ed9e6396ae
Couple minor code clean include: 1. Improve debug message format. 2. Add missing macro and comment. 3. Remove unnecessary compile options. Signed-off-by: Paul M Stillwell Jr <paul.m.stillwell.jr@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com> Acked-by: Qiming Yang <qiming.yang@intel.com>
4271 lines
121 KiB
C
4271 lines
121 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2001-2019
|
|
*/
|
|
|
|
#include "ice_common.h"
|
|
#include "ice_sched.h"
|
|
#include "ice_adminq_cmd.h"
|
|
|
|
#include "ice_flow.h"
|
|
#include "ice_switch.h"
|
|
|
|
#define ICE_PF_RESET_WAIT_COUNT 300
|
|
|
|
/**
|
|
* ice_set_mac_type - Sets MAC type
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This function sets the MAC type of the adapter based on the
|
|
* vendor ID and device ID stored in the HW structure.
|
|
*/
|
|
static enum ice_status ice_set_mac_type(struct ice_hw *hw)
|
|
{
|
|
enum ice_status status = ICE_SUCCESS;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
if (hw->vendor_id == ICE_INTEL_VENDOR_ID) {
|
|
switch (hw->device_id) {
|
|
default:
|
|
hw->mac_type = ICE_MAC_GENERIC;
|
|
break;
|
|
}
|
|
} else {
|
|
status = ICE_ERR_DEVICE_NOT_SUPPORTED;
|
|
}
|
|
|
|
ice_debug(hw, ICE_DBG_INIT, "found mac_type: %d, status: %d\n",
|
|
hw->mac_type, status);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_clear_pf_cfg - Clear PF configuration
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
|
|
* configuration, flow director filters, etc.).
|
|
*/
|
|
enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_manage_mac_read - manage MAC address read command
|
|
* @hw: pointer to the HW struct
|
|
* @buf: a virtual buffer to hold the manage MAC read response
|
|
* @buf_size: Size of the virtual buffer
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function is used to return per PF station MAC address (0x0107).
|
|
* NOTE: Upon successful completion of this command, MAC address information
|
|
* is returned in user specified buffer. Please interpret user specified
|
|
* buffer as "manage_mac_read" response.
|
|
* Response such as various MAC addresses are stored in HW struct (port.mac)
|
|
* ice_aq_discover_caps is expected to be called before this function is called.
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_manage_mac_read_resp *resp;
|
|
struct ice_aqc_manage_mac_read *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
u16 flags;
|
|
u8 i;
|
|
|
|
cmd = &desc.params.mac_read;
|
|
|
|
if (buf_size < sizeof(*resp))
|
|
return ICE_ERR_BUF_TOO_SHORT;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
if (status)
|
|
return status;
|
|
|
|
resp = (struct ice_aqc_manage_mac_read_resp *)buf;
|
|
flags = LE16_TO_CPU(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
|
|
|
|
if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
|
|
ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
|
|
return ICE_ERR_CFG;
|
|
}
|
|
|
|
/* A single port can report up to two (LAN and WoL) addresses */
|
|
for (i = 0; i < cmd->num_addr; i++)
|
|
if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
|
|
ice_memcpy(hw->port_info->mac.lan_addr,
|
|
resp[i].mac_addr, ETH_ALEN,
|
|
ICE_DMA_TO_NONDMA);
|
|
ice_memcpy(hw->port_info->mac.perm_addr,
|
|
resp[i].mac_addr,
|
|
ETH_ALEN, ICE_DMA_TO_NONDMA);
|
|
break;
|
|
}
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_phy_caps - returns PHY capabilities
|
|
* @pi: port information structure
|
|
* @qual_mods: report qualified modules
|
|
* @report_mode: report mode capabilities
|
|
* @pcaps: structure for PHY capabilities to be filled
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Returns the various PHY capabilities supported on the Port (0x0600)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
|
|
struct ice_aqc_get_phy_caps_data *pcaps,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_phy_caps *cmd;
|
|
u16 pcaps_size = sizeof(*pcaps);
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.get_phy;
|
|
|
|
if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
|
|
|
|
if (qual_mods)
|
|
cmd->param0 |= CPU_TO_LE16(ICE_AQC_GET_PHY_RQM);
|
|
|
|
cmd->param0 |= CPU_TO_LE16(report_mode);
|
|
status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
|
|
|
|
if (status == ICE_SUCCESS && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
|
|
pi->phy.phy_type_low = LE64_TO_CPU(pcaps->phy_type_low);
|
|
pi->phy.phy_type_high = LE64_TO_CPU(pcaps->phy_type_high);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_link_topo_handle - get link topology node return status
|
|
* @pi: port information structure
|
|
* @node_type: requested node type
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get link topology node return status for specified node type (0x06E0)
|
|
*
|
|
* Node type cage can be used to determine if cage is present. If AQC
|
|
* returns error (ENOENT), then no cage present. If no cage present, then
|
|
* connection type is backplane or BASE-T.
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_link_topo *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.get_link_topo;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
|
|
|
|
cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
|
|
ICE_AQC_LINK_TOPO_NODE_CTX_S);
|
|
|
|
/* set node type */
|
|
cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
|
|
|
|
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_is_media_cage_present
|
|
* @pi: port information structure
|
|
*
|
|
* Returns true if media cage is present, else false. If no cage, then
|
|
* media type is backplane or BASE-T.
|
|
*/
|
|
static bool ice_is_media_cage_present(struct ice_port_info *pi)
|
|
{
|
|
/* Node type cage can be used to determine if cage is present. If AQC
|
|
* returns error (ENOENT), then no cage present. If no cage present then
|
|
* connection type is backplane or BASE-T.
|
|
*/
|
|
return !ice_aq_get_link_topo_handle(pi,
|
|
ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
|
|
NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_get_media_type - Gets media type
|
|
* @pi: port information structure
|
|
*/
|
|
static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
|
|
{
|
|
struct ice_link_status *hw_link_info;
|
|
|
|
if (!pi)
|
|
return ICE_MEDIA_UNKNOWN;
|
|
|
|
hw_link_info = &pi->phy.link_info;
|
|
if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
|
|
/* If more than one media type is selected, report unknown */
|
|
return ICE_MEDIA_UNKNOWN;
|
|
|
|
if (hw_link_info->phy_type_low) {
|
|
switch (hw_link_info->phy_type_low) {
|
|
case ICE_PHY_TYPE_LOW_1000BASE_SX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_LX:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_FR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_DR:
|
|
return ICE_MEDIA_FIBER;
|
|
case ICE_PHY_TYPE_LOW_100BASE_TX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_T:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_T:
|
|
case ICE_PHY_TYPE_LOW_5GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_T:
|
|
return ICE_MEDIA_BASET;
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CP:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
|
|
return ICE_MEDIA_DA;
|
|
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
|
|
case ICE_PHY_TYPE_LOW_40G_XLAUI:
|
|
case ICE_PHY_TYPE_LOW_50G_LAUI2:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI2:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI1:
|
|
case ICE_PHY_TYPE_LOW_100G_AUI4:
|
|
case ICE_PHY_TYPE_LOW_100G_CAUI4:
|
|
if (ice_is_media_cage_present(pi))
|
|
return ICE_MEDIA_DA;
|
|
/* fall-through */
|
|
case ICE_PHY_TYPE_LOW_1000BASE_KX:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_KX:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_X:
|
|
case ICE_PHY_TYPE_LOW_5GBASE_KR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
|
|
return ICE_MEDIA_BACKPLANE;
|
|
}
|
|
} else {
|
|
switch (hw_link_info->phy_type_high) {
|
|
case ICE_PHY_TYPE_HIGH_100G_AUI2:
|
|
if (ice_is_media_cage_present(pi))
|
|
return ICE_MEDIA_DA;
|
|
/* fall-through */
|
|
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
|
|
return ICE_MEDIA_BACKPLANE;
|
|
}
|
|
}
|
|
return ICE_MEDIA_UNKNOWN;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_link_info
|
|
* @pi: port information structure
|
|
* @ena_lse: enable/disable LinkStatusEvent reporting
|
|
* @link: pointer to link status structure - optional
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get Link Status (0x607). Returns the link status of the adapter.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
|
|
struct ice_link_status *link, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_link_status_data link_data = { 0 };
|
|
struct ice_aqc_get_link_status *resp;
|
|
struct ice_link_status *li_old, *li;
|
|
enum ice_media_type *hw_media_type;
|
|
struct ice_fc_info *hw_fc_info;
|
|
bool tx_pause, rx_pause;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
