numam-dpdk/drivers/net/mlx5/mlx5_rxq.c
Shahaf Shuler 626e8bfb84 net/mlx5: fix completion buffer size
Completion buffer size was computed wrongly, causing
completion polling to wraparound too early and miss entries.

Fixing it by using Direct Verbs to query the CQ info.

Fixes: 6218063b39 ("net/mlx5: refactor Rx data path")
Fixes: 1d88ba1719 ("net/mlx5: refactor Tx data path")
Cc: stable@dpdk.org

Signed-off-by: Shahaf Shuler <shahafs@mellanox.com>
Acked-by: Yongseok Koh <yskoh@mellanox.com>
Acked-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com>
2017-06-12 10:41:26 +01:00

1421 lines
39 KiB
C

/*-
* BSD LICENSE
*
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of 6WIND S.A. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stddef.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <stdint.h>
#include <fcntl.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#include <infiniband/arch.h>
#include <infiniband/mlx5_hw.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
/* DPDK headers don't like -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ethdev.h>
#include <rte_common.h>
#include <rte_interrupts.h>
#include <rte_debug.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include "mlx5.h"
#include "mlx5_rxtx.h"
#include "mlx5_utils.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
/* Initialization data for hash RX queues. */
const struct hash_rxq_init hash_rxq_init[] = {
[HASH_RXQ_TCPV4] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV4 |
IBV_EXP_RX_HASH_DST_IPV4 |
IBV_EXP_RX_HASH_SRC_PORT_TCP |
IBV_EXP_RX_HASH_DST_PORT_TCP),
.dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_TCP,
.flow_priority = 0,
.flow_spec.tcp_udp = {
.type = IBV_EXP_FLOW_SPEC_TCP,
.size = sizeof(hash_rxq_init[0].flow_spec.tcp_udp),
},
.underlayer = &hash_rxq_init[HASH_RXQ_IPV4],
},
[HASH_RXQ_UDPV4] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV4 |
IBV_EXP_RX_HASH_DST_IPV4 |
IBV_EXP_RX_HASH_SRC_PORT_UDP |
IBV_EXP_RX_HASH_DST_PORT_UDP),
.dpdk_rss_hf = ETH_RSS_NONFRAG_IPV4_UDP,
.flow_priority = 0,
.flow_spec.tcp_udp = {
.type = IBV_EXP_FLOW_SPEC_UDP,
.size = sizeof(hash_rxq_init[0].flow_spec.tcp_udp),
},
.underlayer = &hash_rxq_init[HASH_RXQ_IPV4],
},
[HASH_RXQ_IPV4] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV4 |
IBV_EXP_RX_HASH_DST_IPV4),
.dpdk_rss_hf = (ETH_RSS_IPV4 |
ETH_RSS_FRAG_IPV4),
.flow_priority = 1,
.flow_spec.ipv4 = {
.type = IBV_EXP_FLOW_SPEC_IPV4,
.size = sizeof(hash_rxq_init[0].flow_spec.ipv4),
},
.underlayer = &hash_rxq_init[HASH_RXQ_ETH],
},
[HASH_RXQ_TCPV6] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV6 |
IBV_EXP_RX_HASH_DST_IPV6 |
IBV_EXP_RX_HASH_SRC_PORT_TCP |
IBV_EXP_RX_HASH_DST_PORT_TCP),
.dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_TCP,
.flow_priority = 0,
.flow_spec.tcp_udp = {
.type = IBV_EXP_FLOW_SPEC_TCP,
.size = sizeof(hash_rxq_init[0].flow_spec.tcp_udp),
},
.underlayer = &hash_rxq_init[HASH_RXQ_IPV6],
},
[HASH_RXQ_UDPV6] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV6 |
IBV_EXP_RX_HASH_DST_IPV6 |
IBV_EXP_RX_HASH_SRC_PORT_UDP |
IBV_EXP_RX_HASH_DST_PORT_UDP),
.dpdk_rss_hf = ETH_RSS_NONFRAG_IPV6_UDP,
.flow_priority = 0,
.flow_spec.tcp_udp = {
.type = IBV_EXP_FLOW_SPEC_UDP,
.size = sizeof(hash_rxq_init[0].flow_spec.tcp_udp),
},
.underlayer = &hash_rxq_init[HASH_RXQ_IPV6],
},
[HASH_RXQ_IPV6] = {
.hash_fields = (IBV_EXP_RX_HASH_SRC_IPV6 |
IBV_EXP_RX_HASH_DST_IPV6),
.dpdk_rss_hf = (ETH_RSS_IPV6 |
ETH_RSS_FRAG_IPV6),
.flow_priority = 1,
.flow_spec.ipv6 = {
.type = IBV_EXP_FLOW_SPEC_IPV6,
.size = sizeof(hash_rxq_init[0].flow_spec.ipv6),
},
.underlayer = &hash_rxq_init[HASH_RXQ_ETH],
},
[HASH_RXQ_ETH] = {
.hash_fields = 0,
.dpdk_rss_hf = 0,
.flow_priority = 2,
.flow_spec.eth = {
.type = IBV_EXP_FLOW_SPEC_ETH,
.size = sizeof(hash_rxq_init[0].flow_spec.eth),
},
.underlayer = NULL,
},
};
/* Number of entries in hash_rxq_init[]. */
const unsigned int hash_rxq_init_n = RTE_DIM(hash_rxq_init);
/* Initialization data for hash RX queue indirection tables. */
static const struct ind_table_init ind_table_init[] = {
{
.max_size = -1u, /* Superseded by HW limitations. */
.hash_types =
1 << HASH_RXQ_TCPV4 |
1 << HASH_RXQ_UDPV4 |
1 << HASH_RXQ_IPV4 |
1 << HASH_RXQ_TCPV6 |
1 << HASH_RXQ_UDPV6 |
1 << HASH_RXQ_IPV6 |
0,
.hash_types_n = 6,
},
{
.max_size = 1,
.hash_types = 1 << HASH_RXQ_ETH,
.hash_types_n = 1,
},
};
#define IND_TABLE_INIT_N RTE_DIM(ind_table_init)
/* Default RSS hash key also used for ConnectX-3. */
uint8_t rss_hash_default_key[] = {
0x2c, 0xc6, 0x81, 0xd1,
0x5b, 0xdb, 0xf4, 0xf7,
0xfc, 0xa2, 0x83, 0x19,
0xdb, 0x1a, 0x3e, 0x94,
0x6b, 0x9e, 0x38, 0xd9,
0x2c, 0x9c, 0x03, 0xd1,
0xad, 0x99, 0x44, 0xa7,
0xd9, 0x56, 0x3d, 0x59,
0x06, 0x3c, 0x25, 0xf3,
0xfc, 0x1f, 0xdc, 0x2a,
};
/* Length of the default RSS hash key. */
const size_t rss_hash_default_key_len = sizeof(rss_hash_default_key);
/**
* Populate flow steering rule for a given hash RX queue type using
* information from hash_rxq_init[]. Nothing is written to flow_attr when
* flow_attr_size is not large enough, but the required size is still returned.
