numam-dpdk/drivers/net/szedata2/rte_eth_szedata2.c
Jerin Jacob 9c99878aa1 log: introduce logtype register macro
Introduce the RTE_LOG_REGISTER macro to avoid the code duplication
in the logtype registration process.

It is a wrapper macro for declaring the logtype, registering it and
setting its level in the constructor context.

Signed-off-by: Jerin Jacob <jerinj@marvell.com>
Acked-by: Adam Dybkowski <adamx.dybkowski@intel.com>
Acked-by: Sachin Saxena <sachin.saxena@nxp.com>
Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
2020-07-03 15:52:51 +02:00

1943 lines
49 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2015 - 2016 CESNET
*/
#include <stdint.h>
#include <unistd.h>
#include <stdbool.h>
#include <err.h>
#include <sys/types.h>
#include <dirent.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <libsze2.h>
#include <rte_mbuf.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_kvargs.h>
#include <rte_dev.h>
#include "rte_eth_szedata2.h"
#include "szedata2_logs.h"
#define RTE_ETH_SZEDATA2_MAX_RX_QUEUES 32
#define RTE_ETH_SZEDATA2_MAX_TX_QUEUES 32
#define RTE_ETH_SZEDATA2_TX_LOCK_SIZE (32 * 1024 * 1024)
/**
* size of szedata2_packet header with alignment
*/
#define RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED 8
#define RTE_SZEDATA2_DRIVER_NAME net_szedata2
#define SZEDATA2_DEV_PATH_FMT "/dev/szedataII%u"
/**
* Format string for suffix used to differentiate between Ethernet ports
* on the same PCI device.
*/
#define SZEDATA2_ETH_DEV_NAME_SUFFIX_FMT "-port%u"
/**
* Maximum number of ports for one device.
*/
#define SZEDATA2_MAX_PORTS 2
/**
* Entry in list of PCI devices for this driver.
*/
struct pci_dev_list_entry;
struct pci_dev_list_entry {
LIST_ENTRY(pci_dev_list_entry) next;
struct rte_pci_device *pci_dev;
unsigned int port_count;
};
/* List of PCI devices with number of ports for this driver. */
LIST_HEAD(pci_dev_list, pci_dev_list_entry) szedata2_pci_dev_list =
LIST_HEAD_INITIALIZER(szedata2_pci_dev_list);
struct port_info {
unsigned int rx_base_id;
unsigned int tx_base_id;
unsigned int rx_count;
unsigned int tx_count;
int numa_node;
};
struct pmd_internals {
struct rte_eth_dev *dev;
uint16_t max_rx_queues;
uint16_t max_tx_queues;
unsigned int rxq_base_id;
unsigned int txq_base_id;
char *sze_dev_path;
};
struct szedata2_rx_queue {
struct pmd_internals *priv;
struct szedata *sze;
uint8_t rx_channel;
uint16_t qid;
uint16_t in_port;
struct rte_mempool *mb_pool;
volatile uint64_t rx_pkts;
volatile uint64_t rx_bytes;
volatile uint64_t err_pkts;
};
struct szedata2_tx_queue {
struct pmd_internals *priv;
struct szedata *sze;
uint8_t tx_channel;
uint16_t qid;
volatile uint64_t tx_pkts;
volatile uint64_t tx_bytes;
volatile uint64_t err_pkts;
};
static struct rte_ether_addr eth_addr = {
.addr_bytes = { 0x00, 0x11, 0x17, 0x00, 0x00, 0x00 }
};
static uint16_t
eth_szedata2_rx(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned int i;
struct rte_mbuf *mbuf;
struct szedata2_rx_queue *sze_q = queue;
struct rte_pktmbuf_pool_private *mbp_priv;
uint16_t num_rx = 0;
uint16_t buf_size;
uint16_t sg_size;
uint16_t hw_size;
uint16_t packet_size;
uint64_t num_bytes = 0;
struct szedata *sze = sze_q->sze;
uint8_t *header_ptr = NULL; /* header of packet */
uint8_t *packet_ptr1 = NULL;
uint8_t *packet_ptr2 = NULL;
uint16_t packet_len1 = 0;
uint16_t packet_len2 = 0;
uint16_t hw_data_align;
if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
return 0;
/*
* Reads the given number of packets from szedata2 channel given
* by queue and copies the packet data into a newly allocated mbuf
* to return.
*/
for (i = 0; i < nb_pkts; i++) {
mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
if (unlikely(mbuf == NULL)) {
sze_q->priv->dev->data->rx_mbuf_alloc_failed++;
break;
}
/* get the next sze packet */
if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
sze->ct_rx_lck->next == NULL) {
/* unlock old data */
szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
sze->ct_rx_lck_orig = NULL;
sze->ct_rx_lck = NULL;
}
if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
/* nothing to read, lock new data */
sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
sze->ct_rx_lck_orig = sze->ct_rx_lck;
if (sze->ct_rx_lck == NULL) {
/* nothing to lock */
rte_pktmbuf_free(mbuf);
break;
}
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
if (!sze->ct_rx_rem_bytes) {
rte_pktmbuf_free(mbuf);
break;
}
}
if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
/*
* cut in header
* copy parts of header to merge buffer
*/
if (sze->ct_rx_lck->next == NULL) {
rte_pktmbuf_free(mbuf);
break;
}
/* copy first part of header */
rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
sze->ct_rx_rem_bytes);
/* copy second part of header */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
sze->ct_rx_cur_ptr,
RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes);
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
RTE_SZE2_PACKET_HEADER_SIZE +
sze->ct_rx_rem_bytes;
header_ptr = (uint8_t *)sze->ct_rx_buffer;
} else {
/* not cut */
header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
}
sg_size = le16toh(*((uint16_t *)header_ptr));
hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
packet_size = sg_size -
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
/* checks if packet all right */
if (!sg_size)
errx(5, "Zero segsize");
/* check sg_size and hwsize */
if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
errx(10, "Hwsize bigger than expected. Segsize: %d, "
"hwsize: %d", sg_size, hw_size);
}
hw_data_align =
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
if (sze->ct_rx_rem_bytes >=
(uint16_t)(sg_size -
RTE_SZE2_PACKET_HEADER_SIZE)) {
/* no cut */
/* one packet ready - go to another */
packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
} else {
/* cut in data */
if (sze->ct_rx_lck->next == NULL) {
errx(6, "Need \"next\" lock, "
"but it is missing: %u",
sze->ct_rx_rem_bytes);
}
/* skip hw data */
if (sze->ct_rx_rem_bytes <= hw_data_align) {
uint16_t rem_size = hw_data_align -
sze->ct_rx_rem_bytes;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr =
(void *)(((uint8_t *)
(sze->ct_rx_lck->start)) + rem_size);
packet_ptr1 = sze->ct_rx_cur_ptr;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size);