struct ice_hw *hw;
|
|
u16 cmd_flags;
|
|
|
|
if (!pi)
|
|
return ICE_ERR_PARAM;
|
|
hw = pi->hw;
|
|
li_old = &pi->phy.link_info_old;
|
|
hw_media_type = &pi->phy.media_type;
|
|
li = &pi->phy.link_info;
|
|
hw_fc_info = &pi->fc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
|
|
cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
|
|
resp = &desc.params.get_link_status;
|
|
resp->cmd_flags = CPU_TO_LE16(cmd_flags);
|
|
resp->lport_num = pi->lport;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
|
|
|
|
if (status != ICE_SUCCESS)
|
|
return status;
|
|
|
|
/* save off old link status information */
|
|
*li_old = *li;
|
|
|
|
/* update current link status information */
|
|
li->link_speed = LE16_TO_CPU(link_data.link_speed);
|
|
li->phy_type_low = LE64_TO_CPU(link_data.phy_type_low);
|
|
li->phy_type_high = LE64_TO_CPU(link_data.phy_type_high);
|
|
*hw_media_type = ice_get_media_type(pi);
|
|
li->link_info = link_data.link_info;
|
|
li->an_info = link_data.an_info;
|
|
li->ext_info = link_data.ext_info;
|
|
li->max_frame_size = LE16_TO_CPU(link_data.max_frame_size);
|
|
li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
|
|
li->topo_media_conflict = link_data.topo_media_conflict;
|
|
li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
|
|
ICE_AQ_CFG_PACING_TYPE_M);
|
|
|
|
/* update fc info */
|
|
tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
|
|
rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
|
|
if (tx_pause && rx_pause)
|
|
hw_fc_info->current_mode = ICE_FC_FULL;
|
|
else if (tx_pause)
|
|
hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
|
|
else if (rx_pause)
|
|
hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
|
|
else
|
|
hw_fc_info->current_mode = ICE_FC_NONE;
|
|
|
|
li->lse_ena = !!(resp->cmd_flags & CPU_TO_LE16(ICE_AQ_LSE_IS_ENABLED));
|
|
|
|
ice_debug(hw, ICE_DBG_LINK, "link_speed = 0x%x\n", li->link_speed);
|
|
ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
|
|
(unsigned long long)li->phy_type_low);
|
|
ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
|
|
(unsigned long long)li->phy_type_high);
|
|
ice_debug(hw, ICE_DBG_LINK, "media_type = 0x%x\n", *hw_media_type);
|
|
ice_debug(hw, ICE_DBG_LINK, "link_info = 0x%x\n", li->link_info);
|
|
ice_debug(hw, ICE_DBG_LINK, "an_info = 0x%x\n", li->an_info);
|
|
ice_debug(hw, ICE_DBG_LINK, "ext_info = 0x%x\n", li->ext_info);
|
|
ice_debug(hw, ICE_DBG_LINK, "lse_ena = 0x%x\n", li->lse_ena);
|
|
ice_debug(hw, ICE_DBG_LINK, "max_frame = 0x%x\n", li->max_frame_size);
|
|
ice_debug(hw, ICE_DBG_LINK, "pacing = 0x%x\n", li->pacing);
|
|
|
|
/* save link status information */
|
|
if (link)
|
|
*link = *li;
|
|
|
|
/* flag cleared so calling functions don't call AQ again */
|
|
pi->phy.get_link_info = false;
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_mac_cfg
|
|
* @hw: pointer to the HW struct
|
|
* @max_frame_size: Maximum Frame Size to be supported
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set MAC configuration (0x0603)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
|
|
{
|
|
u16 fc_threshold_val, tx_timer_val;
|
|
struct ice_aqc_set_mac_cfg *cmd;
|
|
struct ice_aq_desc desc;
|
|
u32 reg_val;
|
|
|
|
cmd = &desc.params.set_mac_cfg;
|
|
|
|
if (max_frame_size == 0)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
|
|
|
|
cmd->max_frame_size = CPU_TO_LE16(max_frame_size);
|
|
|
|
/* We read back the transmit timer and fc threshold value of
|
|
* LFC. Thus, we will use index =
|
|
* PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
|
|
*
|
|
* Also, because we are opearating on transmit timer and fc
|
|
* threshold of LFC, we don't turn on any bit in tx_tmr_priority
|
|
*/
|
|
#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
|
|
|
|
/* Retrieve the transmit timer */
|
|
reg_val = rd32(hw,
|
|
PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
|
|
tx_timer_val = reg_val &
|
|
PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
|
|
cmd->tx_tmr_value = CPU_TO_LE16(tx_timer_val);
|
|
|
|
/* Retrieve the fc threshold */
|
|
reg_val = rd32(hw,
|
|
PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
|
|
fc_threshold_val = reg_val & MAKEMASK(0xFFFF, 0);
|
|
cmd->fc_refresh_threshold = CPU_TO_LE16(fc_threshold_val);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_init_fltr_mgmt_struct - initializes filter management list and locks
|
|
* @hw: pointer to the HW struct
|
|
*/
|
|
static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
|
|
{
|
|
struct ice_switch_info *sw;
|
|
|
|
hw->switch_info = (struct ice_switch_info *)
|
|
ice_malloc(hw, sizeof(*hw->switch_info));
|
|
sw = hw->switch_info;
|
|
|
|
if (!sw)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
INIT_LIST_HEAD(&sw->vsi_list_map_head);
|
|
|
|
return ice_init_def_sw_recp(hw, &hw->switch_info->recp_list);
|
|
}
|
|
|
|
/**
|
|
* ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
|
|
* @hw: pointer to the HW struct
|
|
*/
|
|
static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
struct ice_vsi_list_map_info *v_pos_map;
|
|
struct ice_vsi_list_map_info *v_tmp_map;
|
|
struct ice_sw_recipe *recps;
|
|
u8 i;
|
|
|
|
LIST_FOR_EACH_ENTRY_SAFE(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
|
|
ice_vsi_list_map_info, list_entry) {
|
|
LIST_DEL(&v_pos_map->list_entry);
|
|
ice_free(hw, v_pos_map);
|
|
}
|
|
recps = hw->switch_info->recp_list;
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
|
|
struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
|
|
|
|
recps[i].root_rid = i;
|
|
LIST_FOR_EACH_ENTRY_SAFE(rg_entry, tmprg_entry,
|
|
&recps[i].rg_list, ice_recp_grp_entry,
|
|
l_entry) {
|
|
LIST_DEL(&rg_entry->l_entry);
|
|
ice_free(hw, rg_entry);
|
|
}
|
|
|
|
if (recps[i].adv_rule) {
|
|
struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
|
|
struct ice_adv_fltr_mgmt_list_entry *lst_itr;
|
|
|
|
ice_destroy_lock(&recps[i].filt_rule_lock);
|
|
LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
|
|
&recps[i].filt_rules,
|
|
ice_adv_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
LIST_DEL(&lst_itr->list_entry);
|
|
ice_free(hw, lst_itr->lkups);
|
|
ice_free(hw, lst_itr);
|
|
}
|
|
} else {
|
|
struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
|
|
|
|
ice_destroy_lock(&recps[i].filt_rule_lock);
|
|
LIST_FOR_EACH_ENTRY_SAFE(lst_itr, tmp_entry,
|
|
&recps[i].filt_rules,
|
|
ice_fltr_mgmt_list_entry,
|
|
list_entry) {
|
|
LIST_DEL(&lst_itr->list_entry);
|
|
ice_free(hw, lst_itr);
|
|
}
|
|
}
|
|
if (recps[i].root_buf)
|
|
ice_free(hw, recps[i].root_buf);
|
|
}
|
|
ice_rm_all_sw_replay_rule_info(hw);
|
|
ice_free(hw, sw->recp_list);
|
|
ice_free(hw, sw);
|
|
}
|
|
|
|
/**
|
|
* ice_get_itr_intrl_gran
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Determines the ITR/INTRL granularities based on the maximum aggregate
|
|
* bandwidth according to the device's configuration during power-on.
|
|
*/
|
|
static void ice_get_itr_intrl_gran(struct ice_hw *hw)
|
|
{
|
|
u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
|
|
GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
|
|
GL_PWR_MODE_CTL_CAR_MAX_BW_S;
|
|
|
|
switch (max_agg_bw) {
|
|
case ICE_MAX_AGG_BW_200G:
|
|
case ICE_MAX_AGG_BW_100G:
|
|
case ICE_MAX_AGG_BW_50G:
|
|
hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
|
|
hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
|
|
break;
|
|
case ICE_MAX_AGG_BW_25G:
|
|
hw->itr_gran = ICE_ITR_GRAN_MAX_25;
|
|
hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_get_nvm_version - get cached NVM version data
|
|
* @hw: pointer to the hardware structure
|
|
* @oem_ver: 8 bit NVM version
|
|
* @oem_build: 16 bit NVM build number
|
|
* @oem_patch: 8 NVM patch number
|
|
* @ver_hi: high 16 bits of the NVM version
|
|
* @ver_lo: low 16 bits of the NVM version
|
|
*/
|
|
void
|
|
ice_get_nvm_version(struct ice_hw *hw, u8 *oem_ver, u16 *oem_build,
|
|
u8 *oem_patch, u8 *ver_hi, u8 *ver_lo)
|
|
{
|
|
struct ice_nvm_info *nvm = &hw->nvm;
|
|
|
|
*oem_ver = (u8)((nvm->oem_ver & ICE_OEM_VER_MASK) >> ICE_OEM_VER_SHIFT);
|
|
*oem_patch = (u8)(nvm->oem_ver & ICE_OEM_VER_PATCH_MASK);
|
|
*oem_build = (u16)((nvm->oem_ver & ICE_OEM_VER_BUILD_MASK) >>
|
|
ICE_OEM_VER_BUILD_SHIFT);
|
|
*ver_hi = (nvm->ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
|
|
*ver_lo = (nvm->ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
|
|
}
|
|
|
|
/**
|
|
* ice_print_rollback_msg - print FW rollback message
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
void ice_print_rollback_msg(struct ice_hw *hw)
|
|
{
|
|
char nvm_str[ICE_NVM_VER_LEN] = { 0 };
|
|
u8 oem_ver, oem_patch, ver_hi, ver_lo;
|
|
u16 oem_build;
|
|
|
|
ice_get_nvm_version(hw, &oem_ver, &oem_build, &oem_patch, &ver_hi,
|
|
&ver_lo);
|
|
SNPRINTF(nvm_str, sizeof(nvm_str), "%x.%02x 0x%x %d.%d.%d", ver_hi,
|
|
ver_lo, hw->nvm.eetrack, oem_ver, oem_build, oem_patch);
|
|
ice_warn(hw,
|