*
* @param priv
* Pointer to private structure.
* @param[out] flow_attr
* Pointer to flow attribute structure to fill. Note that the allocated
* area must be larger and large enough to hold all flow specifications.
* @param flow_attr_size
* Entire size of flow_attr and trailing room for flow specifications.
* @param type
* Hash RX queue type to use for flow steering rule.
*
* @return
* Total size of the flow attribute buffer. No errors are defined.
*/
size_t
priv_flow_attr(struct priv *priv, struct ibv_exp_flow_attr *flow_attr,
size_t flow_attr_size, enum hash_rxq_type type)
{
size_t offset = sizeof(*flow_attr);
const struct hash_rxq_init *init = &hash_rxq_init[type];
assert(priv != NULL);
assert((size_t)type < RTE_DIM(hash_rxq_init));
do {
offset += init->flow_spec.hdr.size;
init = init->underlayer;
} while (init != NULL);
if (offset > flow_attr_size)
return offset;
flow_attr_size = offset;
init = &hash_rxq_init[type];
*flow_attr = (struct ibv_exp_flow_attr){
.type = IBV_EXP_FLOW_ATTR_NORMAL,
/* Priorities < 3 are reserved for flow director. */
.priority = init->flow_priority + 3,
.num_of_specs = 0,
.port = priv->port,
.flags = 0,
};
do {
offset -= init->flow_spec.hdr.size;
memcpy((void *)((uintptr_t)flow_attr + offset),
&init->flow_spec,
init->flow_spec.hdr.size);
++flow_attr->num_of_specs;
init = init->underlayer;
} while (init != NULL);
return flow_attr_size;
}
/**
* Convert hash type position in indirection table initializer to
* hash RX queue type.
*
* @param table
* Indirection table initializer.
* @param pos
* Hash type position.
*
* @return
* Hash RX queue type.
*/
static enum hash_rxq_type
hash_rxq_type_from_pos(const struct ind_table_init *table, unsigned int pos)
{
enum hash_rxq_type type = HASH_RXQ_TCPV4;
assert(pos < table->hash_types_n);
do {
if ((table->hash_types & (1 << type)) && (pos-- == 0))
break;
++type;
} while (1);
return type;
}
/**
* Filter out disabled hash RX queue types from ind_table_init[].
*
* @param priv
* Pointer to private structure.
* @param[out] table
* Output table.
*
* @return
* Number of table entries.
*/
static unsigned int
priv_make_ind_table_init(struct priv *priv,
struct ind_table_init (*table)[IND_TABLE_INIT_N])
{
uint64_t rss_hf;
unsigned int i;
unsigned int j;
unsigned int table_n = 0;
/* Mandatory to receive frames not handled by normal hash RX queues. */
unsigned int hash_types_sup = 1 << HASH_RXQ_ETH;
rss_hf = priv->rss_hf;
/* Process other protocols only if more than one queue. */
if (priv->rxqs_n > 1)
for (i = 0; (i != hash_rxq_init_n); ++i)
if (rss_hf & hash_rxq_init[i].dpdk_rss_hf)
hash_types_sup |= (1 << i);
/* Filter out entries whose protocols are not in the set. */
for (i = 0, j = 0; (i != IND_TABLE_INIT_N); ++i) {
unsigned int nb;
unsigned int h;
/* j is increased only if the table has valid protocols. */
assert(j <= i);
(*table)[j] = ind_table_init[i];
(*table)[j].hash_types &= hash_types_sup;
for (h = 0, nb = 0; (h != hash_rxq_init_n); ++h)
if (((*table)[j].hash_types >> h) & 0x1)
++nb;
(*table)[i].hash_types_n = nb;
if (nb) {
++table_n;
++j;
}
}
return table_n;
}
/**
* Initialize hash RX queues and indirection table.
*
* @param priv
* Pointer to private structure.
*
* @return
* 0 on success, errno value on failure.
