numam-dpdk/drivers/raw/octeontx2_ep/otx2_ep_enqdeq.c
Phil Yang f0f5d844d1 eal: remove deprecated coherent IO memory barriers
Since the 20.08 release deprecated rte_cio_*mb APIs because these APIs
provide the same functionality as rte_io_*mb APIs on all platforms, so
remove them and use rte_io_*mb instead.

Signed-off-by: Phil Yang <phil.yang@arm.com>
Signed-off-by: Joyce Kong <joyce.kong@arm.com>
Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com>
Reviewed-by: Honnappa Nagarahalli <honnappa.nagarahalli@arm.com>
Acked-by: David Marchand <david.marchand@redhat.com>
2020-09-23 13:40:26 +02:00

847 lines
19 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <fcntl.h>
#include <rte_bus.h>
#include <rte_bus_pci.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_mempool.h>
#include <rte_pci.h>
#include <rte_common.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include "otx2_common.h"
#include "otx2_ep_enqdeq.h"
static void
sdp_dmazone_free(const struct rte_memzone *mz)
{
const struct rte_memzone *mz_tmp;
int ret = 0;
if (mz == NULL) {
otx2_err("Memzone %s : NULL", mz->name);
return;
}
mz_tmp = rte_memzone_lookup(mz->name);
if (mz_tmp == NULL) {
otx2_err("Memzone %s Not Found", mz->name);
return;
}
ret = rte_memzone_free(mz);
if (ret)
otx2_err("Memzone free failed : ret = %d", ret);
}
/* Free IQ resources */
int
sdp_delete_iqs(struct sdp_device *sdpvf, uint32_t iq_no)
{
struct sdp_instr_queue *iq;
iq = sdpvf->instr_queue[iq_no];
if (iq == NULL) {
otx2_err("Invalid IQ[%d]\n", iq_no);
return -ENOMEM;
}
rte_free(iq->req_list);
iq->req_list = NULL;
if (iq->iq_mz) {
sdp_dmazone_free(iq->iq_mz);
iq->iq_mz = NULL;
}
rte_free(sdpvf->instr_queue[iq_no]);
sdpvf->instr_queue[iq_no] = NULL;
sdpvf->num_iqs--;
otx2_info("IQ[%d] is deleted", iq_no);
return 0;
}
/* IQ initialization */
static int
sdp_init_instr_queue(struct sdp_device *sdpvf, int iq_no)
{
const struct sdp_config *conf;
struct sdp_instr_queue *iq;
uint32_t q_size;
conf = sdpvf->conf;
iq = sdpvf->instr_queue[iq_no];
q_size = conf->iq.instr_type * conf->num_iqdef_descs;
/* IQ memory creation for Instruction submission to OCTEON TX2 */
iq->iq_mz = rte_memzone_reserve_aligned("iqmz",
q_size,
rte_socket_id(),
RTE_MEMZONE_IOVA_CONTIG,
RTE_CACHE_LINE_SIZE);
if (iq->iq_mz == NULL) {
otx2_err("IQ[%d] memzone alloc failed", iq_no);
goto iq_init_fail;
}
iq->base_addr_dma = iq->iq_mz->iova;
iq->base_addr = (uint8_t *)iq->iq_mz->addr;
if (conf->num_iqdef_descs & (conf->num_iqdef_descs - 1)) {
otx2_err("IQ[%d] descs not in power of 2", iq_no);
goto iq_init_fail;
}
iq->nb_desc = conf->num_iqdef_descs;
/* Create a IQ request list to hold requests that have been
* posted to OCTEON TX2. This list will be used for freeing the IQ
* data buffer(s) later once the OCTEON TX2 fetched the requests.