|
"Firmware rollback mode detected. Current version is NVM: %s, FW: %d.%d. Device may exhibit limited functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware rollback mode\n",
|
|
nvm_str, hw->fw_maj_ver, hw->fw_min_ver);
|
|
}
|
|
|
|
/**
|
|
* ice_init_hw - main hardware initialization routine
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
enum ice_status ice_init_hw(struct ice_hw *hw)
|
|
{
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
enum ice_status status;
|
|
u16 mac_buf_len;
|
|
void *mac_buf;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
/* Set MAC type based on DeviceID */
|
|
status = ice_set_mac_type(hw);
|
|
if (status)
|
|
return status;
|
|
|
|
hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
|
|
PF_FUNC_RID_FUNCTION_NUMBER_M) >>
|
|
PF_FUNC_RID_FUNCTION_NUMBER_S;
|
|
|
|
status = ice_reset(hw, ICE_RESET_PFR);
|
|
if (status)
|
|
return status;
|
|
|
|
ice_get_itr_intrl_gran(hw);
|
|
|
|
status = ice_create_all_ctrlq(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
status = ice_init_nvm(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
if (ice_get_fw_mode(hw) == ICE_FW_MODE_ROLLBACK)
|
|
ice_print_rollback_msg(hw);
|
|
|
|
status = ice_clear_pf_cfg(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
/* Set bit to enable Flow Director filters */
|
|
wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
|
|
INIT_LIST_HEAD(&hw->fdir_list_head);
|
|
|
|
ice_clear_pxe_mode(hw);
|
|
|
|
status = ice_get_caps(hw);
|
|
if (status)
|
|
goto err_unroll_cqinit;
|
|
|
|
hw->port_info = (struct ice_port_info *)
|
|
ice_malloc(hw, sizeof(*hw->port_info));
|
|
if (!hw->port_info) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_unroll_cqinit;
|
|
}
|
|
|
|
/* set the back pointer to HW */
|
|
hw->port_info->hw = hw;
|
|
|
|
/* Initialize port_info struct with switch configuration data */
|
|
status = ice_get_initial_sw_cfg(hw);
|
|
if (status)
|
|
goto err_unroll_alloc;
|
|
|
|
hw->evb_veb = true;
|
|
/* Query the allocated resources for Tx scheduler */
|
|
status = ice_sched_query_res_alloc(hw);
|
|
if (status) {
|
|
ice_debug(hw, ICE_DBG_SCHED,
|
|
"Failed to get scheduler allocated resources\n");
|
|
goto err_unroll_alloc;
|
|
}
|
|
|
|
/* Initialize port_info struct with scheduler data */
|
|
status = ice_sched_init_port(hw->port_info);
|
|
if (status)
|
|
goto err_unroll_sched;
|
|
|
|
pcaps = (struct ice_aqc_get_phy_caps_data *)
|
|
ice_malloc(hw, sizeof(*pcaps));
|
|
if (!pcaps) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_unroll_sched;
|
|
}
|
|
|
|
/* Initialize port_info struct with PHY capabilities */
|
|
status = ice_aq_get_phy_caps(hw->port_info, false,
|
|
ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
|
|
ice_free(hw, pcaps);
|
|
if (status)
|
|
goto err_unroll_sched;
|
|
|
|
/* Initialize port_info struct with link information */
|
|
status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
|
|
if (status)
|
|
goto err_unroll_sched;
|
|
/* need a valid SW entry point to build a Tx tree */
|
|
if (!hw->sw_entry_point_layer) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
|
|
status = ICE_ERR_CFG;
|
|
goto err_unroll_sched;
|
|
}
|
|
INIT_LIST_HEAD(&hw->agg_list);
|
|
/* Initialize max burst size */
|
|
if (!hw->max_burst_size)
|
|
ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
|
|
|
|
status = ice_init_fltr_mgmt_struct(hw);
|
|
if (status)
|
|
goto err_unroll_sched;
|
|
|
|
/* Get MAC information */
|
|
/* A single port can report up to two (LAN and WoL) addresses */
|
|
mac_buf = ice_calloc(hw, 2,
|
|
sizeof(struct ice_aqc_manage_mac_read_resp));
|
|
mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
|
|
|
|
if (!mac_buf) {
|
|
status = ICE_ERR_NO_MEMORY;
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
}
|
|
|
|
status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
|
|
ice_free(hw, mac_buf);
|
|
|
|
if (status)
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
/* Obtain counter base index which would be used by flow director */
|
|
status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
|
|
if (status)
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
status = ice_init_hw_tbls(hw);
|
|
if (status)
|
|
goto err_unroll_fltr_mgmt_struct;
|
|
return ICE_SUCCESS;
|
|
|
|
err_unroll_fltr_mgmt_struct:
|
|
ice_cleanup_fltr_mgmt_struct(hw);
|
|
err_unroll_sched:
|
|
ice_sched_cleanup_all(hw);
|
|
err_unroll_alloc:
|
|
ice_free(hw, hw->port_info);
|
|
hw->port_info = NULL;
|
|
err_unroll_cqinit:
|
|
ice_destroy_all_ctrlq(hw);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_deinit_hw - unroll initialization operations done by ice_init_hw
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* This should be called only during nominal operation, not as a result of
|
|
* ice_init_hw() failing since ice_init_hw() will take care of unrolling
|
|
* applicable initializations if it fails for any reason.
|
|
*/
|
|
void ice_deinit_hw(struct ice_hw *hw)
|
|
{
|
|
ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
|
|
ice_cleanup_fltr_mgmt_struct(hw);
|
|
|
|
ice_sched_cleanup_all(hw);
|
|
ice_sched_clear_agg(hw);
|
|
ice_free_seg(hw);
|
|
ice_free_hw_tbls(hw);
|
|
|
|
if (hw->port_info) {
|
|
ice_free(hw, hw->port_info);
|
|
hw->port_info = NULL;
|
|
}
|
|
|
|
ice_destroy_all_ctrlq(hw);
|
|
|
|
/* Clear VSI contexts if not already cleared */
|
|
ice_clear_all_vsi_ctx(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_check_reset - Check to see if a global reset is complete
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
enum ice_status ice_check_reset(struct ice_hw *hw)
|
|
{
|
|
u32 cnt, reg = 0, grst_delay, uld_mask;
|
|
|
|
/* Poll for Device Active state in case a recent CORER, GLOBR,
|
|
* or EMPR has occurred. The grst delay value is in 100ms units.
|
|
* Add 1sec for outstanding AQ commands that can take a long time.
|
|
*/
|
|
grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
|
|
GLGEN_RSTCTL_GRSTDEL_S) + 10;
|
|
|
|
for (cnt = 0; cnt < grst_delay; cnt++) {
|
|
ice_msec_delay(100, true);
|
|
reg = rd32(hw, GLGEN_RSTAT);
|
|
if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
|
|
break;
|
|
}
|
|
|
|
if (cnt == grst_delay) {
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"Global reset polling failed to complete.\n");
|
|
return ICE_ERR_RESET_FAILED;
|
|
}
|
|
|
|
#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
|
|
GLNVM_ULD_PCIER_DONE_1_M |\
|
|
GLNVM_ULD_CORER_DONE_M |\
|
|
GLNVM_ULD_GLOBR_DONE_M |\
|
|
GLNVM_ULD_POR_DONE_M |\
|
|
GLNVM_ULD_POR_DONE_1_M |\
|
|
GLNVM_ULD_PCIER_DONE_2_M)
|
|
|
|
uld_mask = ICE_RESET_DONE_MASK;
|
|
|
|
/* Device is Active; check Global Reset processes are done */
|
|
for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
|
|
reg = rd32(hw, GLNVM_ULD) & uld_mask;
|
|
if (reg == uld_mask) {
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"Global reset processes done. %d\n", cnt);
|
|
break;
|
|
}
|
|
ice_msec_delay(10, true);
|
|
}
|
|
|
|
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
|
|
reg);
|
|
return ICE_ERR_RESET_FAILED;
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_pf_reset - Reset the PF
|
|
* @hw: pointer to the hardware structure
|
|
*
|
|
* If a global reset has been triggered, this function checks
|
|
* for its completion and then issues the PF reset
|
|
*/
|
|
static enum ice_status ice_pf_reset(struct ice_hw *hw)
|
|
{
|
|
u32 cnt, reg;
|
|
|
|
/* If at function entry a global reset was already in progress, i.e.
|
|
* state is not 'device active' or any of the reset done bits are not
|
|
* set in GLNVM_ULD, there is no need for a PF Reset; poll until the
|
|
* global reset is done.
|
|
*/
|
|
if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
|
|
(rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
|
|
/* poll on global reset currently in progress until done */
|
|
if (ice_check_reset(hw))
|
|
return ICE_ERR_RESET_FAILED;
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* Reset the PF */
|
|
reg = rd32(hw, PFGEN_CTRL);
|
|
|
|
wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
|
|
|
|
for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
|
|
reg = rd32(hw, PFGEN_CTRL);
|
|
if (!(reg & PFGEN_CTRL_PFSWR_M))
|
|
break;
|
|
|
|
ice_msec_delay(1, true);
|
|
}
|
|
|
|
if (cnt == ICE_PF_RESET_WAIT_COUNT) {
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"PF reset polling failed to complete.\n");
|
|
return ICE_ERR_RESET_FAILED;
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_reset - Perform different types of reset
|
|
* @hw: pointer to the hardware structure
|
|
* @req: reset request
|
|
*
|
|
* This function triggers a reset as specified by the req parameter.
|
|
*
|
|
* Note:
|
|
* If anything other than a PF reset is triggered, PXE mode is restored.
|
|
* This has to be cleared using ice_clear_pxe_mode again, once the AQ
|
|
* interface has been restored in the rebuild flow.