*/
int
priv_create_hash_rxqs(struct priv *priv)
{
struct ibv_exp_wq *wqs[priv->reta_idx_n];
struct ind_table_init ind_table_init[IND_TABLE_INIT_N];
unsigned int ind_tables_n =
priv_make_ind_table_init(priv, &ind_table_init);
unsigned int hash_rxqs_n = 0;
struct hash_rxq (*hash_rxqs)[] = NULL;
struct ibv_exp_rwq_ind_table *(*ind_tables)[] = NULL;
unsigned int i;
unsigned int j;
unsigned int k;
int err = 0;
assert(priv->ind_tables == NULL);
assert(priv->ind_tables_n == 0);
assert(priv->hash_rxqs == NULL);
assert(priv->hash_rxqs_n == 0);
assert(priv->pd != NULL);
assert(priv->ctx != NULL);
if (priv->rxqs_n == 0)
return EINVAL;
assert(priv->rxqs != NULL);
if (ind_tables_n == 0) {
ERROR("all hash RX queue types have been filtered out,"
" indirection table cannot be created");
return EINVAL;
}
if (priv->rxqs_n & (priv->rxqs_n - 1)) {
INFO("%u RX queues are configured, consider rounding this"
" number to the next power of two for better balancing",
priv->rxqs_n);
DEBUG("indirection table extended to assume %u WQs",
priv->reta_idx_n);
}
for (i = 0; (i != priv->reta_idx_n); ++i) {
struct rxq_ctrl *rxq_ctrl;
rxq_ctrl = container_of((*priv->rxqs)[(*priv->reta_idx)[i]],
struct rxq_ctrl, rxq);
wqs[i] = rxq_ctrl->wq;
}
/* Get number of hash RX queues to configure. */
for (i = 0, hash_rxqs_n = 0; (i != ind_tables_n); ++i)
hash_rxqs_n += ind_table_init[i].hash_types_n;
DEBUG("allocating %u hash RX queues for %u WQs, %u indirection tables",
hash_rxqs_n, priv->rxqs_n, ind_tables_n);
/* Create indirection tables. */
ind_tables = rte_calloc(__func__, ind_tables_n,
sizeof((*ind_tables)[0]), 0);
if (ind_tables == NULL) {
err = ENOMEM;
ERROR("cannot allocate indirection tables container: %s",
strerror(err));
goto error;
}
for (i = 0; (i != ind_tables_n); ++i) {
struct ibv_exp_rwq_ind_table_init_attr ind_init_attr = {
.pd = priv->pd,
.log_ind_tbl_size = 0, /* Set below. */
.ind_tbl = wqs,
.comp_mask = 0,
};
unsigned int ind_tbl_size = ind_table_init[i].max_size;
struct ibv_exp_rwq_ind_table *ind_table;
if (priv->reta_idx_n < ind_tbl_size)
ind_tbl_size = priv->reta_idx_n;
ind_init_attr.log_ind_tbl_size = log2above(ind_tbl_size);
errno = 0;
ind_table = ibv_exp_create_rwq_ind_table(priv->ctx,
&ind_init_attr);
if (ind_table != NULL) {
(*ind_tables)[i] = ind_table;
continue;
}
/* Not clear whether errno is set. */
err = (errno ? errno : EINVAL);
ERROR("RX indirection table creation failed with error %d: %s",
err, strerror(err));
goto error;
}
/* Allocate array that holds hash RX queues and related data. */
hash_rxqs = rte_calloc(__func__, hash_rxqs_n,
sizeof((*hash_rxqs)[0]), 0);
if (hash_rxqs == NULL) {
err = ENOMEM;
ERROR("cannot allocate hash RX queues container: %s",
strerror(err));
goto error;
}
for (i = 0, j = 0, k = 0;
((i != hash_rxqs_n) && (j != ind_tables_n));
++i) {
struct hash_rxq *hash_rxq = &(*hash_rxqs)[i];
enum hash_rxq_type type =
hash_rxq_type_from_pos(&ind_table_init[j], k);
struct rte_eth_rss_conf *priv_rss_conf =
(*priv->rss_conf)[type];
struct ibv_exp_rx_hash_conf hash_conf = {
.rx_hash_function = IBV_EXP_RX_HASH_FUNC_TOEPLITZ,
.rx_hash_key_len = (priv_rss_conf ?
priv_rss_conf->rss_key_len :
rss_hash_default_key_len),
.rx_hash_key = (priv_rss_conf ?
priv_rss_conf->rss_key :
rss_hash_default_key),
.rx_hash_fields_mask = hash_rxq_init[type].hash_fields,
.rwq_ind_tbl = (*ind_tables)[j],
};
struct ibv_exp_qp_init_attr qp_init_attr = {
.max_inl_recv = 0, /* Currently not supported. */
.qp_type = IBV_QPT_RAW_PACKET,
.comp_mask = (IBV_EXP_QP_INIT_ATTR_PD |
IBV_EXP_QP_INIT_ATTR_RX_HASH),
.pd = priv->pd,
.rx_hash_conf = &hash_conf,
.port_num = priv->port,
};
DEBUG("using indirection table %u for hash RX queue %u type %d",
j, i, type);
*hash_rxq = (struct hash_rxq){
.priv = priv,
.qp = ibv_exp_create_qp(priv->ctx, &qp_init_attr),
.type = type,
};
if (hash_rxq->qp == NULL) {
err = (errno ? errno : EINVAL);
ERROR("Hash RX QP creation failure: %s",
strerror(err));
goto error;
}
if (++k < ind_table_init[j].hash_types_n)
continue;
/* Switch to the next indirection table and reset hash RX
* queue type array index. */
++j;
k = 0;
}
priv->ind_tables = ind_tables;
priv->ind_tables_n = ind_tables_n;
priv->hash_rxqs = hash_rxqs;
priv->hash_rxqs_n = hash_rxqs_n;
assert(err == 0);
return 0;
error:
if (hash_rxqs != NULL) {
for (i = 0; (i != hash_rxqs_n); ++i) {
struct ibv_qp *qp = (*hash_rxqs)[i].qp;
if (qp == NULL)
continue;
claim_zero(ibv_destroy_qp(qp));
}
rte_free(hash_rxqs);
}
if (ind_tables != NULL) {
for (j = 0; (j != ind_tables_n); ++j) {
struct ibv_exp_rwq_ind_table *ind_table =
(*ind_tables)[j];
if (ind_table == NULL)
continue;
claim_zero(ibv_exp_destroy_rwq_ind_table(ind_table));
}
rte_free(ind_tables);
}
return err;
}
/**
* Clean up hash RX queues and indirection table.
*
* @param priv
* Pointer to private structure.
*/
void
priv_destroy_hash_rxqs(struct priv *priv)
{
unsigned int i;
DEBUG("destroying %u hash RX queues", priv->hash_rxqs_n);
if (priv->hash_rxqs_n == 0) {
assert(priv->hash_rxqs == NULL);
assert(priv->ind_tables == NULL);
return;
}
for (i = 0; (i != priv->hash_rxqs_n); ++i) {
struct hash_rxq *hash_rxq = &(*priv->hash_rxqs)[i];
unsigned int j, k;
assert(hash_rxq->priv == priv);
assert(hash_rxq->qp != NULL);
/* Also check that there are no remaining flows. */
for (j = 0; (j != RTE_DIM(hash_rxq->special_flow)); ++j)
for (k = 0;
(k != RTE_DIM(hash_rxq->special_flow[j]));
++k)
assert(hash_rxq->special_flow[j][k] == NULL);
for (j = 0; (j != RTE_DIM(hash_rxq->mac_flow)); ++j)
for (k = 0; (k != RTE_DIM(hash_rxq->mac_flow[j])); ++k)
assert(hash_rxq->mac_flow[j][k] == NULL);
claim_zero(ibv_destroy_qp(hash_rxq->qp));
}
priv->hash_rxqs_n = 0;
rte_free(priv->hash_rxqs);
priv->hash_rxqs = NULL;
for (i = 0; (i != priv->ind_tables_n); ++i) {
struct ibv_exp_rwq_ind_table *ind_table =
(*priv->ind_tables)[i];
assert(ind_table != NULL);
claim_zero(ibv_exp_destroy_rwq_ind_table(ind_table));
}
priv->ind_tables_n = 0;
rte_free(priv->ind_tables);
priv->ind_tables = NULL;
}
/**
* Check whether a given flow type is allowed.