*/
iq->req_list = rte_zmalloc_socket("request_list",
(iq->nb_desc * SDP_IQREQ_LIST_SIZE),
RTE_CACHE_LINE_SIZE,
rte_socket_id());
if (iq->req_list == NULL) {
otx2_err("IQ[%d] req_list alloc failed", iq_no);
goto iq_init_fail;
}
otx2_info("IQ[%d]: base: %p basedma: %lx count: %d",
iq_no, iq->base_addr, (unsigned long)iq->base_addr_dma,
iq->nb_desc);
iq->sdp_dev = sdpvf;
iq->q_no = iq_no;
iq->fill_cnt = 0;
iq->host_write_index = 0;
iq->otx_read_index = 0;
iq->flush_index = 0;
/* Initialize the spinlock for this instruction queue */
rte_spinlock_init(&iq->lock);
rte_spinlock_init(&iq->post_lock);
rte_atomic64_clear(&iq->iq_flush_running);
sdpvf->io_qmask.iq |= (1ull << iq_no);
/* Set 32B/64B mode for each input queue */
if (conf->iq.instr_type == 64)
sdpvf->io_qmask.iq64B |= (1ull << iq_no);
iq->iqcmd_64B = (conf->iq.instr_type == 64);
/* Set up IQ registers */
sdpvf->fn_list.setup_iq_regs(sdpvf, iq_no);
return 0;
iq_init_fail:
return -ENOMEM;
}
int
sdp_setup_iqs(struct sdp_device *sdpvf, uint32_t iq_no)
{
struct sdp_instr_queue *iq;
iq = (struct sdp_instr_queue *)rte_zmalloc("sdp_IQ", sizeof(*iq),
RTE_CACHE_LINE_SIZE);
if (iq == NULL)
return -ENOMEM;
sdpvf->instr_queue[iq_no] = iq;
if (sdp_init_instr_queue(sdpvf, iq_no)) {
otx2_err("IQ init is failed");
goto delete_IQ;
}
otx2_info("IQ[%d] is created.", sdpvf->num_iqs);
sdpvf->num_iqs++;
return 0;
delete_IQ:
sdp_delete_iqs(sdpvf, iq_no);
return -ENOMEM;
}
static void
sdp_droq_reset_indices(struct sdp_droq *droq)
{
droq->read_idx = 0;
droq->write_idx = 0;
droq->refill_idx = 0;
droq->refill_count = 0;
rte_atomic64_set(&droq->pkts_pending, 0);
}
static void
sdp_droq_destroy_ring_buffers(struct sdp_device *sdpvf,
struct sdp_droq *droq)
{
uint32_t idx;
for (idx = 0; idx < droq->nb_desc; idx++) {
if (droq->recv_buf_list[idx].buffer) {
rte_mempool_put(sdpvf->enqdeq_mpool,
droq->recv_buf_list[idx].buffer);
droq->recv_buf_list[idx].buffer = NULL;
}
}
sdp_droq_reset_indices(droq);
}
/* Free OQs resources */
int
sdp_delete_oqs(struct sdp_device *sdpvf, uint32_t oq_no)
{
struct sdp_droq *droq;
droq = sdpvf->droq[oq_no];
if (droq == NULL) {
otx2_err("Invalid droq[%d]", oq_no);
return -ENOMEM;
}
sdp_droq_destroy_ring_buffers(sdpvf, droq);
rte_free(droq->recv_buf_list);
droq->recv_buf_list = NULL;
if (droq->info_mz) {
sdp_dmazone_free(droq->info_mz);
droq->info_mz = NULL;
}
if (droq->desc_ring_mz) {
sdp_dmazone_free(droq->desc_ring_mz);
droq->desc_ring_mz = NULL;
}
memset(droq, 0, SDP_DROQ_SIZE);
rte_free(sdpvf->droq[oq_no]);
sdpvf->droq[oq_no] = NULL;
sdpvf->num_oqs--;
otx2_info("OQ[%d] is deleted", oq_no);
return 0;
}
static int
sdp_droq_setup_ring_buffers(struct sdp_device *sdpvf,
struct sdp_droq *droq)
{
struct sdp_droq_desc *desc_ring = droq->desc_ring;
uint32_t idx;
void *buf;
for (idx = 0; idx < droq->nb_desc; idx++) {
if (rte_mempool_get(sdpvf->enqdeq_mpool, &buf) ||
(buf == NULL)) {
otx2_err("OQ buffer alloc failed");
droq->stats.rx_alloc_failure++;
/* sdp_droq_destroy_ring_buffers(droq);*/
return -ENOMEM;
}
droq->recv_buf_list[idx].buffer = buf;
droq->info_list[idx].length = 0;
/* Map ring buffers into memory */
desc_ring[idx].info_ptr = (uint64_t)(droq->info_list_dma +