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
rem_size - RTE_SZE2_ALIGN8(packet_size);
} else {
/* get pointer and length from first part */
packet_ptr1 = sze->ct_rx_cur_ptr +
hw_data_align;
packet_len1 = sze->ct_rx_rem_bytes -
hw_data_align;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
/* get pointer and length from second part */
packet_ptr2 = sze->ct_rx_cur_ptr;
packet_len2 = packet_size - packet_len1;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size) -
packet_len1;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
(RTE_SZE2_ALIGN8(packet_size) -
packet_len1);
}
}
if (unlikely(packet_ptr1 == NULL)) {
rte_pktmbuf_free(mbuf);
break;
}
/* get the space available for data in the mbuf */
mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (packet_size <= buf_size) {
/* sze packet will fit in one mbuf, go ahead and copy */
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
packet_ptr1, packet_len1);
if (packet_ptr2 != NULL) {
rte_memcpy((void *)(rte_pktmbuf_mtod(mbuf,
uint8_t *) + packet_len1),
packet_ptr2, packet_len2);
}
mbuf->data_len = (uint16_t)packet_size;
mbuf->pkt_len = packet_size;
mbuf->port = sze_q->in_port;
bufs[num_rx] = mbuf;
num_rx++;
num_bytes += packet_size;
} else {
/*
* sze packet will not fit in one mbuf,
* scattered mode is not enabled, drop packet
*/
PMD_DRV_LOG(ERR,
"SZE segment %d bytes will not fit in one mbuf "
"(%d bytes), scattered mode is not enabled, "
"drop packet!!",
packet_size, buf_size);
rte_pktmbuf_free(mbuf);
}
}
sze_q->rx_pkts += num_rx;
sze_q->rx_bytes += num_bytes;
return num_rx;
}
static uint16_t
eth_szedata2_rx_scattered(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned int i;
struct rte_mbuf *mbuf;
struct szedata2_rx_queue *sze_q = queue;
struct rte_pktmbuf_pool_private *mbp_priv;
uint16_t num_rx = 0;
uint16_t buf_size;
uint16_t sg_size;
uint16_t hw_size;
uint16_t packet_size;
uint64_t num_bytes = 0;
struct szedata *sze = sze_q->sze;
uint8_t *header_ptr = NULL; /* header of packet */
uint8_t *packet_ptr1 = NULL;
uint8_t *packet_ptr2 = NULL;
uint16_t packet_len1 = 0;
uint16_t packet_len2 = 0;
uint16_t hw_data_align;
uint64_t *mbuf_failed_ptr =
&sze_q->priv->dev->data->rx_mbuf_alloc_failed;
if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
return 0;
/*
* Reads the given number of packets from szedata2 channel given
* by queue and copies the packet data into a newly allocated mbuf
* to return.
*/
for (i = 0; i < nb_pkts; i++) {
const struct szedata_lock *ct_rx_lck_backup;
unsigned int ct_rx_rem_bytes_backup;
unsigned char *ct_rx_cur_ptr_backup;
/* get the next sze packet */
if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
sze->ct_rx_lck->next == NULL) {
/* unlock old data */
szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
sze->ct_rx_lck_orig = NULL;
sze->ct_rx_lck = NULL;
}
/*
* Store items from sze structure which can be changed
* before mbuf allocating. Use these items in case of mbuf
* allocating failure.
*/
ct_rx_lck_backup = sze->ct_rx_lck;
ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
/* nothing to read, lock new data */
sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
sze->ct_rx_lck_orig = sze->ct_rx_lck;
/*
* Backup items from sze structure must be updated
* after locking to contain pointers to new locks.
*/
ct_rx_lck_backup = sze->ct_rx_lck;
ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
if (sze->ct_rx_lck == NULL)
/* nothing to lock */
break;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
if (!sze->ct_rx_rem_bytes)
break;
}
if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
/*
* cut in header - copy parts of header to merge buffer
*/
if (sze->ct_rx_lck->next == NULL)
break;
/* copy first part of header */
rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
sze->ct_rx_rem_bytes);
/* copy second part of header */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
sze->ct_rx_cur_ptr,
RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes);
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
RTE_SZE2_PACKET_HEADER_SIZE +
sze->ct_rx_rem_bytes;
header_ptr = (uint8_t *)sze->ct_rx_buffer;
} else {
/* not cut */
header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
}
sg_size = le16toh(*((uint16_t *)header_ptr));
hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
packet_size = sg_size -
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
/* checks if packet all right */
if (!sg_size)
errx(5, "Zero segsize");
/* check sg_size and hwsize */
if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
errx(10, "Hwsize bigger than expected. Segsize: %d, "
"hwsize: %d", sg_size, hw_size);
}
hw_data_align =
RTE_SZE2_ALIGN8((RTE_SZE2_PACKET_HEADER_SIZE +
hw_size)) - RTE_SZE2_PACKET_HEADER_SIZE;
if (sze->ct_rx_rem_bytes >=
(uint16_t)(sg_size -
RTE_SZE2_PACKET_HEADER_SIZE)) {
/* no cut */
/* one packet ready - go to another */
packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
} else {
/* cut in data */
if (sze->ct_rx_lck->next == NULL) {
errx(6, "Need \"next\" lock, but it is "
"missing: %u", sze->ct_rx_rem_bytes);
}
/* skip hw data */
if (sze->ct_rx_rem_bytes <= hw_data_align) {
uint16_t rem_size = hw_data_align -
sze->ct_rx_rem_bytes;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr =
(void *)(((uint8_t *)
(sze->ct_rx_lck->start)) + rem_size);
packet_ptr1 = sze->ct_rx_cur_ptr;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size);
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
rem_size - RTE_SZE2_ALIGN8(packet_size);
} else {
/* get pointer and length from first part */
packet_ptr1 = sze->ct_rx_cur_ptr +
hw_data_align;
packet_len1 = sze->ct_rx_rem_bytes -
hw_data_align;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
/* get pointer and length from second part */
packet_ptr2 = sze->ct_rx_cur_ptr;
packet_len2 = packet_size - packet_len1;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size) -
packet_len1;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
(RTE_SZE2_ALIGN8(packet_size) -
packet_len1);
}
}
if (unlikely(packet_ptr1 == NULL))
break;
mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
if (unlikely(mbuf == NULL)) {
/*
* Restore items from sze structure to state after
* unlocking (eventually locking).