*
* @param priv
* Pointer to private structure.
* @param type
* Flow type to check.
*
* @return
* Nonzero if the given flow type is allowed.
*/
int
priv_allow_flow_type(struct priv *priv, enum hash_rxq_flow_type type)
{
/* Only FLOW_TYPE_PROMISC is allowed when promiscuous mode
* has been requested. */
if (priv->promisc_req)
return type == HASH_RXQ_FLOW_TYPE_PROMISC;
switch (type) {
case HASH_RXQ_FLOW_TYPE_PROMISC:
return !!priv->promisc_req;
case HASH_RXQ_FLOW_TYPE_ALLMULTI:
return !!priv->allmulti_req;
case HASH_RXQ_FLOW_TYPE_BROADCAST:
case HASH_RXQ_FLOW_TYPE_IPV6MULTI:
/* If allmulti is enabled, broadcast and ipv6multi
* are unnecessary. */
return !priv->allmulti_req;
case HASH_RXQ_FLOW_TYPE_MAC:
return 1;
default:
/* Unsupported flow type is not allowed. */
return 0;
}
return 0;
}
/**
* Automatically enable/disable flows according to configuration.
*
* @param priv
* Private structure.
*
* @return
* 0 on success, errno value on failure.
*/
int
priv_rehash_flows(struct priv *priv)
{
enum hash_rxq_flow_type i;
for (i = HASH_RXQ_FLOW_TYPE_PROMISC;
i != RTE_DIM((*priv->hash_rxqs)[0].special_flow);
++i)
if (!priv_allow_flow_type(priv, i)) {
priv_special_flow_disable(priv, i);
} else {
int ret = priv_special_flow_enable(priv, i);
if (ret)
return ret;
}
if (priv_allow_flow_type(priv, HASH_RXQ_FLOW_TYPE_MAC))
return priv_mac_addrs_enable(priv);
priv_mac_addrs_disable(priv);
return 0;
}
/**
* Allocate RX queue elements.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
* @param elts_n
* Number of elements to allocate.
* @param[in] pool
* If not NULL, fetch buffers from this array instead of allocating them
* with rte_pktmbuf_alloc().
*
* @return
* 0 on success, errno value on failure.
*/
static int
rxq_alloc_elts(struct rxq_ctrl *rxq_ctrl, unsigned int elts_n,
struct rte_mbuf *(*pool)[])
{
const unsigned int sges_n = 1 << rxq_ctrl->rxq.sges_n;
unsigned int i;
int ret = 0;
/* Iterate on segments. */
for (i = 0; (i != elts_n); ++i) {
struct rte_mbuf *buf;
volatile struct mlx5_wqe_data_seg *scat =
&(*rxq_ctrl->rxq.wqes)[i];
if (pool != NULL) {
buf = (*pool)[i];
assert(buf != NULL);
rte_pktmbuf_reset(buf);
rte_pktmbuf_refcnt_update(buf, 1);
} else
buf = rte_pktmbuf_alloc(rxq_ctrl->rxq.mp);
if (buf == NULL) {
assert(pool == NULL);
ERROR("%p: empty mbuf pool", (void *)rxq_ctrl);
ret = ENOMEM;
goto error;
}
/* Headroom is reserved by rte_pktmbuf_alloc(). */
assert(DATA_OFF(buf) == RTE_PKTMBUF_HEADROOM);
/* Buffer is supposed to be empty. */
assert(rte_pktmbuf_data_len(buf) == 0);
assert(rte_pktmbuf_pkt_len(buf) == 0);
assert(!buf->next);
/* Only the first segment keeps headroom. */
if (i % sges_n)
SET_DATA_OFF(buf, 0);
PORT(buf) = rxq_ctrl->rxq.port_id;
DATA_LEN(buf) = rte_pktmbuf_tailroom(buf);
PKT_LEN(buf) = DATA_LEN(buf);
NB_SEGS(buf) = 1;
/* scat->addr must be able to store a pointer. */
assert(sizeof(scat->addr) >= sizeof(uintptr_t));
*scat = (struct mlx5_wqe_data_seg){
.addr = htonll(rte_pktmbuf_mtod(buf, uintptr_t)),
.byte_count = htonl(DATA_LEN(buf)),
.lkey = htonl(rxq_ctrl->mr->lkey),
};
(*rxq_ctrl->rxq.elts)[i] = buf;
}
DEBUG("%p: allocated and configured %u segments (max %u packets)",
(void *)rxq_ctrl, elts_n, elts_n / (1 << rxq_ctrl->rxq.sges_n));
assert(ret == 0);
return 0;
error:
assert(pool == NULL);
elts_n = i;
for (i = 0; (i != elts_n); ++i) {
if ((*rxq_ctrl->rxq.elts)[i] != NULL)
rte_pktmbuf_free_seg((*rxq_ctrl->rxq.elts)[i]);
(*rxq_ctrl->rxq.elts)[i] = NULL;
}
DEBUG("%p: failed, freed everything", (void *)rxq_ctrl);
assert(ret > 0);
return ret;
}
/**
* Free RX queue elements.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
*/
static void
rxq_free_elts(struct rxq_ctrl *rxq_ctrl)
{
unsigned int i;
DEBUG("%p: freeing WRs", (void *)rxq_ctrl);
if (rxq_ctrl->rxq.elts == NULL)
return;
for (i = 0; (i != (1u << rxq_ctrl->rxq.elts_n)); ++i) {
if ((*rxq_ctrl->rxq.elts)[i] != NULL)
rte_pktmbuf_free_seg((*rxq_ctrl->rxq.elts)[i]);
(*rxq_ctrl->rxq.elts)[i] = NULL;
}
}
/**
* Clean up a RX queue.