|
|
*/
|
|
enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
|
|
{
|
|
u32 val = 0;
|
|
|
|
switch (req) {
|
|
case ICE_RESET_PFR:
|
|
return ice_pf_reset(hw);
|
|
case ICE_RESET_CORER:
|
|
ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
|
|
val = GLGEN_RTRIG_CORER_M;
|
|
break;
|
|
case ICE_RESET_GLOBR:
|
|
ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
|
|
val = GLGEN_RTRIG_GLOBR_M;
|
|
break;
|
|
default:
|
|
return ICE_ERR_PARAM;
|
|
}
|
|
|
|
val |= rd32(hw, GLGEN_RTRIG);
|
|
wr32(hw, GLGEN_RTRIG, val);
|
|
ice_flush(hw);
|
|
|
|
/* wait for the FW to be ready */
|
|
return ice_check_reset(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
|
|
* @hw: pointer to hardware structure
|
|
* @module_tlv: pointer to module TLV to return
|
|
* @module_tlv_len: pointer to module TLV length to return
|
|
* @module_type: module type requested
|
|
*
|
|
* Finds the requested sub module TLV type from the Preserved Field
|
|
* Area (PFA) and returns the TLV pointer and length. The caller can
|
|
* use these to read the variable length TLV value.
|
|
*/
|
|
enum ice_status
|
|
ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
|
|
u16 module_type)
|
|
{
|
|
enum ice_status status;
|
|
u16 pfa_len, pfa_ptr;
|
|
u16 next_tlv;
|
|
|
|
status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
|
|
if (status != ICE_SUCCESS) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
|
|
return status;
|
|
}
|
|
status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
|
|
if (status != ICE_SUCCESS) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
|
|
return status;
|
|
}
|
|
/* Starting with first TLV after PFA length, iterate through the list
|
|
* of TLVs to find the requested one.
|
|
*/
|
|
next_tlv = pfa_ptr + 1;
|
|
while (next_tlv < pfa_ptr + pfa_len) {
|
|
u16 tlv_sub_module_type;
|
|
u16 tlv_len;
|
|
|
|
/* Read TLV type */
|
|
status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
|
|
if (status != ICE_SUCCESS) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
|
|
break;
|
|
}
|
|
/* Read TLV length */
|
|
status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
|
|
if (status != ICE_SUCCESS) {
|
|
ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
|
|
break;
|
|
}
|
|
if (tlv_sub_module_type == module_type) {
|
|
if (tlv_len) {
|
|
*module_tlv = next_tlv;
|
|
*module_tlv_len = tlv_len;
|
|
return ICE_SUCCESS;
|
|
}
|
|
return ICE_ERR_INVAL_SIZE;
|
|
}
|
|
/* Check next TLV, i.e. current TLV pointer + length + 2 words
|
|
* (for current TLV's type and length)
|
|
*/
|
|
next_tlv = next_tlv + tlv_len + 2;
|
|
}
|
|
/* Module does not exist */
|
|
return ICE_ERR_DOES_NOT_EXIST;
|
|
}
|
|
|
|
/**
|
|
* ice_copy_rxq_ctx_to_hw
|
|
* @hw: pointer to the hardware structure
|
|
* @ice_rxq_ctx: pointer to the rxq context
|
|
* @rxq_index: the index of the Rx queue
|
|
*
|
|
* Copies rxq context from dense structure to HW register space
|
|
*/
|
|
static enum ice_status
|
|
ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (!ice_rxq_ctx)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
if (rxq_index > QRX_CTRL_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Copy each dword separately to HW */
|
|
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
|
|
wr32(hw, QRX_CONTEXT(i, rxq_index),
|
|
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
|
|
|
|
ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
|
|
*((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* LAN Rx Queue Context */
|
|
static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
|
|
/* Field Width LSB */
|
|
ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
|
|
ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
|
|
ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
|
|
ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
|
|
ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
|
|
ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
|
|
ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
|
|
ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
|
|
ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
|
|
ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
|
|
ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
|
|
ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
|
|
ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
|
|
ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
|
|
ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
|
|
ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
|
|
ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
|
|
{ 0 }
|
|
};
|
|
|
|
/**
|
|
* ice_write_rxq_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @rlan_ctx: pointer to the rxq context
|
|
* @rxq_index: the index of the Rx queue
|
|
*
|
|
* Converts rxq context from sparse to dense structure and then writes
|
|
* it to HW register space and enables the hardware to prefetch descriptors
|
|
* instead of only fetching them on demand
|
|
*/
|
|
enum ice_status
|
|
ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
|
|
u32 rxq_index)
|
|
{
|
|
u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
|
|
|
|
if (!rlan_ctx)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
rlan_ctx->prefena = 1;
|
|
|
|
ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
|
|
return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
|
|
}
|
|
|
|
/**
|
|
* ice_clear_rxq_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @rxq_index: the index of the Rx queue to clear
|
|
*
|
|
* Clears rxq context in HW register space
|
|
*/
|
|
enum ice_status ice_clear_rxq_ctx(struct ice_hw *hw, u32 rxq_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (rxq_index > QRX_CTRL_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Clear each dword register separately */
|
|
for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++)
|
|
wr32(hw, QRX_CONTEXT(i, rxq_index), 0);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* LAN Tx Queue Context */
|
|
const struct ice_ctx_ele ice_tlan_ctx_info[] = {
|
|
/* Field Width LSB */
|
|
ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
|
|
ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
|
|
ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
|
|
ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
|
|
ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
|
|
ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
|
|
ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
|
|
ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
|
|
ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
|
|
ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
|
|
ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
|
|
ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
|
|
ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
|
|
ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
|
|
ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
|
|
ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
|
|
ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
|
|
ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
|
|
ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
|
|
ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
|
|
{ 0 }
|
|
};
|
|
|
|
/**
|
|
* ice_copy_tx_cmpltnq_ctx_to_hw
|
|
* @hw: pointer to the hardware structure
|
|
* @ice_tx_cmpltnq_ctx: pointer to the Tx completion queue context
|
|
* @tx_cmpltnq_index: the index of the completion queue
|
|
*
|
|
* Copies Tx completion queue context from dense structure to HW register space
|
|
*/
|
|
static enum ice_status
|
|
ice_copy_tx_cmpltnq_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_cmpltnq_ctx,
|
|
u32 tx_cmpltnq_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (!ice_tx_cmpltnq_ctx)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Copy each dword separately to HW */
|
|
for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++) {
|
|
wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index),
|
|
*((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
|
|
|
|
ice_debug(hw, ICE_DBG_QCTX, "cmpltnqdata[%d]: %08X\n", i,
|
|
*((u32 *)(ice_tx_cmpltnq_ctx + (i * sizeof(u32)))));
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* LAN Tx Completion Queue Context */
|
|
static const struct ice_ctx_ele ice_tx_cmpltnq_ctx_info[] = {
|
|
/* Field Width LSB */
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, base, 57, 0),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, q_len, 18, 64),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, generation, 1, 96),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, wrt_ptr, 22, 97),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, pf_num, 3, 128),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_num, 10, 131),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, vmvf_type, 2, 141),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, tph_desc_wr, 1, 160),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cpuid, 8, 161),
|
|
ICE_CTX_STORE(ice_tx_cmpltnq_ctx, cmpltn_cache, 512, 192),
|
|
{ 0 }
|
|
};
|
|
|
|
/**
|
|
* ice_write_tx_cmpltnq_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @tx_cmpltnq_ctx: pointer to the completion queue context
|
|
* @tx_cmpltnq_index: the index of the completion queue
|
|
*
|
|
* Converts completion queue context from sparse to dense structure and then
|
|
* writes it to HW register space
|
|
*/
|
|
enum ice_status
|
|
ice_write_tx_cmpltnq_ctx(struct ice_hw *hw,
|
|
struct ice_tx_cmpltnq_ctx *tx_cmpltnq_ctx,
|
|
u32 tx_cmpltnq_index)
|
|
{
|
|
u8 ctx_buf[ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
|
|
|
|
ice_set_ctx((u8 *)tx_cmpltnq_ctx, ctx_buf, ice_tx_cmpltnq_ctx_info);
|
|
return ice_copy_tx_cmpltnq_ctx_to_hw(hw, ctx_buf, tx_cmpltnq_index);
|
|
}
|
|
|
|
/**
|
|
* ice_clear_tx_cmpltnq_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @tx_cmpltnq_index: the index of the completion queue to clear
|
|
*
|
|
* Clears Tx completion queue context in HW register space
|
|
*/
|
|
enum ice_status
|
|
ice_clear_tx_cmpltnq_ctx(struct ice_hw *hw, u32 tx_cmpltnq_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (tx_cmpltnq_index > GLTCLAN_CQ_CNTX0_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Clear each dword register separately */
|
|
for (i = 0; i < ICE_TX_CMPLTNQ_CTX_SIZE_DWORDS; i++)
|
|
wr32(hw, GLTCLAN_CQ_CNTX(i, tx_cmpltnq_index), 0);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_copy_tx_drbell_q_ctx_to_hw
|
|
* @hw: pointer to the hardware structure
|
|
* @ice_tx_drbell_q_ctx: pointer to the doorbell queue context