*/
sze->ct_rx_lck = ct_rx_lck_backup;
sze->ct_rx_rem_bytes = ct_rx_rem_bytes_backup;
sze->ct_rx_cur_ptr = ct_rx_cur_ptr_backup;
sze_q->priv->dev->data->rx_mbuf_alloc_failed++;
break;
}
/* get the space available for data in the mbuf */
mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (packet_size <= buf_size) {
/* sze packet will fit in one mbuf, go ahead and copy */
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
packet_ptr1, packet_len1);
if (packet_ptr2 != NULL) {
rte_memcpy((void *)
(rte_pktmbuf_mtod(mbuf, uint8_t *) +
packet_len1), packet_ptr2, packet_len2);
}
mbuf->data_len = (uint16_t)packet_size;
} else {
/*
* sze packet will not fit in one mbuf,
* scatter packet into more mbufs
*/
struct rte_mbuf *m = mbuf;
uint16_t len = rte_pktmbuf_tailroom(mbuf);
/* copy first part of packet */
/* fill first mbuf */
rte_memcpy(rte_pktmbuf_append(mbuf, len), packet_ptr1,
len);
packet_len1 -= len;
packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
while (packet_len1 > 0) {
/* fill new mbufs */
m->next = rte_pktmbuf_alloc(sze_q->mb_pool);
if (unlikely(m->next == NULL)) {
rte_pktmbuf_free(mbuf);
/*
* Restore items from sze structure
* to state after unlocking (eventually
* locking).
*/
sze->ct_rx_lck = ct_rx_lck_backup;
sze->ct_rx_rem_bytes =
ct_rx_rem_bytes_backup;
sze->ct_rx_cur_ptr =
ct_rx_cur_ptr_backup;
(*mbuf_failed_ptr)++;
goto finish;
}
m = m->next;
len = RTE_MIN(rte_pktmbuf_tailroom(m),
packet_len1);
rte_memcpy(rte_pktmbuf_append(mbuf, len),
packet_ptr1, len);
(mbuf->nb_segs)++;
packet_len1 -= len;
packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
}
if (packet_ptr2 != NULL) {
/* copy second part of packet, if exists */
/* fill the rest of currently last mbuf */
len = rte_pktmbuf_tailroom(m);
rte_memcpy(rte_pktmbuf_append(mbuf, len),
packet_ptr2, len);
packet_len2 -= len;
packet_ptr2 = ((uint8_t *)packet_ptr2) + len;
while (packet_len2 > 0) {
/* fill new mbufs */
m->next = rte_pktmbuf_alloc(
sze_q->mb_pool);
if (unlikely(m->next == NULL)) {
rte_pktmbuf_free(mbuf);
/*
* Restore items from sze
* structure to state after
* unlocking (eventually
* locking).
*/
sze->ct_rx_lck =
ct_rx_lck_backup;
sze->ct_rx_rem_bytes =
ct_rx_rem_bytes_backup;
sze->ct_rx_cur_ptr =
ct_rx_cur_ptr_backup;
(*mbuf_failed_ptr)++;
goto finish;
}
m = m->next;
len = RTE_MIN(rte_pktmbuf_tailroom(m),
packet_len2);
rte_memcpy(
rte_pktmbuf_append(mbuf, len),
packet_ptr2, len);
(mbuf->nb_segs)++;
packet_len2 -= len;
packet_ptr2 = ((uint8_t *)packet_ptr2) +
len;
}
}
}
mbuf->pkt_len = packet_size;
mbuf->port = sze_q->in_port;
bufs[num_rx] = mbuf;
num_rx++;
num_bytes += packet_size;
}
finish:
sze_q->rx_pkts += num_rx;
sze_q->rx_bytes += num_bytes;
return num_rx;
}
static uint16_t
eth_szedata2_tx(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
struct rte_mbuf *mbuf;
struct szedata2_tx_queue *sze_q = queue;
uint16_t num_tx = 0;
uint64_t num_bytes = 0;
const struct szedata_lock *lck;
uint32_t lock_size;
uint32_t lock_size2;
void *dst;
uint32_t pkt_len;
uint32_t hwpkt_len;
uint32_t unlock_size;
uint32_t rem_len;
uint16_t mbuf_segs;
uint16_t pkt_left = nb_pkts;
if (sze_q->sze == NULL || nb_pkts == 0)
return 0;
while (pkt_left > 0) {
unlock_size = 0;
lck = szedata_tx_lock_data(sze_q->sze,
RTE_ETH_SZEDATA2_TX_LOCK_SIZE,
sze_q->tx_channel);
if (lck == NULL)
continue;
dst = lck->start;
lock_size = lck->len;
lock_size2 = lck->next ? lck->next->len : 0;
next_packet:
mbuf = bufs[nb_pkts - pkt_left];
pkt_len = mbuf->pkt_len;
mbuf_segs = mbuf->nb_segs;
hwpkt_len = RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
RTE_SZE2_ALIGN8(pkt_len);
if (lock_size + lock_size2 < hwpkt_len) {
szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
continue;
}
num_bytes += pkt_len;
if (lock_size > hwpkt_len) {
void *tmp_dst;
rem_len = 0;
/* write packet length at first 2 bytes in 8B header */
*((uint16_t *)dst) = htole16(
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
pkt_len);
*(((uint16_t *)dst) + 1) = htole16(0);
/* copy packet from mbuf */
tmp_dst = ((uint8_t *)(dst)) +
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
if (mbuf_segs == 1) {
/*
* non-scattered packet,
* transmit from one mbuf
*/
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(mbuf, const void *),
pkt_len);
} else {
/* scattered packet, transmit from more mbufs */
struct rte_mbuf *m = mbuf;
while (m) {
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(m,
const void *),
m->data_len);
tmp_dst = ((uint8_t *)(tmp_dst)) +
m->data_len;
m = m->next;
}
}
dst = ((uint8_t *)dst) + hwpkt_len;
unlock_size += hwpkt_len;
lock_size -= hwpkt_len;
rte_pktmbuf_free(mbuf);
num_tx++;
pkt_left--;
if (pkt_left == 0) {
szedata_tx_unlock_data(sze_q->sze, lck,
unlock_size);
break;
}
goto next_packet;
} else if (lock_size + lock_size2 >= hwpkt_len) {
void *tmp_dst;
uint16_t write_len;
/* write packet length at first 2 bytes in 8B header */
*((uint16_t *)dst) =
htole16(RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
pkt_len);
*(((uint16_t *)dst) + 1) = htole16(0);
/*
* If the raw packet (pkt_len) is smaller than lock_size
* get the correct length for memcpy
*/
write_len =
pkt_len < lock_size -
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED ?