*
* Destroy objects, free allocated memory and reset the structure for reuse.
*
* @param rxq_ctrl
* Pointer to RX queue structure.
*/
void
rxq_cleanup(struct rxq_ctrl *rxq_ctrl)
{
DEBUG("cleaning up %p", (void *)rxq_ctrl);
rxq_free_elts(rxq_ctrl);
if (rxq_ctrl->fdir_queue != NULL)
priv_fdir_queue_destroy(rxq_ctrl->priv, rxq_ctrl->fdir_queue);
if (rxq_ctrl->wq != NULL)
claim_zero(ibv_exp_destroy_wq(rxq_ctrl->wq));
if (rxq_ctrl->cq != NULL)
claim_zero(ibv_destroy_cq(rxq_ctrl->cq));
if (rxq_ctrl->channel != NULL)
claim_zero(ibv_destroy_comp_channel(rxq_ctrl->channel));
if (rxq_ctrl->mr != NULL)
claim_zero(ibv_dereg_mr(rxq_ctrl->mr));
memset(rxq_ctrl, 0, sizeof(*rxq_ctrl));
}
/**
* Reconfigure RX queue buffers.
*
* rxq_rehash() does not allocate mbufs, which, if not done from the right
* thread (such as a control thread), may corrupt the pool.
* In case of failure, the queue is left untouched.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rxq_ctrl
* RX queue pointer.
*
* @return
* 0 on success, errno value on failure.
*/
int
rxq_rehash(struct rte_eth_dev *dev, struct rxq_ctrl *rxq_ctrl)
{
unsigned int elts_n = 1 << rxq_ctrl->rxq.elts_n;
unsigned int i;
struct ibv_exp_wq_attr mod;
int err;
DEBUG("%p: rehashing queue %p with %u SGE(s) per packet",
(void *)dev, (void *)rxq_ctrl, 1 << rxq_ctrl->rxq.sges_n);
assert(!(elts_n % (1 << rxq_ctrl->rxq.sges_n)));
/* From now on, any failure will render the queue unusable.
* Reinitialize WQ. */
mod = (struct ibv_exp_wq_attr){
.attr_mask = IBV_EXP_WQ_ATTR_STATE,
.wq_state = IBV_EXP_WQS_RESET,
};
err = ibv_exp_modify_wq(rxq_ctrl->wq, &mod);
if (err) {
ERROR("%p: cannot reset WQ: %s", (void *)dev, strerror(err));
assert(err > 0);
return err;
}
/* Snatch mbufs from original queue. */
claim_zero(rxq_alloc_elts(rxq_ctrl, elts_n, rxq_ctrl->rxq.elts));
for (i = 0; i != elts_n; ++i) {
struct rte_mbuf *buf = (*rxq_ctrl->rxq.elts)[i];
assert(rte_mbuf_refcnt_read(buf) == 2);
rte_pktmbuf_free_seg(buf);
}
/* Change queue state to ready. */
mod = (struct ibv_exp_wq_attr){
.attr_mask = IBV_EXP_WQ_ATTR_STATE,
.wq_state = IBV_EXP_WQS_RDY,
};
err = ibv_exp_modify_wq(rxq_ctrl->wq, &mod);
if (err) {
ERROR("%p: WQ state to IBV_EXP_WQS_RDY failed: %s",
(void *)dev, strerror(err));
goto error;
}
/* Update doorbell counter. */
rxq_ctrl->rxq.rq_ci = elts_n >> rxq_ctrl->rxq.sges_n;
rte_wmb();
*rxq_ctrl->rxq.rq_db = htonl(rxq_ctrl->rxq.rq_ci);
error:
assert(err >= 0);
return err;
}
/**
* Initialize RX queue.
*
* @param tmpl
* Pointer to RX queue control template.
*
* @return
* 0 on success, errno value on failure.
*/
static inline int
rxq_setup(struct rxq_ctrl *tmpl)
{
struct ibv_cq *ibcq = tmpl->cq;
struct ibv_mlx5_cq_info cq_info;
struct mlx5_rwq *rwq = container_of(tmpl->wq, struct mlx5_rwq, wq);
struct rte_mbuf *(*elts)[1 << tmpl->rxq.elts_n] =
rte_calloc_socket("RXQ", 1, sizeof(*elts), 0, tmpl->socket);
if (ibv_mlx5_exp_get_cq_info(ibcq, &cq_info)) {
ERROR("Unable to query CQ info. check your OFED.");
return ENOTSUP;
}
if (cq_info.cqe_size != RTE_CACHE_LINE_SIZE) {
ERROR("Wrong MLX5_CQE_SIZE environment variable value: "
"it should be set to %u", RTE_CACHE_LINE_SIZE);
return EINVAL;
}
if (elts == NULL)
return ENOMEM;
tmpl->rxq.rq_db = rwq->rq.db;
tmpl->rxq.cqe_n = log2above(cq_info.cqe_cnt);
tmpl->rxq.cq_ci = 0;
tmpl->rxq.rq_ci = 0;
tmpl->rxq.cq_db = cq_info.dbrec;
tmpl->rxq.wqes =
(volatile struct mlx5_wqe_data_seg (*)[])
(uintptr_t)rwq->rq.buff;
tmpl->rxq.cqes =
(volatile struct mlx5_cqe (*)[])
(uintptr_t)cq_info.buf;
tmpl->rxq.elts = elts;
return 0;
}
/**
* Configure a RX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param rxq_ctrl
* Pointer to RX queue structure.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, errno value on failure.