|
|
* @tx_drbell_q_index: the index of the doorbell queue
|
|
*
|
|
* Copies doorbell queue context from dense structure to HW register space
|
|
*/
|
|
static enum ice_status
|
|
ice_copy_tx_drbell_q_ctx_to_hw(struct ice_hw *hw, u8 *ice_tx_drbell_q_ctx,
|
|
u32 tx_drbell_q_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (!ice_tx_drbell_q_ctx)
|
|
return ICE_ERR_BAD_PTR;
|
|
|
|
if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Copy each dword separately to HW */
|
|
for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++) {
|
|
wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index),
|
|
*((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
|
|
|
|
ice_debug(hw, ICE_DBG_QCTX, "tx_drbell_qdata[%d]: %08X\n", i,
|
|
*((u32 *)(ice_tx_drbell_q_ctx + (i * sizeof(u32)))));
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* LAN Tx Doorbell Queue Context info */
|
|
static const struct ice_ctx_ele ice_tx_drbell_q_ctx_info[] = {
|
|
/* Field Width LSB */
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, base, 57, 0),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, ring_len, 13, 64),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, pf_num, 3, 80),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, vf_num, 8, 84),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, vmvf_type, 2, 94),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, cpuid, 8, 96),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_rd, 1, 104),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, tph_desc_wr, 1, 108),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, db_q_en, 1, 112),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_head, 13, 128),
|
|
ICE_CTX_STORE(ice_tx_drbell_q_ctx, rd_tail, 13, 144),
|
|
{ 0 }
|
|
};
|
|
|
|
/**
|
|
* ice_write_tx_drbell_q_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @tx_drbell_q_ctx: pointer to the doorbell queue context
|
|
* @tx_drbell_q_index: the index of the doorbell queue
|
|
*
|
|
* Converts doorbell queue context from sparse to dense structure and then
|
|
* writes it to HW register space
|
|
*/
|
|
enum ice_status
|
|
ice_write_tx_drbell_q_ctx(struct ice_hw *hw,
|
|
struct ice_tx_drbell_q_ctx *tx_drbell_q_ctx,
|
|
u32 tx_drbell_q_index)
|
|
{
|
|
u8 ctx_buf[ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS * sizeof(u32)] = { 0 };
|
|
|
|
ice_set_ctx((u8 *)tx_drbell_q_ctx, ctx_buf, ice_tx_drbell_q_ctx_info);
|
|
return ice_copy_tx_drbell_q_ctx_to_hw(hw, ctx_buf, tx_drbell_q_index);
|
|
}
|
|
|
|
/**
|
|
* ice_clear_tx_drbell_q_ctx
|
|
* @hw: pointer to the hardware structure
|
|
* @tx_drbell_q_index: the index of the doorbell queue to clear
|
|
*
|
|
* Clears doorbell queue context in HW register space
|
|
*/
|
|
enum ice_status
|
|
ice_clear_tx_drbell_q_ctx(struct ice_hw *hw, u32 tx_drbell_q_index)
|
|
{
|
|
u8 i;
|
|
|
|
if (tx_drbell_q_index > QTX_COMM_DBLQ_DBELL_MAX_INDEX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Clear each dword register separately */
|
|
for (i = 0; i < ICE_TX_DRBELL_Q_CTX_SIZE_DWORDS; i++)
|
|
wr32(hw, QTX_COMM_DBLQ_CNTX(i, tx_drbell_q_index), 0);
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/* FW Admin Queue command wrappers */
|
|
|
|
/**
|
|
* ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
|
|
* @hw: pointer to the HW struct
|
|
* @desc: descriptor describing the command
|
|
* @buf: buffer to use for indirect commands (NULL for direct commands)
|
|
* @buf_size: size of buffer for indirect commands (0 for direct commands)
|
|
* @cd: pointer to command details structure
|
|
*
|
|
* Helper function to send FW Admin Queue commands to the FW Admin Queue.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
|
|
u16 buf_size, struct ice_sq_cd *cd)
|
|
{
|
|
return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_fw_ver
|
|
* @hw: pointer to the HW struct
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get the firmware version (0x0001) from the admin queue commands
|
|
*/
|
|
enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_get_ver *resp;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
resp = &desc.params.get_ver;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
|
|
if (!status) {
|
|
hw->fw_branch = resp->fw_branch;
|
|
hw->fw_maj_ver = resp->fw_major;
|
|
hw->fw_min_ver = resp->fw_minor;
|
|
hw->fw_patch = resp->fw_patch;
|
|
hw->fw_build = LE32_TO_CPU(resp->fw_build);
|
|
hw->api_branch = resp->api_branch;
|
|
hw->api_maj_ver = resp->api_major;
|
|
hw->api_min_ver = resp->api_minor;
|
|
hw->api_patch = resp->api_patch;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_send_driver_ver
|
|
* @hw: pointer to the HW struct
|
|
* @dv: driver's major, minor version
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Send the driver version (0x0002) to the firmware
|
|
*/
|
|
enum ice_status
|
|
ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_driver_ver *cmd;
|
|
struct ice_aq_desc desc;
|
|
u16 len;
|
|
|
|
cmd = &desc.params.driver_ver;
|
|
|
|
if (!dv)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
|
|
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
cmd->major_ver = dv->major_ver;
|
|
cmd->minor_ver = dv->minor_ver;
|
|
cmd->build_ver = dv->build_ver;
|
|
cmd->subbuild_ver = dv->subbuild_ver;
|
|
|
|
len = 0;
|
|
while (len < sizeof(dv->driver_string) &&
|
|
IS_ASCII(dv->driver_string[len]) && dv->driver_string[len])
|
|
len++;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_q_shutdown
|
|
* @hw: pointer to the HW struct
|
|
* @unloading: is the driver unloading itself
|
|
*
|
|
* Tell the Firmware that we're shutting down the AdminQ and whether
|
|
* or not the driver is unloading as well (0x0003).
|
|
*/
|
|
enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
|
|
{
|
|
struct ice_aqc_q_shutdown *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.q_shutdown;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
|
|
|
|
if (unloading)
|
|
cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_req_res
|
|
* @hw: pointer to the HW struct
|
|
* @res: resource ID
|
|
* @access: access type
|
|
* @sdp_number: resource number
|
|
* @timeout: the maximum time in ms that the driver may hold the resource
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Requests common resource using the admin queue commands (0x0008).
|
|
* When attempting to acquire the Global Config Lock, the driver can
|
|
* learn of three states:
|
|
* 1) ICE_SUCCESS - acquired lock, and can perform download package
|
|
* 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
|
|
* 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
|
|
* successfully downloaded the package; the driver does
|
|
* not have to download the package and can continue
|
|
* loading
|
|
*
|
|
* Note that if the caller is in an acquire lock, perform action, release lock
|
|
* phase of operation, it is possible that the FW may detect a timeout and issue
|
|
* a CORER. In this case, the driver will receive a CORER interrupt and will
|
|
* have to determine its cause. The calling thread that is handling this flow
|
|
* will likely get an error propagated back to it indicating the Download
|
|
* Package, Update Package or the Release Resource AQ commands timed out.
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
|
|
enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_req_res *cmd_resp;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
cmd_resp = &desc.params.res_owner;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
|
|
|
|
cmd_resp->res_id = CPU_TO_LE16(res);
|
|
cmd_resp->access_type = CPU_TO_LE16(access);
|
|
cmd_resp->res_number = CPU_TO_LE32(sdp_number);
|
|
cmd_resp->timeout = CPU_TO_LE32(*timeout);
|
|
*timeout = 0;
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
|
|
/* The completion specifies the maximum time in ms that the driver
|
|
* may hold the resource in the Timeout field.
|
|
*/
|
|
|
|
/* Global config lock response utilizes an additional status field.
|
|
*
|
|
* If the Global config lock resource is held by some other driver, the
|
|
* command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
|
|
* and the timeout field indicates the maximum time the current owner
|
|
* of the resource has to free it.
|
|
*/
|
|
if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
|
|
if (LE16_TO_CPU(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
|
|
*timeout = LE32_TO_CPU(cmd_resp->timeout);
|
|
return ICE_SUCCESS;
|
|
} else if (LE16_TO_CPU(cmd_resp->status) ==
|
|
ICE_AQ_RES_GLBL_IN_PROG) {
|
|
*timeout = LE32_TO_CPU(cmd_resp->timeout);
|
|
return ICE_ERR_AQ_ERROR;
|
|
} else if (LE16_TO_CPU(cmd_resp->status) ==
|
|
ICE_AQ_RES_GLBL_DONE) {
|
|
return ICE_ERR_AQ_NO_WORK;
|
|
}
|
|
|
|
/* invalid FW response, force a timeout immediately */
|
|
*timeout = 0;
|
|
return ICE_ERR_AQ_ERROR;
|
|
}
|
|
|
|
/* If the resource is held by some other driver, the command completes
|
|
* with a busy return value and the timeout field indicates the maximum
|
|
* time the current owner of the resource has to free it.
|
|
*/
|
|
if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
|
|
*timeout = LE32_TO_CPU(cmd_resp->timeout);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_release_res
|
|
* @hw: pointer to the HW struct
|
|
* @res: resource ID
|
|
* @sdp_number: resource number
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* release common resource using the admin queue commands (0x0009)
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_req_res *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
cmd = &desc.params.res_owner;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
|
|
|
|
cmd->res_id = CPU_TO_LE16(res);
|
|
cmd->res_number = CPU_TO_LE32(sdp_number);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_acquire_res
|
|
* @hw: pointer to the HW structure
|
|
* @res: resource ID
|
|
* @access: access type (read or write)
|
|
* @timeout: timeout in milliseconds
|
|
*
|
|
* This function will attempt to acquire the ownership of a resource.
|
|
*/
|
|
enum ice_status
|
|
ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
|
|
enum ice_aq_res_access_type access, u32 timeout)
|
|
{
|
|
#define ICE_RES_POLLING_DELAY_MS 10
|
|
u32 delay = ICE_RES_POLLING_DELAY_MS;
|
|
u32 time_left = timeout;
|
|
enum ice_status status;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
|
|
|
|
/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
|
|
* previously acquired the resource and performed any necessary updates;
|
|
* in this case the caller does not obtain the resource and has no
|
|
* further work to do.