pkt_len :
lock_size - RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
rem_len = hwpkt_len - lock_size;
tmp_dst = ((uint8_t *)(dst)) +
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
if (mbuf_segs == 1) {
/*
* non-scattered packet,
* transmit from one mbuf
*/
/* copy part of packet to first area */
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(mbuf, const void *),
write_len);
if (lck->next)
dst = lck->next->start;
/* copy part of packet to second area */
rte_memcpy(dst,
(const void *)(rte_pktmbuf_mtod(mbuf,
const uint8_t *) +
write_len), pkt_len - write_len);
} else {
/* scattered packet, transmit from more mbufs */
struct rte_mbuf *m = mbuf;
uint16_t written = 0;
uint16_t to_write = 0;
bool new_mbuf = true;
uint16_t write_off = 0;
/* copy part of packet to first area */
while (m && written < write_len) {
to_write = RTE_MIN(m->data_len,
write_len - written);
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(m,
const void *),
to_write);
tmp_dst = ((uint8_t *)(tmp_dst)) +
to_write;
if (m->data_len <= write_len -
written) {
m = m->next;
new_mbuf = true;
} else {
new_mbuf = false;
}
written += to_write;
}
if (lck->next)
dst = lck->next->start;
tmp_dst = dst;
written = 0;
write_off = new_mbuf ? 0 : to_write;
/* copy part of packet to second area */
while (m && written < pkt_len - write_len) {
rte_memcpy(tmp_dst, (const void *)
(rte_pktmbuf_mtod(m,
uint8_t *) + write_off),
m->data_len - write_off);
tmp_dst = ((uint8_t *)(tmp_dst)) +
(m->data_len - write_off);
written += m->data_len - write_off;
m = m->next;
write_off = 0;
}
}
dst = ((uint8_t *)dst) + rem_len;
unlock_size += hwpkt_len;
lock_size = lock_size2 - rem_len;
lock_size2 = 0;
rte_pktmbuf_free(mbuf);
num_tx++;
}
szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
pkt_left--;
}
sze_q->tx_pkts += num_tx;
sze_q->err_pkts += nb_pkts - num_tx;
sze_q->tx_bytes += num_bytes;
return num_tx;
}
static int
eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rxq_id)
{
struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];
int ret;
struct pmd_internals *internals = (struct pmd_internals *)
dev->data->dev_private;
if (rxq->sze == NULL) {
uint32_t rx = 1 << rxq->rx_channel;
uint32_t tx = 0;
rxq->sze = szedata_open(internals->sze_dev_path);
if (rxq->sze == NULL)
return -EINVAL;
ret = szedata_subscribe3(rxq->sze, &rx, &tx);
if (ret != 0 || rx == 0)
goto err;
}
ret = szedata_start(rxq->sze);
if (ret != 0)
goto err;
dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
err:
szedata_close(rxq->sze);
rxq->sze = NULL;
return -EINVAL;
}
static int
eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rxq_id)
{
struct szedata2_rx_queue *rxq = dev->data->rx_queues[rxq_id];
if (rxq->sze != NULL) {
szedata_close(rxq->sze);
rxq->sze = NULL;
}
dev->data->rx_queue_state[rxq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t txq_id)
{
struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];
int ret;
struct pmd_internals *internals = (struct pmd_internals *)
dev->data->dev_private;
if (txq->sze == NULL) {
uint32_t rx = 0;
uint32_t tx = 1 << txq->tx_channel;
txq->sze = szedata_open(internals->sze_dev_path);
if (txq->sze == NULL)
return -EINVAL;
ret = szedata_subscribe3(txq->sze, &rx, &tx);
if (ret != 0 || tx == 0)
goto err;
}
ret = szedata_start(txq->sze);
if (ret != 0)
goto err;
dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
err:
szedata_close(txq->sze);
txq->sze = NULL;
return -EINVAL;
}
static int
eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t txq_id)
{
struct szedata2_tx_queue *txq = dev->data->tx_queues[txq_id];
if (txq->sze != NULL) {
szedata_close(txq->sze);
txq->sze = NULL;
}
dev->data->tx_queue_state[txq_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
eth_dev_start(struct rte_eth_dev *dev)
{
int ret;
uint16_t i;
uint16_t nb_rx = dev->data->nb_rx_queues;
uint16_t nb_tx = dev->data->nb_tx_queues;
for (i = 0; i < nb_rx; i++) {
ret = eth_rx_queue_start(dev, i);
if (ret != 0)
goto err_rx;
}
for (i = 0; i < nb_tx; i++) {
ret = eth_tx_queue_start(dev, i);
if (ret != 0)
goto err_tx;
}
return 0;
err_tx:
for (i = 0; i < nb_tx; i++)
eth_tx_queue_stop(dev, i);
err_rx:
for (i = 0; i < nb_rx; i++)
eth_rx_queue_stop(dev, i);
return ret;
}
static void
eth_dev_stop(struct rte_eth_dev *dev)
{
uint16_t i;
uint16_t nb_rx = dev->data->nb_rx_queues;
uint16_t nb_tx = dev->data->nb_tx_queues;
for (i = 0; i < nb_tx; i++)
eth_tx_queue_stop(dev, i);
for (i = 0; i < nb_rx; i++)
eth_rx_queue_stop(dev, i);
}
static int
eth_dev_configure(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *data = dev->data;
if (data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
dev->rx_pkt_burst = eth_szedata2_rx_scattered;
data->scattered_rx = 1;
} else {
dev->rx_pkt_burst = eth_szedata2_rx;
data->scattered_rx = 0;
}
return 0;
}
static int
eth_dev_info(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct pmd_internals *internals = dev->data->dev_private;
dev_info->if_index = 0;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_pktlen = (uint32_t)-1;
dev_info->max_rx_queues = internals->max_rx_queues;
dev_info->max_tx_queues = internals->max_tx_queues;
dev_info->min_rx_bufsize = 0;
dev_info->rx_offload_capa = DEV_RX_OFFLOAD_SCATTER;
dev_info->tx_offload_capa = 0;
dev_info->rx_queue_offload_capa = 0;
dev_info->tx_queue_offload_capa = 0;
dev_info->speed_capa = ETH_LINK_SPEED_100G;
return 0;
}
static int
eth_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
uint16_t i;
uint16_t nb_rx = dev->data->nb_rx_queues;
uint16_t nb_tx = dev->data->nb_tx_queues;
uint64_t rx_total = 0;
uint64_t tx_total = 0;
uint64_t tx_err_total = 0;
uint64_t rx_total_bytes = 0;
uint64_t tx_total_bytes = 0;
for (i = 0; i < nb_rx; i++) {
struct szedata2_rx_queue *rxq = dev->data->rx_queues[i];