*/
int
rxq_ctrl_setup(struct rte_eth_dev *dev, struct rxq_ctrl *rxq_ctrl,
uint16_t desc, unsigned int socket,
const struct rte_eth_rxconf *conf, struct rte_mempool *mp)
{
struct priv *priv = dev->data->dev_private;
struct rxq_ctrl tmpl = {
.priv = priv,
.socket = socket,
.rxq = {
.elts_n = log2above(desc),
.mp = mp,
.rss_hash = priv->rxqs_n > 1,
},
};
struct ibv_exp_wq_attr mod;
union {
struct ibv_exp_cq_init_attr cq;
struct ibv_exp_wq_init_attr wq;
struct ibv_exp_cq_attr cq_attr;
} attr;
unsigned int mb_len = rte_pktmbuf_data_room_size(mp);
unsigned int cqe_n = desc - 1;
struct rte_mbuf *(*elts)[desc] = NULL;
int ret = 0;
(void)conf; /* Thresholds configuration (ignored). */
/* Enable scattered packets support for this queue if necessary. */
assert(mb_len >= RTE_PKTMBUF_HEADROOM);
if (dev->data->dev_conf.rxmode.max_rx_pkt_len <=
(mb_len - RTE_PKTMBUF_HEADROOM)) {
tmpl.rxq.sges_n = 0;
} else if (dev->data->dev_conf.rxmode.enable_scatter) {
unsigned int size =
RTE_PKTMBUF_HEADROOM +
dev->data->dev_conf.rxmode.max_rx_pkt_len;
unsigned int sges_n;
/*
* Determine the number of SGEs needed for a full packet
* and round it to the next power of two.
*/
sges_n = log2above((size / mb_len) + !!(size % mb_len));
tmpl.rxq.sges_n = sges_n;
/* Make sure rxq.sges_n did not overflow. */
size = mb_len * (1 << tmpl.rxq.sges_n);
size -= RTE_PKTMBUF_HEADROOM;
if (size < dev->data->dev_conf.rxmode.max_rx_pkt_len) {
ERROR("%p: too many SGEs (%u) needed to handle"
" requested maximum packet size %u",
(void *)dev,
1 << sges_n,
dev->data->dev_conf.rxmode.max_rx_pkt_len);
return EOVERFLOW;
}
} else {
WARN("%p: the requested maximum Rx packet size (%u) is"
" larger than a single mbuf (%u) and scattered"
" mode has not been requested",
(void *)dev,
dev->data->dev_conf.rxmode.max_rx_pkt_len,
mb_len - RTE_PKTMBUF_HEADROOM);
}
DEBUG("%p: maximum number of segments per packet: %u",
(void *)dev, 1 << tmpl.rxq.sges_n);
if (desc % (1 << tmpl.rxq.sges_n)) {
ERROR("%p: number of RX queue descriptors (%u) is not a"
" multiple of SGEs per packet (%u)",
(void *)dev,
desc,
1 << tmpl.rxq.sges_n);
return EINVAL;
}
/* Toggle RX checksum offload if hardware supports it. */
if (priv->hw_csum)
tmpl.rxq.csum = !!dev->data->dev_conf.rxmode.hw_ip_checksum;
if (priv->hw_csum_l2tun)
tmpl.rxq.csum_l2tun =
!!dev->data->dev_conf.rxmode.hw_ip_checksum;
/* Use the entire RX mempool as the memory region. */
tmpl.mr = mlx5_mp2mr(priv->pd, mp);
if (tmpl.mr == NULL) {
ret = EINVAL;
ERROR("%p: MR creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
if (dev->data->dev_conf.intr_conf.rxq) {
tmpl.channel = ibv_create_comp_channel(priv->ctx);
if (tmpl.channel == NULL) {
dev->data->dev_conf.intr_conf.rxq = 0;
ret = ENOMEM;
ERROR("%p: Comp Channel creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
}
attr.cq = (struct ibv_exp_cq_init_attr){
.comp_mask = 0,
};
if (priv->cqe_comp) {
attr.cq.comp_mask |= IBV_EXP_CQ_INIT_ATTR_FLAGS;
attr.cq.flags |= IBV_EXP_CQ_COMPRESSED_CQE;
cqe_n = (desc * 2) - 1; /* Double the number of CQEs. */
}
tmpl.cq = ibv_exp_create_cq(priv->ctx, cqe_n, NULL, tmpl.channel, 0,
&attr.cq);
if (tmpl.cq == NULL) {
ret = ENOMEM;
ERROR("%p: CQ creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
DEBUG("priv->device_attr.max_qp_wr is %d",
priv->device_attr.max_qp_wr);
DEBUG("priv->device_attr.max_sge is %d",
priv->device_attr.max_sge);
/* Configure VLAN stripping. */
tmpl.rxq.vlan_strip = (priv->hw_vlan_strip &&
!!dev->data->dev_conf.rxmode.hw_vlan_strip);
attr.wq = (struct ibv_exp_wq_init_attr){
.wq_context = NULL, /* Could be useful in the future. */
.wq_type = IBV_EXP_WQT_RQ,
/* Max number of outstanding WRs. */
.max_recv_wr = desc >> tmpl.rxq.sges_n,
/* Max number of scatter/gather elements in a WR. */
.max_recv_sge = 1 << tmpl.rxq.sges_n,
.pd = priv->pd,
.cq = tmpl.cq,
.comp_mask =
IBV_EXP_CREATE_WQ_VLAN_OFFLOADS |
0,
.vlan_offloads = (tmpl.rxq.vlan_strip ?