(idx * SDP_DROQ_INFO_SIZE));
desc_ring[idx].buffer_ptr = rte_mem_virt2iova(buf);
}
sdp_droq_reset_indices(droq);
return 0;
}
static void *
sdp_alloc_info_buffer(struct sdp_device *sdpvf __rte_unused,
struct sdp_droq *droq)
{
droq->info_mz = rte_memzone_reserve_aligned("OQ_info_list",
(droq->nb_desc * SDP_DROQ_INFO_SIZE),
rte_socket_id(),
RTE_MEMZONE_IOVA_CONTIG,
RTE_CACHE_LINE_SIZE);
if (droq->info_mz == NULL)
return NULL;
droq->info_list_dma = droq->info_mz->iova;
droq->info_alloc_size = droq->info_mz->len;
droq->info_base_addr = (size_t)droq->info_mz->addr;
return droq->info_mz->addr;
}
/* OQ initialization */
static int
sdp_init_droq(struct sdp_device *sdpvf, uint32_t q_no)
{
const struct sdp_config *conf = sdpvf->conf;
uint32_t c_refill_threshold;
uint32_t desc_ring_size;
struct sdp_droq *droq;
otx2_info("OQ[%d] Init start", q_no);
droq = sdpvf->droq[q_no];
droq->sdp_dev = sdpvf;
droq->q_no = q_no;
c_refill_threshold = conf->oq.refill_threshold;
droq->nb_desc = conf->num_oqdef_descs;
droq->buffer_size = conf->oqdef_buf_size;
/* OQ desc_ring set up */
desc_ring_size = droq->nb_desc * SDP_DROQ_DESC_SIZE;
droq->desc_ring_mz = rte_memzone_reserve_aligned("sdp_oqmz",
desc_ring_size,
rte_socket_id(),
RTE_MEMZONE_IOVA_CONTIG,
RTE_CACHE_LINE_SIZE);
if (droq->desc_ring_mz == NULL) {
otx2_err("OQ:%d desc_ring allocation failed", q_no);
goto init_droq_fail;
}
droq->desc_ring_dma = droq->desc_ring_mz->iova;
droq->desc_ring = (struct sdp_droq_desc *)droq->desc_ring_mz->addr;
otx2_sdp_dbg("OQ[%d]: desc_ring: virt: 0x%p, dma: %lx",
q_no, droq->desc_ring, (unsigned long)droq->desc_ring_dma);
otx2_sdp_dbg("OQ[%d]: num_desc: %d", q_no, droq->nb_desc);
/* OQ info_list set up */
droq->info_list = sdp_alloc_info_buffer(sdpvf, droq);
if (droq->info_list == NULL) {
otx2_err("memory allocation failed for OQ[%d] info_list", q_no);
goto init_droq_fail;
}
/* OQ buf_list set up */
droq->recv_buf_list = rte_zmalloc_socket("recv_buf_list",
(droq->nb_desc * SDP_DROQ_RECVBUF_SIZE),
RTE_CACHE_LINE_SIZE, rte_socket_id());
if (droq->recv_buf_list == NULL) {
otx2_err("OQ recv_buf_list alloc failed");
goto init_droq_fail;
}
if (sdp_droq_setup_ring_buffers(sdpvf, droq))
goto init_droq_fail;
droq->refill_threshold = c_refill_threshold;
rte_spinlock_init(&droq->lock);
/* Set up OQ registers */
sdpvf->fn_list.setup_oq_regs(sdpvf, q_no);
sdpvf->io_qmask.oq |= (1ull << q_no);
return 0;
init_droq_fail:
return -ENOMEM;
}
/* OQ configuration and setup */
int
sdp_setup_oqs(struct sdp_device *sdpvf, uint32_t oq_no)
{
struct sdp_droq *droq;
/* Allocate new droq. */
droq = (struct sdp_droq *)rte_zmalloc("sdp_OQ",
sizeof(*droq), RTE_CACHE_LINE_SIZE);
if (droq == NULL) {
otx2_err("Droq[%d] Creation Failed", oq_no);
return -ENOMEM;
}
sdpvf->droq[oq_no] = droq;
if (sdp_init_droq(sdpvf, oq_no)) {
otx2_err("Droq[%d] Initialization failed", oq_no);
goto delete_OQ;
}
otx2_info("OQ[%d] is created.", oq_no);
sdpvf->num_oqs++;
return 0;
delete_OQ:
sdp_delete_oqs(sdpvf, oq_no);
return -ENOMEM;
}
static inline void
sdp_iqreq_delete(struct sdp_device *sdpvf,
struct sdp_instr_queue *iq, uint32_t idx)
{
uint32_t reqtype;