if (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
stats->q_ipackets[i] = rxq->rx_pkts;
stats->q_ibytes[i] = rxq->rx_bytes;
}
rx_total += rxq->rx_pkts;
rx_total_bytes += rxq->rx_bytes;
}
for (i = 0; i < nb_tx; i++) {
struct szedata2_tx_queue *txq = dev->data->tx_queues[i];
if (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
stats->q_opackets[i] = txq->tx_pkts;
stats->q_obytes[i] = txq->tx_bytes;
}
tx_total += txq->tx_pkts;
tx_total_bytes += txq->tx_bytes;
tx_err_total += txq->err_pkts;
}
stats->ipackets = rx_total;
stats->opackets = tx_total;
stats->ibytes = rx_total_bytes;
stats->obytes = tx_total_bytes;
stats->oerrors = tx_err_total;
stats->rx_nombuf = dev->data->rx_mbuf_alloc_failed;
return 0;
}
static int
eth_stats_reset(struct rte_eth_dev *dev)
{
uint16_t i;
uint16_t nb_rx = dev->data->nb_rx_queues;
uint16_t nb_tx = dev->data->nb_tx_queues;
for (i = 0; i < nb_rx; i++) {
struct szedata2_rx_queue *rxq = dev->data->rx_queues[i];
rxq->rx_pkts = 0;
rxq->rx_bytes = 0;
rxq->err_pkts = 0;
}
for (i = 0; i < nb_tx; i++) {
struct szedata2_tx_queue *txq = dev->data->tx_queues[i];
txq->tx_pkts = 0;
txq->tx_bytes = 0;
txq->err_pkts = 0;
}
return 0;
}
static void
eth_rx_queue_release(void *q)
{
struct szedata2_rx_queue *rxq = (struct szedata2_rx_queue *)q;
if (rxq != NULL) {
if (rxq->sze != NULL)
szedata_close(rxq->sze);
rte_free(rxq);
}
}
static void
eth_tx_queue_release(void *q)
{
struct szedata2_tx_queue *txq = (struct szedata2_tx_queue *)q;
if (txq != NULL) {
if (txq->sze != NULL)
szedata_close(txq->sze);
rte_free(txq);
}
}
static void
eth_dev_close(struct rte_eth_dev *dev)
{
struct pmd_internals *internals = dev->data->dev_private;
uint16_t i;
uint16_t nb_rx = dev->data->nb_rx_queues;
uint16_t nb_tx = dev->data->nb_tx_queues;
eth_dev_stop(dev);
free(internals->sze_dev_path);
for (i = 0; i < nb_rx; i++) {
eth_rx_queue_release(dev->data->rx_queues[i]);
dev->data->rx_queues[i] = NULL;
}
dev->data->nb_rx_queues = 0;
for (i = 0; i < nb_tx; i++) {
eth_tx_queue_release(dev->data->tx_queues[i]);
dev->data->tx_queues[i] = NULL;
}
dev->data->nb_tx_queues = 0;
rte_free(dev->data->mac_addrs);
dev->data->mac_addrs = NULL;
}
static int
eth_link_update(struct rte_eth_dev *dev,
int wait_to_complete __rte_unused)
{
struct rte_eth_link link;
memset(&link, 0, sizeof(link));
link.link_speed = ETH_SPEED_NUM_100G;
link.link_duplex = ETH_LINK_FULL_DUPLEX;
link.link_status = ETH_LINK_UP;
link.link_autoneg = ETH_LINK_FIXED;
rte_eth_linkstatus_set(dev, &link);
return 0;
}
static int
eth_dev_set_link_up(struct rte_eth_dev *dev __rte_unused)
{
PMD_DRV_LOG(WARNING, "Setting link up is not supported.");
return 0;
}
static int
eth_dev_set_link_down(struct rte_eth_dev *dev __rte_unused)
{
PMD_DRV_LOG(WARNING, "Setting link down is not supported.");
return 0;
}
static int
eth_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc __rte_unused,
unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mb_pool)
{
struct szedata2_rx_queue *rxq;
int ret;
struct pmd_internals *internals = dev->data->dev_private;
uint8_t rx_channel = internals->rxq_base_id + rx_queue_id;
uint32_t rx = 1 << rx_channel;
uint32_t tx = 0;
PMD_INIT_FUNC_TRACE();
if (dev->data->rx_queues[rx_queue_id] != NULL) {
eth_rx_queue_release(dev->data->rx_queues[rx_queue_id]);
dev->data->rx_queues[rx_queue_id] = NULL;
}
rxq = rte_zmalloc_socket("szedata2 rx queue",
sizeof(struct szedata2_rx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL) {
PMD_INIT_LOG(ERR, "rte_zmalloc_socket() failed for rx queue id "
"%" PRIu16 "!", rx_queue_id);
return -ENOMEM;
}
rxq->priv = internals;
rxq->sze = szedata_open(internals->sze_dev_path);
if (rxq->sze == NULL) {
PMD_INIT_LOG(ERR, "szedata_open() failed for rx queue id "
"%" PRIu16 "!", rx_queue_id);
eth_rx_queue_release(rxq);
return -EINVAL;
}
ret = szedata_subscribe3(rxq->sze, &rx, &tx);
if (ret != 0 || rx == 0) {
PMD_INIT_LOG(ERR, "szedata_subscribe3() failed for rx queue id "
"%" PRIu16 "!", rx_queue_id);
eth_rx_queue_release(rxq);
return -EINVAL;
}
rxq->rx_channel = rx_channel;
rxq->qid = rx_queue_id;
rxq->in_port = dev->data->port_id;
rxq->mb_pool = mb_pool;
rxq->rx_pkts = 0;
rxq->rx_bytes = 0;
rxq->err_pkts = 0;
dev->data->rx_queues[rx_queue_id] = rxq;
PMD_INIT_LOG(DEBUG, "Configured rx queue id %" PRIu16 " on socket "
"%u (channel id %u).", rxq->qid, socket_id,
rxq->rx_channel);
return 0;
}
static int
eth_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc __rte_unused,
unsigned int socket_id,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct szedata2_tx_queue *txq;
int ret;
struct pmd_internals *internals = dev->data->dev_private;
uint8_t tx_channel = internals->txq_base_id + tx_queue_id;
uint32_t rx = 0;
uint32_t tx = 1 << tx_channel;
PMD_INIT_FUNC_TRACE();
if (dev->data->tx_queues[tx_queue_id] != NULL) {
eth_tx_queue_release(dev->data->tx_queues[tx_queue_id]);
dev->data->tx_queues[tx_queue_id] = NULL;
}
txq = rte_zmalloc_socket("szedata2 tx queue",
sizeof(struct szedata2_tx_queue),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL) {
PMD_INIT_LOG(ERR, "rte_zmalloc_socket() failed for tx queue id "
"%" PRIu16 "!", tx_queue_id);
return -ENOMEM;
}
txq->priv = internals;
txq->sze = szedata_open(internals->sze_dev_path);
if (txq->sze == NULL) {
PMD_INIT_LOG(ERR, "szedata_open() failed for tx queue id "
"%" PRIu16 "!", tx_queue_id);
eth_tx_queue_release(txq);
return -EINVAL;
}
ret = szedata_subscribe3(txq->sze, &rx, &tx);
if (ret != 0 || tx == 0) {
PMD_INIT_LOG(ERR, "szedata_subscribe3() failed for tx queue id "
"%" PRIu16 "!", tx_queue_id);
eth_tx_queue_release(txq);
return -EINVAL;
}
txq->tx_channel = tx_channel;
txq->qid = tx_queue_id;
txq->tx_pkts = 0;
txq->tx_bytes = 0;
txq->err_pkts = 0;