|
|
*/
|
|
if (status == ICE_ERR_AQ_NO_WORK)
|
|
goto ice_acquire_res_exit;
|
|
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_RES,
|
|
"resource %d acquire type %d failed.\n", res, access);
|
|
|
|
/* If necessary, poll until the current lock owner timeouts */
|
|
timeout = time_left;
|
|
while (status && timeout && time_left) {
|
|
ice_msec_delay(delay, true);
|
|
timeout = (timeout > delay) ? timeout - delay : 0;
|
|
status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
|
|
|
|
if (status == ICE_ERR_AQ_NO_WORK)
|
|
/* lock free, but no work to do */
|
|
break;
|
|
|
|
if (!status)
|
|
/* lock acquired */
|
|
break;
|
|
}
|
|
if (status && status != ICE_ERR_AQ_NO_WORK)
|
|
ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
|
|
|
|
ice_acquire_res_exit:
|
|
if (status == ICE_ERR_AQ_NO_WORK) {
|
|
if (access == ICE_RES_WRITE)
|
|
ice_debug(hw, ICE_DBG_RES,
|
|
"resource indicates no work to do.\n");
|
|
else
|
|
ice_debug(hw, ICE_DBG_RES,
|
|
"Warning: ICE_ERR_AQ_NO_WORK not expected\n");
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_release_res
|
|
* @hw: pointer to the HW structure
|
|
* @res: resource ID
|
|
*
|
|
* This function will release a resource using the proper Admin Command.
|
|
*/
|
|
void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
|
|
{
|
|
enum ice_status status;
|
|
u32 total_delay = 0;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
status = ice_aq_release_res(hw, res, 0, NULL);
|
|
|
|
/* there are some rare cases when trying to release the resource
|
|
* results in an admin queue timeout, so handle them correctly
|
|
*/
|
|
while ((status == ICE_ERR_AQ_TIMEOUT) &&
|
|
(total_delay < hw->adminq.sq_cmd_timeout)) {
|
|
ice_msec_delay(1, true);
|
|
status = ice_aq_release_res(hw, res, 0, NULL);
|
|
total_delay++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_aq_alloc_free_res - command to allocate/free resources
|
|
* @hw: pointer to the HW struct
|
|
* @num_entries: number of resource entries in buffer
|
|
* @buf: Indirect buffer to hold data parameters and response
|
|
* @buf_size: size of buffer for indirect commands
|
|
* @opc: pass in the command opcode
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Helper function to allocate/free resources using the admin queue commands
|
|
*/
|
|
enum ice_status
|
|
ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
|
|
struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
|
|
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_alloc_free_res_cmd *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
cmd = &desc.params.sw_res_ctrl;
|
|
|
|
if (!buf)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (buf_size < (num_entries * sizeof(buf->elem[0])))
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, opc);
|
|
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
cmd->num_entries = CPU_TO_LE16(num_entries);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_alloc_hw_res - allocate resource
|
|
* @hw: pointer to the HW struct
|
|
* @type: type of resource
|
|
* @num: number of resources to allocate
|
|
* @btm: allocate from bottom
|
|
* @res: pointer to array that will receive the resources
|
|
*/
|
|
enum ice_status
|
|
ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *buf;
|
|
enum ice_status status;
|
|
u16 buf_len;
|
|
|
|
buf_len = sizeof(*buf) + sizeof(buf->elem) * (num - 1);
|
|
buf = (struct ice_aqc_alloc_free_res_elem *)
|
|
ice_malloc(hw, buf_len);
|
|
if (!buf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Prepare buffer to allocate resource. */
|
|
buf->num_elems = CPU_TO_LE16(num);
|
|
buf->res_type = CPU_TO_LE16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
|
|
ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
|
|
if (btm)
|
|
buf->res_type |= CPU_TO_LE16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
|
|
|
|
status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
|
|
ice_aqc_opc_alloc_res, NULL);
|
|
if (status)
|
|
goto ice_alloc_res_exit;
|
|
|
|
ice_memcpy(res, buf->elem, sizeof(buf->elem) * num,
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
ice_alloc_res_exit:
|
|
ice_free(hw, buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_free_hw_res - free allocated HW resource
|
|
* @hw: pointer to the HW struct
|
|
* @type: type of resource to free
|
|
* @num: number of resources
|
|
* @res: pointer to array that contains the resources to free
|
|
*/
|
|
enum ice_status
|
|
ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
|
|
{
|
|
struct ice_aqc_alloc_free_res_elem *buf;
|
|
enum ice_status status;
|
|
u16 buf_len;
|
|
|
|
buf_len = sizeof(*buf) + sizeof(buf->elem) * (num - 1);
|
|
buf = (struct ice_aqc_alloc_free_res_elem *)ice_malloc(hw, buf_len);
|
|
if (!buf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Prepare buffer to free resource. */
|
|
buf->num_elems = CPU_TO_LE16(num);
|
|
buf->res_type = CPU_TO_LE16(type);
|
|
ice_memcpy(buf->elem, res, sizeof(buf->elem) * num,
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
|
|
ice_aqc_opc_free_res, NULL);
|
|
if (status)
|
|
ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
|
|
|
|
ice_free(hw, buf);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_num_per_func - determine number of resources per PF
|
|
* @hw: pointer to the HW structure
|
|
* @max: value to be evenly split between each PF
|
|
*
|
|
* Determine the number of valid functions by going through the bitmap returned
|
|
* from parsing capabilities and use this to calculate the number of resources
|
|
* per PF based on the max value passed in.
|
|
*/
|
|
static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
|
|
{
|
|
u8 funcs;
|
|
|
|
#define ICE_CAPS_VALID_FUNCS_M 0xFF
|
|
funcs = ice_hweight8(hw->dev_caps.common_cap.valid_functions &
|
|
ICE_CAPS_VALID_FUNCS_M);
|
|
|
|
if (!funcs)
|
|
return 0;
|
|
|
|
return max / funcs;
|
|
}
|
|
|
|
/**
|
|
* ice_parse_caps - parse function/device capabilities
|
|
* @hw: pointer to the HW struct
|
|
* @buf: pointer to a buffer containing function/device capability records
|
|
* @cap_count: number of capability records in the list
|
|
* @opc: type of capabilities list to parse
|
|
*
|
|
* Helper function to parse function(0x000a)/device(0x000b) capabilities list.
|
|
*/
|
|
static void
|
|
ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
|
|
enum ice_adminq_opc opc)
|
|
{
|
|
struct ice_aqc_list_caps_elem *cap_resp;
|
|
struct ice_hw_func_caps *func_p = NULL;
|
|
struct ice_hw_dev_caps *dev_p = NULL;
|
|
struct ice_hw_common_caps *caps;
|
|
char const *prefix;
|
|
u32 i;
|
|
|
|
if (!buf)
|
|
return;
|
|
|
|
cap_resp = (struct ice_aqc_list_caps_elem *)buf;
|
|
|
|
if (opc == ice_aqc_opc_list_dev_caps) {
|
|
dev_p = &hw->dev_caps;
|
|
caps = &dev_p->common_cap;
|
|
prefix = "dev cap";
|
|
} else if (opc == ice_aqc_opc_list_func_caps) {
|
|
func_p = &hw->func_caps;
|
|
caps = &func_p->common_cap;
|
|
prefix = "func cap";
|
|
} else {
|
|
ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; caps && i < cap_count; i++, cap_resp++) {
|
|
u32 logical_id = LE32_TO_CPU(cap_resp->logical_id);
|
|
u32 phys_id = LE32_TO_CPU(cap_resp->phys_id);
|
|
u32 number = LE32_TO_CPU(cap_resp->number);
|
|
u16 cap = LE16_TO_CPU(cap_resp->cap);
|
|
|
|
switch (cap) {
|
|
case ICE_AQC_CAPS_VALID_FUNCTIONS:
|
|
caps->valid_functions = number;
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: valid_functions (bitmap) = %d\n", prefix,
|
|
caps->valid_functions);
|
|
|
|
/* store func count for resource management purposes */
|
|
if (dev_p)
|
|
dev_p->num_funcs = ice_hweight32(number);
|
|
break;
|
|
case ICE_AQC_CAPS_VSI:
|
|
if (dev_p) {
|
|
dev_p->num_vsi_allocd_to_host = number;
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: num_vsi_allocd_to_host = %d\n",
|
|
prefix,
|
|
dev_p->num_vsi_allocd_to_host);
|
|
} else if (func_p) {
|
|
func_p->guar_num_vsi =
|
|
ice_get_num_per_func(hw, ICE_MAX_VSI);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: guar_num_vsi (fw) = %d\n",
|
|
prefix, number);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: guar_num_vsi = %d\n",
|
|
prefix, func_p->guar_num_vsi);
|
|
}
|
|
break;
|
|
case ICE_AQC_CAPS_DCB:
|
|
caps->dcb = (number == 1);
|
|
caps->active_tc_bitmap = logical_id;
|
|
caps->maxtc = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: dcb = %d\n", prefix, caps->dcb);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: active_tc_bitmap = %d\n", prefix,
|
|
caps->active_tc_bitmap);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: maxtc = %d\n", prefix, caps->maxtc);
|
|
break;
|
|
case ICE_AQC_CAPS_RSS:
|
|
caps->rss_table_size = number;
|
|
caps->rss_table_entry_width = logical_id;
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: rss_table_size = %d\n", prefix,
|
|
caps->rss_table_size);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: rss_table_entry_width = %d\n", prefix,
|
|
caps->rss_table_entry_width);
|
|
break;
|
|
case ICE_AQC_CAPS_RXQS:
|
|
caps->num_rxq = number;
|
|
caps->rxq_first_id = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: num_rxq = %d\n", prefix,
|
|
caps->num_rxq);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: rxq_first_id = %d\n", prefix,
|
|
caps->rxq_first_id);
|
|
break;
|
|
case ICE_AQC_CAPS_TXQS:
|
|
caps->num_txq = number;
|
|
caps->txq_first_id = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: num_txq = %d\n", prefix,
|
|
caps->num_txq);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: txq_first_id = %d\n", prefix,
|
|
caps->txq_first_id);
|
|
break;
|
|
case ICE_AQC_CAPS_MSIX:
|
|
caps->num_msix_vectors = number;
|
|
caps->msix_vector_first_id = phys_id;
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: num_msix_vectors = %d\n", prefix,
|
|
caps->num_msix_vectors);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: msix_vector_first_id = %d\n", prefix,
|
|
caps->msix_vector_first_id);
|
|
break;
|
|
case ICE_AQC_CAPS_FD:
|
|
{
|
|
u32 reg_val, val;
|
|
|
|
if (dev_p) {
|
|
dev_p->num_flow_director_fltr = number;
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: num_flow_director_fltr = %d\n",
|
|
prefix,
|
|
dev_p->num_flow_director_fltr);
|
|
}
|
|
if (func_p) {
|
|
reg_val = rd32(hw, GLQF_FD_SIZE);
|
|
val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
|
|
GLQF_FD_SIZE_FD_GSIZE_S;
|
|
func_p->fd_fltr_guar =
|
|
ice_get_num_per_func(hw, val);
|
|
val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
|
|
GLQF_FD_SIZE_FD_BSIZE_S;
|
|
func_p->fd_fltr_best_effort = val;
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: fd_fltr_guar = %d\n",
|
|
prefix, func_p->fd_fltr_guar);
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: fd_fltr_best_effort = %d\n",
|
|
prefix, func_p->fd_fltr_best_effort);
|
|
}
|
|
break;
|
|
}
|
|
case ICE_AQC_CAPS_MAX_MTU:
|
|
caps->max_mtu = number;
|
|
ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
|
|
prefix, caps->max_mtu);
|
|
break;
|
|
default:
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: unknown capability[%d]: 0x%x\n", prefix,
|
|
i, cap);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Re-calculate capabilities that are dependent on the number of
|
|
* physical ports; i.e. some features are not supported or function
|
|
* differently on devices with more than 4 ports.