void *buf;
buf = iq->req_list[idx].buf;
reqtype = iq->req_list[idx].reqtype;
switch (reqtype) {
case SDP_REQTYPE_NORESP:
rte_mempool_put(sdpvf->enqdeq_mpool, buf);
otx2_sdp_dbg("IQ buffer freed at idx[%d]", idx);
break;
case SDP_REQTYPE_NORESP_GATHER:
case SDP_REQTYPE_NONE:
default:
otx2_info("This iqreq mode is not supported:%d", reqtype);
}
/* Reset the request list at this index */
iq->req_list[idx].buf = NULL;
iq->req_list[idx].reqtype = 0;
}
static inline void
sdp_iqreq_add(struct sdp_instr_queue *iq, void *buf,
uint32_t reqtype)
{
iq->req_list[iq->host_write_index].buf = buf;
iq->req_list[iq->host_write_index].reqtype = reqtype;
otx2_sdp_dbg("IQ buffer added at idx[%d]", iq->host_write_index);
}
static void
sdp_flush_iq(struct sdp_device *sdpvf,
struct sdp_instr_queue *iq,
uint32_t pending_thresh __rte_unused)
{
uint32_t instr_processed = 0;
rte_spinlock_lock(&iq->lock);
iq->otx_read_index = sdpvf->fn_list.update_iq_read_idx(iq);
while (iq->flush_index != iq->otx_read_index) {
/* Free the IQ data buffer to the pool */
sdp_iqreq_delete(sdpvf, iq, iq->flush_index);
iq->flush_index =
sdp_incr_index(iq->flush_index, 1, iq->nb_desc);
instr_processed++;
}
iq->stats.instr_processed = instr_processed;
rte_atomic64_sub(&iq->instr_pending, instr_processed);
rte_spinlock_unlock(&iq->lock);
}
static inline void
sdp_ring_doorbell(struct sdp_device *sdpvf __rte_unused,
struct sdp_instr_queue *iq)
{
otx2_write64(iq->fill_cnt, iq->doorbell_reg);
/* Make sure doorbell writes observed by HW */
rte_io_wmb();
iq->fill_cnt = 0;
}
static inline int
post_iqcmd(struct sdp_instr_queue *iq, uint8_t *iqcmd)
{
uint8_t *iqptr, cmdsize;
/* This ensures that the read index does not wrap around to
* the same position if queue gets full before OCTEON TX2 could
* fetch any instr.
*/
if (rte_atomic64_read(&iq->instr_pending) >=
(int32_t)(iq->nb_desc - 1)) {
otx2_err("IQ is full, pending:%ld",
(long)rte_atomic64_read(&iq->instr_pending));
return SDP_IQ_SEND_FAILED;
}
/* Copy cmd into iq */
cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
rte_memcpy(iqptr, iqcmd, cmdsize);
otx2_sdp_dbg("IQ cmd posted @ index:%d", iq->host_write_index);
/* Increment the host write index */
iq->host_write_index =
sdp_incr_index(iq->host_write_index, 1, iq->nb_desc);
iq->fill_cnt++;
/* Flush the command into memory. We need to be sure the data
* is in memory before indicating that the instruction is
* pending.
*/
rte_smp_wmb();
rte_atomic64_inc(&iq->instr_pending);
/* SDP_IQ_SEND_SUCCESS */
return 0;
}
static int
sdp_send_data(struct sdp_device *sdpvf,
struct sdp_instr_queue *iq, void *cmd)
{
uint32_t ret;
/* Lock this IQ command queue before posting instruction */
rte_spinlock_lock(&iq->post_lock);
/* Submit IQ command */
ret = post_iqcmd(iq, cmd);
if (ret == SDP_IQ_SEND_SUCCESS) {
sdp_ring_doorbell(sdpvf, iq);
iq->stats.instr_posted++;
otx2_sdp_dbg("Instr submit success posted: %ld\n",
(long)iq->stats.instr_posted);
} else {
iq->stats.instr_dropped++;
otx2_err("Instr submit failed, dropped: %ld\n",
(long)iq->stats.instr_dropped);
}
rte_spinlock_unlock(&iq->post_lock);
return ret;
}
/* Enqueue requests/packets to SDP IQ queue.