dev->data->tx_queues[tx_queue_id] = txq;
PMD_INIT_LOG(DEBUG, "Configured tx queue id %" PRIu16 " on socket "
"%u (channel id %u).", txq->qid, socket_id,
txq->tx_channel);
return 0;
}
static int
eth_mac_addr_set(struct rte_eth_dev *dev __rte_unused,
struct rte_ether_addr *mac_addr __rte_unused)
{
return 0;
}
static int
eth_promiscuous_enable(struct rte_eth_dev *dev __rte_unused)
{
PMD_DRV_LOG(WARNING, "Enabling promiscuous mode is not supported. "
"The card is always in promiscuous mode.");
return 0;
}
static int
eth_promiscuous_disable(struct rte_eth_dev *dev __rte_unused)
{
PMD_DRV_LOG(WARNING, "Disabling promiscuous mode is not supported. "
"The card is always in promiscuous mode.");
return -ENOTSUP;
}
static int
eth_allmulticast_enable(struct rte_eth_dev *dev __rte_unused)
{
PMD_DRV_LOG(WARNING, "Enabling allmulticast mode is not supported.");
return -ENOTSUP;
}
static int
eth_allmulticast_disable(struct rte_eth_dev *dev __rte_unused)
{
PMD_DRV_LOG(WARNING, "Disabling allmulticast mode is not supported.");
return -ENOTSUP;
}
static const struct eth_dev_ops ops = {
.dev_start = eth_dev_start,
.dev_stop = eth_dev_stop,
.dev_set_link_up = eth_dev_set_link_up,
.dev_set_link_down = eth_dev_set_link_down,
.dev_close = eth_dev_close,
.dev_configure = eth_dev_configure,
.dev_infos_get = eth_dev_info,
.promiscuous_enable = eth_promiscuous_enable,
.promiscuous_disable = eth_promiscuous_disable,
.allmulticast_enable = eth_allmulticast_enable,
.allmulticast_disable = eth_allmulticast_disable,
.rx_queue_start = eth_rx_queue_start,
.rx_queue_stop = eth_rx_queue_stop,
.tx_queue_start = eth_tx_queue_start,
.tx_queue_stop = eth_tx_queue_stop,
.rx_queue_setup = eth_rx_queue_setup,
.tx_queue_setup = eth_tx_queue_setup,
.rx_queue_release = eth_rx_queue_release,
.tx_queue_release = eth_tx_queue_release,
.link_update = eth_link_update,
.stats_get = eth_stats_get,
.stats_reset = eth_stats_reset,
.mac_addr_set = eth_mac_addr_set,
};
/*
* This function goes through sysfs and looks for an index of szedata2
* device file (/dev/szedataIIX, where X is the index).
*
* @return
* 0 on success
* -1 on error
*/
static int
get_szedata2_index(const struct rte_pci_addr *pcislot_addr, uint32_t *index)
{
DIR *dir;
struct dirent *entry;
int ret;
uint32_t tmp_index;
FILE *fd;
char pcislot_path[PATH_MAX];
uint32_t domain;
uint8_t bus;
uint8_t devid;
uint8_t function;
dir = opendir("/sys/class/combo");
if (dir == NULL)
return -1;
/*
* Iterate through all combosixX directories.
* When the value in /sys/class/combo/combosixX/device/pcislot
* file is the location of the ethernet device dev, "X" is the
* index of the device.
*/
while ((entry = readdir(dir)) != NULL) {
ret = sscanf(entry->d_name, "combosix%u", &tmp_index);
if (ret != 1)
continue;
snprintf(pcislot_path, PATH_MAX,
"/sys/class/combo/combosix%u/device/pcislot",
tmp_index);
fd = fopen(pcislot_path, "r");
if (fd == NULL)
continue;
ret = fscanf(fd, "%8" SCNx32 ":%2" SCNx8 ":%2" SCNx8 ".%" SCNx8,
&domain, &bus, &devid, &function);
fclose(fd);
if (ret != 4)
continue;
if (pcislot_addr->domain == domain &&
pcislot_addr->bus == bus &&
pcislot_addr->devid == devid &&
pcislot_addr->function == function) {
*index = tmp_index;
closedir(dir);
return 0;
}
}
closedir(dir);
return -1;
}
/**
* @brief Initializes rte_eth_dev device.
* @param dev Device to initialize.
* @param pi Structure with info about DMA queues.
* @return 0 on success, negative error code on error.
*/
static int
rte_szedata2_eth_dev_init(struct rte_eth_dev *dev, struct port_info *pi)
{
int ret;
uint32_t szedata2_index;
char name[PATH_MAX];
struct rte_eth_dev_data *data = dev->data;
struct pmd_internals *internals = (struct pmd_internals *)
data->dev_private;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
PMD_INIT_FUNC_TRACE();
PMD_INIT_LOG(INFO, "Initializing eth_dev %s (driver %s)", data->name,
RTE_STR(RTE_SZEDATA2_DRIVER_NAME));
/* Let rte_eth_dev_close() release the port resources */
dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
/* Fill internal private structure. */
internals->dev = dev;
/* Get index of szedata2 device file and create path to device file */
ret = get_szedata2_index(&pci_dev->addr, &szedata2_index);
if (ret != 0) {
PMD_INIT_LOG(ERR, "Failed to get szedata2 device index!");
return -ENODEV;
}
snprintf(name, PATH_MAX, SZEDATA2_DEV_PATH_FMT, szedata2_index);
internals->sze_dev_path = strdup(name);
if (internals->sze_dev_path == NULL) {
PMD_INIT_LOG(ERR, "strdup() failed!");
return -ENOMEM;
}
PMD_INIT_LOG(INFO, "SZEDATA2 path: %s", internals->sze_dev_path);
internals->max_rx_queues = pi->rx_count;
internals->max_tx_queues = pi->tx_count;
internals->rxq_base_id = pi->rx_base_id;
internals->txq_base_id = pi->tx_base_id;
PMD_INIT_LOG(INFO, "%u RX DMA channels from id %u",
internals->max_rx_queues, internals->rxq_base_id);
PMD_INIT_LOG(INFO, "%u TX DMA channels from id %u",
internals->max_tx_queues, internals->txq_base_id);
/* Set rx, tx burst functions */
if (data->scattered_rx == 1)
dev->rx_pkt_burst = eth_szedata2_rx_scattered;
else
dev->rx_pkt_burst = eth_szedata2_rx;
dev->tx_pkt_burst = eth_szedata2_tx;
/* Set function callbacks for Ethernet API */
dev->dev_ops = &ops;
/* Get link state */
eth_link_update(dev, 0);
/* Allocate space for one mac address */
data->mac_addrs = rte_zmalloc(data->name, sizeof(struct rte_ether_addr),
RTE_CACHE_LINE_SIZE);
if (data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Could not alloc space for MAC address!");
free(internals->sze_dev_path);
return -ENOMEM;
}
rte_ether_addr_copy(&eth_addr, data->mac_addrs);
PMD_INIT_LOG(INFO, "%s device %s successfully initialized",
RTE_STR(RTE_SZEDATA2_DRIVER_NAME), data->name);
return 0;
}
/**
* @brief Unitializes rte_eth_dev device.
