0;
unsigned i;
/*
* to scan for a match use "xor" and "not" to get a 0/1
* value, then use shifting to merge to single "match"
* variable, where a one-bit indicates a match for the
* worker given by the bit-position
*/
for (i = 0; i < d->num_workers; i++)
match |= (!(d->in_flight_tags[i] ^ new_tag)
<< i);
/* Only turned-on bits are considered as match */
match &= d->in_flight_bitmask;
if (match) {
next_mb = NULL;
unsigned worker = __builtin_ctzl(match);
if (add_to_backlog(&d->backlog[worker],
next_value) < 0)
next_idx--;
}
}
if ((data & RTE_DISTRIB_GET_BUF) &&
(d->backlog[wkr].count || next_mb)) {
if (d->backlog[wkr].count)
d->bufs[wkr].bufptr64 =
backlog_pop(&d->backlog[wkr]);
else {
d->bufs[wkr].bufptr64 = next_value;
d->in_flight_tags[wkr] = new_tag;
d->in_flight_bitmask |= (1UL << wkr);
next_mb = NULL;
}
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
} else if (data & RTE_DISTRIB_RETURN_BUF) {
handle_worker_shutdown(d, wkr);
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
}
/* store returns in a circular buffer */
store_return(oldbuf, d, &ret_start, &ret_count);
if (++wkr == d->num_workers)
wkr = 0;
}
/* to finish, check all workers for backlog and schedule work for them
* if they are ready */
for (wkr = 0; wkr < d->num_workers; wkr++)
if (d->backlog[wkr].count &&
(d->bufs[wkr].bufptr64 & RTE_DISTRIB_GET_BUF)) {
int64_t oldbuf = d->bufs[wkr].bufptr64 >>
RTE_DISTRIB_FLAG_BITS;
store_return(oldbuf, d, &ret_start, &ret_count);
d->bufs[wkr].bufptr64 = backlog_pop(&d->backlog[wkr]);
}
d->returns.start = ret_start;
d->returns.count = ret_count;
return num_mbufs;
}
VERSION_SYMBOL(rte_distributor_process, _v20, 2.0);
/* return to the caller, packets returned from workers */
int
rte_distributor_returned_pkts_v20(struct rte_distributor_v20 *d,
struct rte_mbuf **mbufs, unsigned max_mbufs)
{
struct rte_distributor_returned_pkts *returns = &d->returns;
unsigned retval = (max_mbufs < returns->count) ?
max_mbufs : returns->count;
unsigned i;
for (i = 0; i < retval; i++) {
unsigned idx = (returns->start + i) & RTE_DISTRIB_RETURNS_MASK;
mbufs[i] = returns->mbufs[idx];
}
returns->start += i;
returns->count -= i;
return retval;
}
VERSION_SYMBOL(rte_distributor_returned_pkts, _v20, 2.0);
/* return the number of packets in-flight in a distributor, i.e. packets
* being worked on or queued up in a backlog.
*/
static inline unsigned
total_outstanding(const struct rte_distributor_v20 *d)
{
unsigned wkr, total_outstanding;
total_outstanding = __builtin_popcountl(d->in_flight_bitmask);
for (wkr = 0; wkr < d->num_workers; wkr++)
total_outstanding += d->backlog[wkr].count;
return total_outstanding;
}
/* flush the distributor, so that there are no outstanding packets in flight or
* queued up. */
int
rte_distributor_flush_v20(struct rte_distributor_v20 *d)
{
const unsigned flushed = total_outstanding(d);
while (total_outstanding(d) > 0)
rte_distributor_process_v20(d, NULL, 0);
return flushed;
}
VERSION_SYMBOL(rte_distributor_flush, _v20, 2.0);
/* clears the internal returns array in the distributor */
void
rte_distributor_clear_returns_v20(struct rte_distributor_v20 *d)
{
d->returns.start = d->returns.count = 0;
#ifndef __OPTIMIZE__
memset(d->returns.mbufs, 0, sizeof(d->returns.mbufs));
#endif
}
VERSION_SYMBOL(rte_distributor_clear_returns, _v20, 2.0);
/* creates a distributor instance */
struct rte_distributor_v20 *
rte_distributor_create_v20(const char *name,
unsigned socket_id,
unsigned num_workers)
{
struct rte_distributor_v20 *d;
struct rte_distributor_list *distributor_list;
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
/* compilation-time checks */
RTE_BUILD_BUG_ON((sizeof(*d) & RTE_CACHE_LINE_MASK) != 0);
RTE_BUILD_BUG_ON((RTE_DISTRIB_MAX_WORKERS & 7) != 0);
RTE_BUILD_BUG_ON(RTE_DISTRIB_MAX_WORKERS >
sizeof(d->in_flight_bitmask) * CHAR_BIT);
if (name == NULL || num_workers >= RTE_DISTRIB_MAX_WORKERS) {
rte_errno = EINVAL;
return NULL;
}
snprintf(mz_name, sizeof(mz_name), RTE_DISTRIB_PREFIX"%s", name);
mz = rte_memzone_reserve(mz_name, sizeof(*d), socket_id, NO_FLAGS);
if (mz == NULL) {
rte_errno = ENOMEM;
return NULL;
}
d = mz->addr;
strlcpy(d->name, name, sizeof(d->name));
d->num_workers = num_workers;
distributor_list = RTE_TAILQ_CAST(rte_distributor_tailq.head,
rte_distributor_list);
rte_mcfg_tailq_write_lock();
TAILQ_INSERT_TAIL(distributor_list, d, next);
rte_mcfg_tailq_write_unlock();
return d;
}
VERSION_SYMBOL(rte_distributor_create, _v20, 2.0);