* returns number of requests enqueued successfully
*/
int
sdp_rawdev_enqueue(struct rte_rawdev *rawdev,
struct rte_rawdev_buf **buffers __rte_unused,
unsigned int count, rte_rawdev_obj_t context)
{
struct sdp_instr_64B *iqcmd;
struct sdp_instr_queue *iq;
struct sdp_soft_instr *si;
struct sdp_device *sdpvf;
struct sdp_instr_ih ihx;
sdpvf = (struct sdp_device *)rawdev->dev_private;
si = (struct sdp_soft_instr *)context;
iq = sdpvf->instr_queue[si->q_no];
if ((count > 1) || (count < 1)) {
otx2_err("This mode not supported: req[%d]", count);
goto enq_fail;
}
memset(&ihx, 0, sizeof(struct sdp_instr_ih));
iqcmd = &si->command;
memset(iqcmd, 0, sizeof(struct sdp_instr_64B));
iqcmd->dptr = (uint64_t)si->dptr;
/* Populate SDP IH */
ihx.pkind = sdpvf->pkind;
ihx.fsz = si->ih.fsz + 8; /* 8B for NIX IH */
ihx.gather = si->ih.gather;
/* Direct data instruction */
ihx.tlen = si->ih.tlen + ihx.fsz;
switch (ihx.gather) {
case 0: /* Direct data instr */
ihx.tlen = si->ih.tlen + ihx.fsz;
break;
default: /* Gather */
switch (si->ih.gsz) {
case 0: /* Direct gather instr */
otx2_err("Direct Gather instr : not supported");
goto enq_fail;
default: /* Indirect gather instr */
otx2_err("Indirect Gather instr : not supported");
goto enq_fail;
}
}
rte_memcpy(&iqcmd->ih, &ihx, sizeof(uint64_t));
iqcmd->rptr = (uint64_t)si->rptr;
rte_memcpy(&iqcmd->irh, &si->irh, sizeof(uint64_t));
/* Swap FSZ(front data) here, to avoid swapping on OCTEON TX2 side */
sdp_swap_8B_data(&iqcmd->rptr, 1);
sdp_swap_8B_data(&iqcmd->irh, 1);
otx2_sdp_dbg("After swapping");
otx2_sdp_dbg("Word0 [dptr]: 0x%016lx", (unsigned long)iqcmd->dptr);
otx2_sdp_dbg("Word1 [ihtx]: 0x%016lx", (unsigned long)iqcmd->ih);
otx2_sdp_dbg("Word2 [rptr]: 0x%016lx", (unsigned long)iqcmd->rptr);
otx2_sdp_dbg("Word3 [irh]: 0x%016lx", (unsigned long)iqcmd->irh);
otx2_sdp_dbg("Word4 [exhdr[0]]: 0x%016lx",
(unsigned long)iqcmd->exhdr[0]);
sdp_iqreq_add(iq, si->dptr, si->reqtype);
if (sdp_send_data(sdpvf, iq, iqcmd)) {
otx2_err("Data send failed :");
sdp_iqreq_delete(sdpvf, iq, iq->host_write_index);
goto enq_fail;
}
if (rte_atomic64_read(&iq->instr_pending) >= 1)
sdp_flush_iq(sdpvf, iq, 1 /*(iq->nb_desc / 2)*/);
/* Return no# of instructions posted successfully. */
return count;
enq_fail:
return SDP_IQ_SEND_FAILED;
}
static uint32_t
sdp_droq_refill(struct sdp_device *sdpvf, struct sdp_droq *droq)
{
struct sdp_droq_desc *desc_ring;
uint32_t desc_refilled = 0;
void *buf = NULL;
desc_ring = droq->desc_ring;
while (droq->refill_count && (desc_refilled < droq->nb_desc)) {
/* If a valid buffer exists (happens if there is no dispatch),
* reuse the buffer, else allocate.