* @param dev Device to uninitialize.
* @return 0 on success, negative error code on error.
*/
static int
rte_szedata2_eth_dev_uninit(struct rte_eth_dev *dev)
{
PMD_INIT_FUNC_TRACE();
eth_dev_close(dev);
PMD_DRV_LOG(INFO, "%s device %s successfully uninitialized",
RTE_STR(RTE_SZEDATA2_DRIVER_NAME), dev->data->name);
return 0;
}
static const struct rte_pci_id rte_szedata2_pci_id_table[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
PCI_DEVICE_ID_NETCOPE_COMBO80G)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
PCI_DEVICE_ID_NETCOPE_COMBO100G)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
PCI_DEVICE_ID_NETCOPE_COMBO100G2)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_NETCOPE,
PCI_DEVICE_ID_NETCOPE_NFB200G2QL)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_SILICOM,
PCI_DEVICE_ID_FB2CGG3)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_SILICOM,
PCI_DEVICE_ID_FB2CGG3D)
},
{
.vendor_id = 0,
}
};
/**
* @brief Gets info about DMA queues for ports.
* @param pci_dev PCI device structure.
* @param port_count Pointer to variable set with number of ports.
* @param pi Pointer to array of structures with info about DMA queues
* for ports.
* @param max_ports Maximum number of ports.
* @return 0 on success, negative error code on error.
*/
static int
get_port_info(struct rte_pci_device *pci_dev, unsigned int *port_count,
struct port_info *pi, unsigned int max_ports)
{
struct szedata *szedata_temp;
char sze_dev_path[PATH_MAX];
uint32_t szedata2_index;
int ret;
uint16_t max_rx_queues;
uint16_t max_tx_queues;
if (max_ports == 0)
return -EINVAL;
memset(pi, 0, max_ports * sizeof(struct port_info));
*port_count = 0;
/* Get index of szedata2 device file and create path to device file */
ret = get_szedata2_index(&pci_dev->addr, &szedata2_index);
if (ret != 0) {
PMD_INIT_LOG(ERR, "Failed to get szedata2 device index!");
return -ENODEV;
}
snprintf(sze_dev_path, PATH_MAX, SZEDATA2_DEV_PATH_FMT, szedata2_index);
/*
* Get number of available DMA RX and TX channels, which is maximum
* number of queues that can be created.
*/
szedata_temp = szedata_open(sze_dev_path);
if (szedata_temp == NULL) {
PMD_INIT_LOG(ERR, "szedata_open(%s) failed", sze_dev_path);
return -EINVAL;
}
max_rx_queues = szedata_ifaces_available(szedata_temp, SZE2_DIR_RX);
max_tx_queues = szedata_ifaces_available(szedata_temp, SZE2_DIR_TX);
PMD_INIT_LOG(INFO, "Available DMA channels RX: %u TX: %u",
max_rx_queues, max_tx_queues);
if (max_rx_queues > RTE_ETH_SZEDATA2_MAX_RX_QUEUES) {
PMD_INIT_LOG(ERR, "%u RX queues exceeds supported number %u",
max_rx_queues, RTE_ETH_SZEDATA2_MAX_RX_QUEUES);
szedata_close(szedata_temp);
return -EINVAL;
}
if (max_tx_queues > RTE_ETH_SZEDATA2_MAX_TX_QUEUES) {
PMD_INIT_LOG(ERR, "%u TX queues exceeds supported number %u",
max_tx_queues, RTE_ETH_SZEDATA2_MAX_TX_QUEUES);
szedata_close(szedata_temp);
return -EINVAL;
}
if (pci_dev->id.device_id == PCI_DEVICE_ID_NETCOPE_NFB200G2QL) {
unsigned int i;
unsigned int rx_queues = max_rx_queues / max_ports;
unsigned int tx_queues = max_tx_queues / max_ports;
/*
* Number of queues reported by szedata_ifaces_available()
* is the number of all queues from all DMA controllers which
* may reside at different numa locations.
* All queues from the same DMA controller have the same numa
* node.
* Numa node from the first queue of each DMA controller is
* retrieved.
* If the numa node differs from the numa node of the queues
* from the previous DMA controller the queues are assigned
* to the next port.
*/
for (i = 0; i < max_ports; i++) {
int numa_rx = szedata_get_area_numa_node(szedata_temp,
SZE2_DIR_RX, rx_queues * i);
int numa_tx = szedata_get_area_numa_node(szedata_temp,
SZE2_DIR_TX, tx_queues * i);
unsigned int port_rx_queues = numa_rx != -1 ?
rx_queues : 0;
unsigned int port_tx_queues = numa_tx != -1 ?
tx_queues : 0;
PMD_INIT_LOG(DEBUG, "%u rx queues from id %u, numa %d",
rx_queues, rx_queues * i, numa_rx);
PMD_INIT_LOG(DEBUG, "%u tx queues from id %u, numa %d",
tx_queues, tx_queues * i, numa_tx);
if (port_rx_queues != 0 && port_tx_queues != 0 &&
numa_rx != numa_tx) {
PMD_INIT_LOG(ERR, "RX queue %u numa %d differs "
"from TX queue %u numa %d "
"unexpectedly",
rx_queues * i, numa_rx,
tx_queues * i, numa_tx);
szedata_close(szedata_temp);
return -EINVAL;
} else if (port_rx_queues == 0 && port_tx_queues == 0) {
continue;
} else {
unsigned int j;
unsigned int current = *port_count;
int port_numa = port_rx_queues != 0 ?
numa_rx : numa_tx;
for (j = 0; j < *port_count; j++) {
if (pi[j].numa_node ==
port_numa) {
current = j;
break;
}
}
if (pi[current].rx_count == 0 &&
pi[current].tx_count == 0) {
pi[current].rx_base_id = rx_queues * i;
pi[current].tx_base_id = tx_queues * i;
(*port_count)++;
} else if ((rx_queues * i !=
pi[current].rx_base_id +
pi[current].rx_count) ||
(tx_queues * i !=
pi[current].tx_base_id +
pi[current].tx_count)) {
PMD_INIT_LOG(ERR, "Queue ids does not "
"fulfill constraints");
szedata_close(szedata_temp);
return -EINVAL;
}
pi[current].rx_count += port_rx_queues;
pi[current].tx_count += port_tx_queues;
pi[current].numa_node = port_numa;
}
}
} else {
pi[0].rx_count = max_rx_queues;
pi[0].tx_count = max_tx_queues;
pi[0].numa_node = pci_dev->device.numa_node;
*port_count = 1;
}
szedata_close(szedata_temp);
return 0;
}
/**
* @brief Allocates rte_eth_dev device.
* @param pci_dev Corresponding PCI device.
* @param numa_node NUMA node on which device is allocated.
* @param port_no Id of rte_eth_device created on PCI device pci_dev.