|
|
*/
|
|
if (hw->dev_caps.num_funcs > 4) {
|
|
/* Max 4 TCs per port */
|
|
caps->maxtc = 4;
|
|
ice_debug(hw, ICE_DBG_INIT,
|
|
"%s: maxtc = %d (based on #ports)\n", prefix,
|
|
caps->maxtc);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_aq_discover_caps - query function/device capabilities
|
|
* @hw: pointer to the HW struct
|
|
* @buf: a virtual buffer to hold the capabilities
|
|
* @buf_size: Size of the virtual buffer
|
|
* @cap_count: cap count needed if AQ err==ENOMEM
|
|
* @opc: capabilities type to discover - pass in the command opcode
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Get the function(0x000a)/device(0x000b) capabilities description from
|
|
* the firmware.
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
|
|
enum ice_adminq_opc opc, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_list_caps *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.get_cap;
|
|
|
|
if (opc != ice_aqc_opc_list_func_caps &&
|
|
opc != ice_aqc_opc_list_dev_caps)
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, opc);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
if (!status)
|
|
ice_parse_caps(hw, buf, LE32_TO_CPU(cmd->count), opc);
|
|
else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
|
|
*cap_count = LE32_TO_CPU(cmd->count);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_discover_caps - get info about the HW
|
|
* @hw: pointer to the hardware structure
|
|
* @opc: capabilities type to discover - pass in the command opcode
|
|
*/
|
|
static enum ice_status
|
|
ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
|
|
{
|
|
enum ice_status status;
|
|
u32 cap_count;
|
|
u16 cbuf_len;
|
|
u8 retries;
|
|
|
|
/* The driver doesn't know how many capabilities the device will return
|
|
* so the buffer size required isn't known ahead of time. The driver
|
|
* starts with cbuf_len and if this turns out to be insufficient, the
|
|
* device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
|
|
* The driver then allocates the buffer based on the count and retries
|
|
* the operation. So it follows that the retry count is 2.
|
|
*/
|
|
#define ICE_GET_CAP_BUF_COUNT 40
|
|
#define ICE_GET_CAP_RETRY_COUNT 2
|
|
|
|
cap_count = ICE_GET_CAP_BUF_COUNT;
|
|
retries = ICE_GET_CAP_RETRY_COUNT;
|
|
|
|
do {
|
|
void *cbuf;
|
|
|
|
cbuf_len = (u16)(cap_count *
|
|
sizeof(struct ice_aqc_list_caps_elem));
|
|
cbuf = ice_malloc(hw, cbuf_len);
|
|
if (!cbuf)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
|
|
opc, NULL);
|
|
ice_free(hw, cbuf);
|
|
|
|
if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
|
|
break;
|
|
|
|
/* If ENOMEM is returned, try again with bigger buffer */
|
|
} while (--retries);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
void ice_set_safe_mode_caps(struct ice_hw *hw)
|
|
{
|
|
struct ice_hw_func_caps *func_caps = &hw->func_caps;
|
|
struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
|
|
u32 valid_func, rxq_first_id, txq_first_id;
|
|
u32 msix_vector_first_id, max_mtu;
|
|
u32 num_funcs;
|
|
|
|
/* cache some func_caps values that should be restored after memset */
|
|
valid_func = func_caps->common_cap.valid_functions;
|
|
txq_first_id = func_caps->common_cap.txq_first_id;
|
|
rxq_first_id = func_caps->common_cap.rxq_first_id;
|
|
msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
|
|
max_mtu = func_caps->common_cap.max_mtu;
|
|
|
|
/* unset func capabilities */
|
|
memset(func_caps, 0, sizeof(*func_caps));
|
|
|
|
/* restore cached values */
|
|
func_caps->common_cap.valid_functions = valid_func;
|
|
func_caps->common_cap.txq_first_id = txq_first_id;
|
|
func_caps->common_cap.rxq_first_id = rxq_first_id;
|
|
func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
|
|
func_caps->common_cap.max_mtu = max_mtu;
|
|
|
|
/* one Tx and one Rx queue in safe mode */
|
|
func_caps->common_cap.num_rxq = 1;
|
|
func_caps->common_cap.num_txq = 1;
|
|
|
|
/* two MSIX vectors, one for traffic and one for misc causes */
|
|
func_caps->common_cap.num_msix_vectors = 2;
|
|
func_caps->guar_num_vsi = 1;
|
|
|
|
/* cache some dev_caps values that should be restored after memset */
|
|
valid_func = dev_caps->common_cap.valid_functions;
|
|
txq_first_id = dev_caps->common_cap.txq_first_id;
|
|
rxq_first_id = dev_caps->common_cap.rxq_first_id;
|
|
msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
|
|
max_mtu = dev_caps->common_cap.max_mtu;
|
|
num_funcs = dev_caps->num_funcs;
|
|
|
|
/* unset dev capabilities */
|
|
memset(dev_caps, 0, sizeof(*dev_caps));
|
|
|
|
/* restore cached values */
|
|
dev_caps->common_cap.valid_functions = valid_func;
|
|
dev_caps->common_cap.txq_first_id = txq_first_id;
|
|
dev_caps->common_cap.rxq_first_id = rxq_first_id;
|
|
dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
|
|
dev_caps->common_cap.max_mtu = max_mtu;
|
|
dev_caps->num_funcs = num_funcs;
|
|
|
|
/* one Tx and one Rx queue per function in safe mode */
|
|
dev_caps->common_cap.num_rxq = num_funcs;
|
|
dev_caps->common_cap.num_txq = num_funcs;
|
|
|
|
/* two MSIX vectors per function */
|
|
dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
|
|
}
|
|
|
|
/**
|
|
* ice_get_caps - get info about the HW
|
|
* @hw: pointer to the hardware structure
|
|
*/
|
|
enum ice_status ice_get_caps(struct ice_hw *hw)
|
|
{
|
|
enum ice_status status;
|
|
|
|
status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
|
|
if (!status)
|
|
status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_manage_mac_write - manage MAC address write command
|
|
* @hw: pointer to the HW struct
|
|
* @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
|
|
* @flags: flags to control write behavior
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function is used to write MAC address to the NVM (0x0108).
|
|
*/
|
|
enum ice_status
|
|
ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_manage_mac_write *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.mac_write;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
|
|
|
|
cmd->flags = flags;
|
|
|
|
/* Prep values for flags, sah, sal */
|
|
cmd->sah = HTONS(*((const u16 *)mac_addr));
|
|
cmd->sal = HTONL(*((const u32 *)(mac_addr + 2)));
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_clear_pxe_mode
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Tell the firmware that the driver is taking over from PXE (0x0110).
|
|
*/
|
|
static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
|
|
desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_clear_pxe_mode - clear pxe operations mode
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Make sure all PXE mode settings are cleared, including things
|
|
* like descriptor fetch/write-back mode.
|
|
*/
|
|
void ice_clear_pxe_mode(struct ice_hw *hw)
|
|
{
|
|
if (ice_check_sq_alive(hw, &hw->adminq))
|
|
ice_aq_clear_pxe_mode(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_get_link_speed_based_on_phy_type - returns link speed
|
|
* @phy_type_low: lower part of phy_type
|
|
* @phy_type_high: higher part of phy_type
|
|
*
|
|
* This helper function will convert an entry in PHY type structure
|
|
* [phy_type_low, phy_type_high] to its corresponding link speed.
|
|
* Note: In the structure of [phy_type_low, phy_type_high], there should
|
|
* be one bit set, as this function will convert one PHY type to its
|
|
* speed.