*/
if (droq->recv_buf_list[droq->refill_idx].buffer != NULL)
break;
if (rte_mempool_get(sdpvf->enqdeq_mpool, &buf) ||
(buf == NULL)) {
/* If a buffer could not be allocated, no point in
* continuing
*/
droq->stats.rx_alloc_failure++;
break;
}
droq->recv_buf_list[droq->refill_idx].buffer = buf;
desc_ring[droq->refill_idx].buffer_ptr = rte_mem_virt2iova(buf);
/* Reset any previous values in the length field. */
droq->info_list[droq->refill_idx].length = 0;
droq->refill_idx = sdp_incr_index(droq->refill_idx, 1,
droq->nb_desc);
desc_refilled++;
droq->refill_count--;
}
return desc_refilled;
}
static int
sdp_droq_read_packet(struct sdp_device *sdpvf __rte_unused,
struct sdp_droq *droq,
struct sdp_droq_pkt *droq_pkt)
{
struct sdp_droq_info *info;
uint32_t total_len = 0;
uint32_t pkt_len = 0;
info = &droq->info_list[droq->read_idx];
sdp_swap_8B_data((uint64_t *)&info->length, 1);
if (!info->length) {
otx2_err("OQ info_list->length[%ld]", (long)info->length);
goto oq_read_fail;
}
/* Deduce the actual data size */
info->length -= SDP_RH_SIZE;
total_len += (uint32_t)info->length;
otx2_sdp_dbg("OQ: pkt_len[%ld], buffer_size %d",
(long)info->length, droq->buffer_size);
if (info->length > droq->buffer_size) {
otx2_err("This mode is not supported: pkt_len > buffer_size");
goto oq_read_fail;
}
if (info->length <= droq->buffer_size) {
pkt_len = (uint32_t)info->length;
droq_pkt->data = droq->recv_buf_list[droq->read_idx].buffer;
droq_pkt->len = pkt_len;
droq->recv_buf_list[droq->read_idx].buffer = NULL;
droq->read_idx = sdp_incr_index(droq->read_idx, 1,/* count */
droq->nb_desc /* max rd idx */);
droq->refill_count++;
}
info->length = 0;
return SDP_OQ_RECV_SUCCESS;
oq_read_fail:
return SDP_OQ_RECV_FAILED;
}
static inline uint32_t
sdp_check_droq_pkts(struct sdp_droq *droq, uint32_t burst_size)
{
uint32_t min_pkts = 0;
uint32_t new_pkts;
uint32_t pkt_count;
/* Latest available OQ packets */
pkt_count = rte_read32(droq->pkts_sent_reg);
/* Newly arrived packets */
new_pkts = pkt_count - droq->last_pkt_count;
otx2_sdp_dbg("Recvd [%d] new OQ pkts", new_pkts);
min_pkts = (new_pkts > burst_size) ? burst_size : new_pkts;
if (min_pkts) {
rte_atomic64_add(&droq->pkts_pending, min_pkts);
/* Back up the aggregated packet count so far */
droq->last_pkt_count += min_pkts;
}
return min_pkts;
}
/* Check for response arrival from OCTEON TX2
* returns number of requests completed
*/
int
sdp_rawdev_dequeue(struct rte_rawdev *rawdev,
struct rte_rawdev_buf **buffers, unsigned int count,
rte_rawdev_obj_t context __rte_unused)
{
struct sdp_droq_pkt *oq_pkt;
struct sdp_device *sdpvf;
struct sdp_droq *droq;
uint32_t q_no = 0, pkts;
uint32_t new_pkts;
uint32_t ret;
sdpvf = (struct sdp_device *)rawdev->dev_private;
droq = sdpvf->droq[q_no];
if (!droq) {
otx2_err("Invalid droq[%d]", q_no);
goto droq_err;
}
/* Grab the lock */
rte_spinlock_lock(&droq->lock);
new_pkts = sdp_check_droq_pkts(droq, count);
if (!new_pkts) {
otx2_sdp_dbg("Zero new_pkts:%d", new_pkts);
goto deq_fail; /* No pkts at this moment */
}
otx2_sdp_dbg("Received new_pkts = %d", new_pkts);
for (pkts = 0; pkts < new_pkts; pkts++) {
/* Push the received pkt to application */
oq_pkt = (struct sdp_droq_pkt *)buffers[pkts];
ret = sdp_droq_read_packet(sdpvf, droq, oq_pkt);
if (ret) {
otx2_err("DROQ read pakt failed.");
goto deq_fail;
}
/* Stats */
droq->stats.pkts_received++;
droq->stats.bytes_received += oq_pkt->len;
}
/* Ack the h/w with no# of pkts read by Host */
rte_write32(pkts, droq->pkts_sent_reg);
rte_io_wmb();
droq->last_pkt_count -= pkts;
otx2_sdp_dbg("DROQ pkts[%d] pushed to application", pkts);
/* Refill DROQ buffers */
if (droq->refill_count >= 2 /* droq->refill_threshold */) {
int desc_refilled = sdp_droq_refill(sdpvf, droq);
/* Flush the droq descriptor data to memory to be sure
* that when we update the credits the data in memory is
* accurate.
*/
rte_write32(desc_refilled, droq->pkts_credit_reg);
/* Ensure mmio write completes */
rte_wmb();
otx2_sdp_dbg("Refilled count = %d", desc_refilled);
}
/* Release the spin lock */
rte_spinlock_unlock(&droq->lock);
return pkts;
deq_fail:
rte_spinlock_unlock(&droq->lock);
droq_err:
return SDP_OQ_RECV_FAILED;
}