* @return Pointer to allocated device or NULL on error.
*/
static struct rte_eth_dev *
szedata2_eth_dev_allocate(struct rte_pci_device *pci_dev, int numa_node,
unsigned int port_no)
{
struct rte_eth_dev *eth_dev;
char name[RTE_ETH_NAME_MAX_LEN];
PMD_INIT_FUNC_TRACE();
snprintf(name, RTE_ETH_NAME_MAX_LEN, "%s"
SZEDATA2_ETH_DEV_NAME_SUFFIX_FMT,
pci_dev->device.name, port_no);
PMD_INIT_LOG(DEBUG, "Allocating eth_dev %s", name);
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
eth_dev = rte_eth_dev_allocate(name);
if (!eth_dev)
return NULL;
eth_dev->data->dev_private = rte_zmalloc_socket(name,
sizeof(struct pmd_internals), RTE_CACHE_LINE_SIZE,
numa_node);
if (!eth_dev->data->dev_private) {
rte_eth_dev_release_port(eth_dev);
return NULL;
}
} else {
eth_dev = rte_eth_dev_attach_secondary(name);
if (!eth_dev)
return NULL;
}
eth_dev->device = &pci_dev->device;
rte_eth_copy_pci_info(eth_dev, pci_dev);
eth_dev->data->numa_node = numa_node;
return eth_dev;
}
/**
* @brief Releases interval of rte_eth_dev devices from array.
* @param eth_devs Array of pointers to rte_eth_dev devices.
* @param from Index in array eth_devs to start with.
* @param to Index in array right after the last element to release.
*
* Used for releasing at failed initialization.
*/
static void
szedata2_eth_dev_release_interval(struct rte_eth_dev **eth_devs,
unsigned int from, unsigned int to)
{
unsigned int i;
PMD_INIT_FUNC_TRACE();
for (i = from; i < to; i++) {
rte_szedata2_eth_dev_uninit(eth_devs[i]);
rte_eth_dev_pci_release(eth_devs[i]);
}
}
/**
* @brief Callback .probe for struct rte_pci_driver.
*/
static int szedata2_eth_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
struct port_info port_info[SZEDATA2_MAX_PORTS];
unsigned int port_count;
int ret;
unsigned int i;
struct pci_dev_list_entry *list_entry;
struct rte_eth_dev *eth_devs[SZEDATA2_MAX_PORTS] = {NULL,};
PMD_INIT_FUNC_TRACE();
ret = get_port_info(pci_dev, &port_count, port_info,
SZEDATA2_MAX_PORTS);
if (ret != 0)
return ret;
if (port_count == 0) {
PMD_INIT_LOG(ERR, "No available ports!");
return -ENODEV;
}
list_entry = rte_zmalloc(NULL, sizeof(struct pci_dev_list_entry),
RTE_CACHE_LINE_SIZE);
if (list_entry == NULL) {
PMD_INIT_LOG(ERR, "rte_zmalloc() failed!");
return -ENOMEM;
}
for (i = 0; i < port_count; i++) {
eth_devs[i] = szedata2_eth_dev_allocate(pci_dev,
port_info[i].numa_node, i);
if (eth_devs[i] == NULL) {
PMD_INIT_LOG(ERR, "Failed to alloc eth_dev for port %u",
i);
szedata2_eth_dev_release_interval(eth_devs, 0, i);
rte_free(list_entry);
return -ENOMEM;
}
ret = rte_szedata2_eth_dev_init(eth_devs[i], &port_info[i]);
if (ret != 0) {
PMD_INIT_LOG(ERR, "Failed to init eth_dev for port %u",
i);
rte_eth_dev_pci_release(eth_devs[i]);
szedata2_eth_dev_release_interval(eth_devs, 0, i);
rte_free(list_entry);
return ret;
}
rte_eth_dev_probing_finish(eth_devs[i]);
}
/*
* Add pci_dev to list of PCI devices for this driver
* which is used at remove callback to release all created eth_devs.
*/
list_entry->pci_dev = pci_dev;
list_entry->port_count = port_count;
LIST_INSERT_HEAD(&szedata2_pci_dev_list, list_entry, next);
return 0;
}
/**
* @brief Callback .remove for struct rte_pci_driver.
*/
static int szedata2_eth_pci_remove(struct rte_pci_device *pci_dev)
{
unsigned int i;
unsigned int port_count;
char name[RTE_ETH_NAME_MAX_LEN];
struct rte_eth_dev *eth_dev;
int ret;
int retval = 0;
bool found = false;
struct pci_dev_list_entry *list_entry = NULL;
PMD_INIT_FUNC_TRACE();
LIST_FOREACH(list_entry, &szedata2_pci_dev_list, next) {
if (list_entry->pci_dev == pci_dev) {
port_count = list_entry->port_count;
found = true;
break;
}
}
LIST_REMOVE(list_entry, next);
rte_free(list_entry);
if (!found) {
PMD_DRV_LOG(ERR, "PCI device " PCI_PRI_FMT " not found",
pci_dev->addr.domain, pci_dev->addr.bus,
pci_dev->addr.devid, pci_dev->addr.function);
return -ENODEV;
}
for (i = 0; i < port_count; i++) {
snprintf(name, RTE_ETH_NAME_MAX_LEN, "%s"
SZEDATA2_ETH_DEV_NAME_SUFFIX_FMT,
pci_dev->device.name, i);
PMD_DRV_LOG(DEBUG, "Removing eth_dev %s", name);
eth_dev = rte_eth_dev_allocated(name);
if (!eth_dev) {
PMD_DRV_LOG(ERR, "eth_dev %s not found", name);
retval = retval ? retval : -ENODEV;
}
ret = rte_szedata2_eth_dev_uninit(eth_dev);
if (ret != 0) {
PMD_DRV_LOG(ERR, "eth_dev %s uninit failed", name);
retval = retval ? retval : ret;
}
rte_eth_dev_pci_release(eth_dev);
}
return retval;
}
static struct rte_pci_driver szedata2_eth_driver = {
.id_table = rte_szedata2_pci_id_table,
.probe = szedata2_eth_pci_probe,
.remove = szedata2_eth_pci_remove,
};
RTE_PMD_REGISTER_PCI(RTE_SZEDATA2_DRIVER_NAME, szedata2_eth_driver);
RTE_PMD_REGISTER_PCI_TABLE(RTE_SZEDATA2_DRIVER_NAME, rte_szedata2_pci_id_table);
RTE_PMD_REGISTER_KMOD_DEP(RTE_SZEDATA2_DRIVER_NAME,
"* combo6core & combov3 & szedata2 & ( szedata2_cv3 | szedata2_cv3_fdt )");
RTE_LOG_REGISTER(szedata2_logtype_init, pmd.net.szedata2.init, NOTICE);
RTE_LOG_REGISTER(szedata2_logtype_driver, pmd.net.szedata2.driver, NOTICE);