IBV_EXP_RECEIVE_WQ_CVLAN_STRIP :
0),
};
/* By default, FCS (CRC) is stripped by hardware. */
if (dev->data->dev_conf.rxmode.hw_strip_crc) {
tmpl.rxq.crc_present = 0;
} else if (priv->hw_fcs_strip) {
/* Ask HW/Verbs to leave CRC in place when supported. */
attr.wq.flags |= IBV_EXP_CREATE_WQ_FLAG_SCATTER_FCS;
attr.wq.comp_mask |= IBV_EXP_CREATE_WQ_FLAGS;
tmpl.rxq.crc_present = 1;
} else {
WARN("%p: CRC stripping has been disabled but will still"
" be performed by hardware, make sure MLNX_OFED and"
" firmware are up to date",
(void *)dev);
tmpl.rxq.crc_present = 0;
}
DEBUG("%p: CRC stripping is %s, %u bytes will be subtracted from"
" incoming frames to hide it",
(void *)dev,
tmpl.rxq.crc_present ? "disabled" : "enabled",
tmpl.rxq.crc_present << 2);
if (!mlx5_getenv_int("MLX5_PMD_ENABLE_PADDING"))
; /* Nothing else to do. */
else if (priv->hw_padding) {
INFO("%p: enabling packet padding on queue %p",
(void *)dev, (void *)rxq_ctrl);
attr.wq.flags |= IBV_EXP_CREATE_WQ_FLAG_RX_END_PADDING;
attr.wq.comp_mask |= IBV_EXP_CREATE_WQ_FLAGS;
} else
WARN("%p: packet padding has been requested but is not"
" supported, make sure MLNX_OFED and firmware are"
" up to date",
(void *)dev);
tmpl.wq = ibv_exp_create_wq(priv->ctx, &attr.wq);
if (tmpl.wq == NULL) {
ret = (errno ? errno : EINVAL);
ERROR("%p: WQ creation failure: %s",
(void *)dev, strerror(ret));
goto error;
}
/*
* Make sure number of WRs*SGEs match expectations since a queue
* cannot allocate more than "desc" buffers.
*/
if (((int)attr.wq.max_recv_wr != (desc >> tmpl.rxq.sges_n)) ||
((int)attr.wq.max_recv_sge != (1 << tmpl.rxq.sges_n))) {
ERROR("%p: requested %u*%u but got %u*%u WRs*SGEs",
(void *)dev,
(desc >> tmpl.rxq.sges_n), (1 << tmpl.rxq.sges_n),
attr.wq.max_recv_wr, attr.wq.max_recv_sge);
ret = EINVAL;
goto error;
}
/* Save port ID. */
tmpl.rxq.port_id = dev->data->port_id;
DEBUG("%p: RTE port ID: %u", (void *)rxq_ctrl, tmpl.rxq.port_id);
/* Change queue state to ready. */
mod = (struct ibv_exp_wq_attr){
.attr_mask = IBV_EXP_WQ_ATTR_STATE,
.wq_state = IBV_EXP_WQS_RDY,
};
ret = ibv_exp_modify_wq(tmpl.wq, &mod);
if (ret) {
ERROR("%p: WQ state to IBV_EXP_WQS_RDY failed: %s",
(void *)dev, strerror(ret));
goto error;
}
ret = rxq_setup(&tmpl);
if (ret) {
ERROR("%p: cannot initialize RX queue structure: %s",
(void *)dev, strerror(ret));
goto error;
}
/* Reuse buffers from original queue if possible. */
if (rxq_ctrl->rxq.elts_n) {
assert(1 << rxq_ctrl->rxq.elts_n == desc);
assert(rxq_ctrl->rxq.elts != tmpl.rxq.elts);
ret = rxq_alloc_elts(&tmpl, desc, rxq_ctrl->rxq.elts);
} else
ret = rxq_alloc_elts(&tmpl, desc, NULL);
if (ret) {
ERROR("%p: RXQ allocation failed: %s",
(void *)dev, strerror(ret));
goto error;
}
/* Clean up rxq in case we're reinitializing it. */
DEBUG("%p: cleaning-up old rxq just in case", (void *)rxq_ctrl);
rxq_cleanup(rxq_ctrl);
/* Move mbuf pointers to dedicated storage area in RX queue. */
elts = (void *)(rxq_ctrl + 1);
rte_memcpy(elts, tmpl.rxq.elts, sizeof(*elts));
#ifndef NDEBUG
memset(tmpl.rxq.elts, 0x55, sizeof(*elts));
#endif
rte_free(tmpl.rxq.elts);
tmpl.rxq.elts = elts;
*rxq_ctrl = tmpl;
/* Update doorbell counter. */
rxq_ctrl->rxq.rq_ci = desc >> rxq_ctrl->rxq.sges_n;
rte_wmb();
*rxq_ctrl->rxq.rq_db = htonl(rxq_ctrl->rxq.rq_ci);
DEBUG("%p: rxq updated with %p", (void *)rxq_ctrl, (void *)&tmpl);
assert(ret == 0);
return 0;
error:
elts = tmpl.rxq.elts;
rxq_cleanup(&tmpl);
rte_free(elts);
assert(ret > 0);
return ret;
}
/**
* DPDK callback to configure a RX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* RX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
* @param mp
* Memory pool for buffer allocations.
*
* @return
* 0 on success, negative errno value on failure.
*/
int
mlx5_rx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_rxconf *conf,
struct rte_mempool *mp)
{
struct priv *priv = dev->data->dev_private;
struct rxq *rxq = (*priv->rxqs)[idx];
struct rxq_ctrl *rxq_ctrl = container_of(rxq, struct rxq_ctrl, rxq);
int ret;
if (mlx5_is_secondary())
return -E_RTE_SECONDARY;
priv_lock(priv);
if (!rte_is_power_of_2(desc)) {
desc = 1 << log2above(desc);
WARN("%p: increased number of descriptors in RX queue %u"
" to the next power of two (%d)",
(void *)dev, idx, desc);
}
DEBUG("%p: configuring queue %u for %u descriptors",
(void *)dev, idx, desc);
if (idx >= priv->rxqs_n) {
ERROR("%p: queue index out of range (%u >= %u)",
(void *)dev, idx, priv->rxqs_n);
priv_unlock(priv);
return -EOVERFLOW;
}
if (rxq != NULL) {
DEBUG("%p: reusing already allocated queue index %u (%p)",
(void *)dev, idx, (void *)rxq);
if (priv->started) {
priv_unlock(priv);
return -EEXIST;
}
(*priv->rxqs)[idx] = NULL;
rxq_cleanup(rxq_ctrl);
/* Resize if rxq size is changed. */
if (rxq_ctrl->rxq.elts_n != log2above(desc)) {
rxq_ctrl = rte_realloc(rxq_ctrl,
sizeof(*rxq_ctrl) +
desc * sizeof(struct rte_mbuf *),
RTE_CACHE_LINE_SIZE);
if (!rxq_ctrl) {
ERROR("%p: unable to reallocate queue index %u",
(void *)dev, idx);
priv_unlock(priv);
return -ENOMEM;
}
}
} else {
rxq_ctrl = rte_calloc_socket("RXQ", 1, sizeof(*rxq_ctrl) +
desc * sizeof(struct rte_mbuf *),
0, socket);
if (rxq_ctrl == NULL) {
ERROR("%p: unable to allocate queue index %u",
(void *)dev, idx);
priv_unlock(priv);
return -ENOMEM;
}
}
ret = rxq_ctrl_setup(dev, rxq_ctrl, desc, socket, conf, mp);
if (ret)
rte_free(rxq_ctrl);
else {
rxq_ctrl->rxq.stats.idx = idx;
DEBUG("%p: adding RX queue %p to list",
(void *)dev, (void *)rxq_ctrl);
(*priv->rxqs)[idx] = &rxq_ctrl->rxq;
/* Update receive callback. */
priv_select_rx_function(priv);
}
priv_unlock(priv);
return -ret;
}
/**
* DPDK callback to release a RX queue.
*
* @param dpdk_rxq
* Generic RX queue pointer.
*/
void
mlx5_rx_queue_release(void *dpdk_rxq)
{
struct rxq *rxq = (struct rxq *)dpdk_rxq;
struct rxq_ctrl *rxq_ctrl;
struct priv *priv;
unsigned int i;
if (mlx5_is_secondary())
return;
if (rxq == NULL)
return;
rxq_ctrl = container_of(rxq, struct rxq_ctrl, rxq);
priv = rxq_ctrl->priv;
priv_lock(priv);
if (priv_flow_rxq_in_use(priv, rxq))
rte_panic("Rx queue %p is still used by a flow and cannot be"
" removed\n", (void *)rxq_ctrl);
for (i = 0; (i != priv->rxqs_n); ++i)
if ((*priv->rxqs)[i] == rxq) {
DEBUG("%p: removing RX queue %p from list",
(void *)priv->dev, (void *)rxq_ctrl);
(*priv->rxqs)[i] = NULL;
break;
}
rxq_cleanup(rxq_ctrl);
rte_free(rxq_ctrl);
priv_unlock(priv);
}
/**
* DPDK callback for RX in secondary processes.
*
* This function configures all queues from primary process information
* if necessary before reverting to the normal RX burst callback.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx5_rx_burst_secondary_setup(void *dpdk_rxq, struct rte_mbuf **pkts,
uint16_t pkts_n)
{
struct rxq *rxq = dpdk_rxq;
struct rxq_ctrl *rxq_ctrl = container_of(rxq, struct rxq_ctrl, rxq);
struct priv *priv = mlx5_secondary_data_setup(rxq_ctrl->priv);
struct priv *primary_priv;
unsigned int index;
if (priv == NULL)
return 0;
primary_priv =
mlx5_secondary_data[priv->dev->data->port_id].primary_priv;
/* Look for queue index in both private structures. */
for (index = 0; index != priv->rxqs_n; ++index)
if (((*primary_priv->rxqs)[index] == rxq) ||
((*priv->rxqs)[index] == rxq))
break;
if (index == priv->rxqs_n)
return 0;
rxq = (*priv->rxqs)[index];
return priv->dev->rx_pkt_burst(rxq, pkts, pkts_n);
}
/**
* Fill epoll fd list for rxq interrupts.
*
* @param priv
* Private structure.
*
* @return
* 0 on success, negative on failure.
*/
int
priv_intr_efd_enable(struct priv *priv)
{
unsigned int i;
unsigned int rxqs_n = priv->rxqs_n;
unsigned int n = RTE_MIN(rxqs_n, (uint32_t)RTE_MAX_RXTX_INTR_VEC_ID);
struct rte_intr_handle *intr_handle = priv->dev->intr_handle;
if (n == 0)
return 0;
if (n < rxqs_n) {
WARN("rxqs num is larger than EAL max interrupt vector "
"%u > %u unable to supprt rxq interrupts",
rxqs_n, (uint32_t)RTE_MAX_RXTX_INTR_VEC_ID);
return -EINVAL;
}
intr_handle->type = RTE_INTR_HANDLE_EXT;
for (i = 0; i != n; ++i) {
struct rxq *rxq = (*priv->rxqs)[i];
struct rxq_ctrl *rxq_ctrl =
container_of(rxq, struct rxq_ctrl, rxq);
int fd = rxq_ctrl->channel->fd;
int flags;
int rc;
flags = fcntl(fd, F_GETFL);
rc = fcntl(fd, F_SETFL, flags | O_NONBLOCK);
if (rc < 0) {
WARN("failed to change rxq interrupt file "
"descriptor %d for queue index %d", fd, i);
return -1;
}
intr_handle->efds[i] = fd;
}
intr_handle->nb_efd = n;
return 0;
}
/**
* Clean epoll fd list for rxq interrupts.
*
* @param priv
* Private structure.
*/
void
priv_intr_efd_disable(struct priv *priv)
{
struct rte_intr_handle *intr_handle = priv->dev->intr_handle;
rte_intr_free_epoll_fd(intr_handle);
}
/**
* Create and init interrupt vector array.
*
* @param priv
* Private structure.
*
* @return
* 0 on success, negative on failure.
*/
int
priv_create_intr_vec(struct priv *priv)
{
unsigned int rxqs_n = priv->rxqs_n;
unsigned int i;
struct rte_intr_handle *intr_handle = priv->dev->intr_handle;
if (rxqs_n == 0)
return 0;
intr_handle->intr_vec = (int *)
rte_malloc("intr_vec", rxqs_n * sizeof(int), 0);
if (intr_handle->intr_vec == NULL) {
WARN("Failed to allocate memory for intr_vec "
"rxq interrupt will not be supported");
return -ENOMEM;
}
for (i = 0; i != rxqs_n; ++i) {
/* 1:1 mapping between rxq and interrupt. */
intr_handle->intr_vec[i] = RTE_INTR_VEC_RXTX_OFFSET + i;
}
return 0;
}
/**
* Destroy init interrupt vector array.
*
* @param priv
* Private structure.
*
* @return
* 0 on success, negative on failure.
*/
void
priv_destroy_intr_vec(struct priv *priv)
{
struct rte_intr_handle *intr_handle = priv->dev->intr_handle;
rte_free(intr_handle->intr_vec);
}