|
|
* If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
|
|
* If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
|
|
*/
|
|
static u16
|
|
ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
|
|
{
|
|
u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
|
|
switch (phy_type_low) {
|
|
case ICE_PHY_TYPE_LOW_100BASE_TX:
|
|
case ICE_PHY_TYPE_LOW_100M_SGMII:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_1000BASE_T:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_SX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_LX:
|
|
case ICE_PHY_TYPE_LOW_1000BASE_KX:
|
|
case ICE_PHY_TYPE_LOW_1G_SGMII:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_2500BASE_T:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_X:
|
|
case ICE_PHY_TYPE_LOW_2500BASE_KX:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_5GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_5GBASE_KR:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_10GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_DA:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_25GBASE_T:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_CR1:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
|
|
case ICE_PHY_TYPE_LOW_25GBASE_KR1:
|
|
case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_40GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_40GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_40G_XLAUI:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR2:
|
|
case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_LAUI2:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI2:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_CP:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_SR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_FR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_LR:
|
|
case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_50G_AUI1:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
|
|
break;
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_LR4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR4:
|
|
case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_100G_CAUI4:
|
|
case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
|
|
case ICE_PHY_TYPE_LOW_100G_AUI4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_CP2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_SR2:
|
|
case ICE_PHY_TYPE_LOW_100GBASE_DR:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
|
|
break;
|
|
default:
|
|
speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
switch (phy_type_high) {
|
|
case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
|
|
case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_HIGH_100G_CAUI2:
|
|
case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
|
|
case ICE_PHY_TYPE_HIGH_100G_AUI2:
|
|
speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
|
|
break;
|
|
default:
|
|
speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
break;
|
|
}
|
|
|
|
if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
|
|
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
|
|
return ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
|
|
speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
|
|
return ICE_AQ_LINK_SPEED_UNKNOWN;
|
|
else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
|
|
speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
|
|
return speed_phy_type_low;
|
|
else
|
|
return speed_phy_type_high;
|
|
}
|
|
|
|
/**
|
|
* ice_update_phy_type
|
|
* @phy_type_low: pointer to the lower part of phy_type
|
|
* @phy_type_high: pointer to the higher part of phy_type
|
|
* @link_speeds_bitmap: targeted link speeds bitmap
|
|
*
|
|
* Note: For the link_speeds_bitmap structure, you can check it at
|
|
* [ice_aqc_get_link_status->link_speed]. Caller can pass in
|
|
* link_speeds_bitmap include multiple speeds.
|
|
*
|
|
* Each entry in this [phy_type_low, phy_type_high] structure will
|
|
* present a certain link speed. This helper function will turn on bits
|
|
* in [phy_type_low, phy_type_high] structure based on the value of
|
|
* link_speeds_bitmap input parameter.
|
|
*/
|
|
void
|
|
ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
|
|
u16 link_speeds_bitmap)
|
|
{
|
|
u64 pt_high;
|
|
u64 pt_low;
|
|
int index;
|
|
u16 speed;
|
|
|
|
/* We first check with low part of phy_type */
|
|
for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
|
|
pt_low = BIT_ULL(index);
|
|
speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
|
|
|
|
if (link_speeds_bitmap & speed)
|
|
*phy_type_low |= BIT_ULL(index);
|
|
}
|
|
|
|
/* We then check with high part of phy_type */
|
|
for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
|
|
pt_high = BIT_ULL(index);
|
|
speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
|
|
|
|
if (link_speeds_bitmap & speed)
|
|
*phy_type_high |= BIT_ULL(index);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_phy_cfg
|
|
* @hw: pointer to the HW struct
|
|
* @pi: port info structure of the interested logical port
|
|
* @cfg: structure with PHY configuration data to be set
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set the various PHY configuration parameters supported on the Port.
|
|
* One or more of the Set PHY config parameters may be ignored in an MFP
|
|
* mode as the PF may not have the privilege to set some of the PHY Config
|
|
* parameters. This status will be indicated by the command response (0x0601).
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
|
|
struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
if (!cfg)
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Ensure that only valid bits of cfg->caps can be turned on. */
|
|
if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
|
|
ice_debug(hw, ICE_DBG_PHY,
|
|
"Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
|
|
cfg->caps);
|
|
|
|
cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
|
|
}
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
|
|
desc.params.set_phy.lport_num = pi->lport;
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
|
|
(unsigned long long)LE64_TO_CPU(cfg->phy_type_low));
|
|
ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
|
|
(unsigned long long)LE64_TO_CPU(cfg->phy_type_high));
|
|
ice_debug(hw, ICE_DBG_LINK, "caps = 0x%x\n", cfg->caps);
|
|
ice_debug(hw, ICE_DBG_LINK, "low_power_ctrl = 0x%x\n",
|
|
cfg->low_power_ctrl);
|
|
ice_debug(hw, ICE_DBG_LINK, "eee_cap = 0x%x\n", cfg->eee_cap);
|
|
ice_debug(hw, ICE_DBG_LINK, "eeer_value = 0x%x\n", cfg->eeer_value);
|
|
ice_debug(hw, ICE_DBG_LINK, "link_fec_opt = 0x%x\n", cfg->link_fec_opt);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
|
|
|
|
if (!status)
|
|
pi->phy.curr_user_phy_cfg = *cfg;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_update_link_info - update status of the HW network link
|
|
* @pi: port info structure of the interested logical port
|
|
*/
|
|
enum ice_status ice_update_link_info(struct ice_port_info *pi)
|
|
{
|
|
struct ice_link_status *li;
|
|
enum ice_status status;
|
|
|
|
if (!pi)
|
|
return ICE_ERR_PARAM;
|
|
|
|
li = &pi->phy.link_info;
|
|
|
|
status = ice_aq_get_link_info(pi, true, NULL, NULL);
|
|
if (status)
|
|
return status;
|
|
|
|
if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
struct ice_hw *hw;
|
|
|
|
hw = pi->hw;
|
|
pcaps = (struct ice_aqc_get_phy_caps_data *)
|
|
ice_malloc(hw, sizeof(*pcaps));
|
|
if (!pcaps)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
|
|
pcaps, NULL);
|
|
if (status == ICE_SUCCESS)
|
|
ice_memcpy(li->module_type, &pcaps->module_type,
|
|
sizeof(li->module_type),
|
|
ICE_NONDMA_TO_NONDMA);
|
|
|
|
ice_free(hw, pcaps);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_cache_phy_user_req
|
|
* @pi: port information structure
|
|
* @cache_data: PHY logging data
|
|
* @cache_mode: PHY logging mode
|
|
*
|
|
* Log the user request on (FC, FEC, SPEED) for later user.
|
|
*/
|
|
static void
|
|
ice_cache_phy_user_req(struct ice_port_info *pi,
|
|
struct ice_phy_cache_mode_data cache_data,
|
|
enum ice_phy_cache_mode cache_mode)
|
|
{
|
|
if (!pi)
|
|
return;
|
|
|
|
switch (cache_mode) {
|
|
case ICE_FC_MODE:
|
|
pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
|
|
break;
|
|
case ICE_SPEED_MODE:
|
|
pi->phy.curr_user_speed_req =
|
|
cache_data.data.curr_user_speed_req;
|
|
break;
|
|
case ICE_FEC_MODE:
|
|
pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_caps_to_fc_mode
|
|
* @caps: PHY capabilities
|
|
*
|
|
* Convert PHY FC capabilities to ice FC mode
|
|
*/
|
|
enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
|
|
{
|
|
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
|
|
caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
|
|
return ICE_FC_FULL;
|
|
|
|
if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
|
|
return ICE_FC_TX_PAUSE;
|
|
|
|
if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
|
|
return ICE_FC_RX_PAUSE;
|
|
|
|
return ICE_FC_NONE;
|
|
}
|
|
|
|
/**
|
|
* ice_caps_to_fec_mode
|
|
* @caps: PHY capabilities
|
|
* @fec_options: Link FEC options
|
|
*
|
|
* Convert PHY FEC capabilities to ice FEC mode
|
|
*/
|
|
enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
|
|
{
|
|
if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
|
|
return ICE_FEC_AUTO;
|
|
|
|
if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
|
|
ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
|
|
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
|
|
ICE_AQC_PHY_FEC_25G_KR_REQ))
|
|
return ICE_FEC_BASER;
|
|
|
|
if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
|
|
ICE_AQC_PHY_FEC_25G_RS_544_REQ |
|
|
ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
|
|
return ICE_FEC_RS;
|
|
|
|
return ICE_FEC_NONE;
|
|
}
|
|
|
|
/**
|
|
* ice_set_fc
|
|
* @pi: port information structure
|
|
* @aq_failures: pointer to status code, specific to ice_set_fc routine
|
|
* @ena_auto_link_update: enable automatic link update
|
|
*
|
|
* Set the requested flow control mode.
|
|
*/
|
|
enum ice_status
|
|
ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
|
|
{
|
|
struct ice_aqc_set_phy_cfg_data cfg = { 0 };
|
|
struct ice_phy_cache_mode_data cache_data;
|
|
struct ice_aqc_get_phy_caps_data *pcaps;
|
|
enum ice_status status;
|
|
u8 pause_mask = 0x0;
|
|
struct ice_hw *hw;
|
|
|
|
if (!pi)
|
|
return ICE_ERR_PARAM;
|
|
hw = pi->hw;
|
|
*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
|
|
|
|
/* Cache user FC request */
|
|
cache_data.data.curr_user_fc_req = pi->fc.req_mode;
|
|
ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
|
|
|
|
switch (pi->fc.req_mode) {
|
|
case ICE_FC_FULL:
|
|
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
|
|
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
|
|
break;
|
|
case ICE_FC_RX_PAUSE:
|
|
pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
|
|
break;
|
|
case ICE_FC_TX_PAUSE:
|
|
pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
pcaps = (struct ice_aqc_get_phy_caps_data *)
|
|
ice_malloc(hw, sizeof(*pcaps));
|
|
if (!pcaps)
|
|
return ICE_ERR_NO_MEMORY;
|
|
|
|
/* Get the current PHY config */
|
|
status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
|
|
NULL);
|
|
if (status) {
|
|
*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
|
|
goto out;
|
|
}
|
|
|
|
/* clear the old pause settings */
|
|
cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
|
|
ICE_AQC_PHY_EN_RX_LINK_PAUSE);
|
|
|
|
/* set the new capabilities */
|
|
cfg.caps |= pause_mask;
|
|
|
|
/* If the capabilities have changed, then set the new config */
|
|
if (cfg.caps != pcaps->caps) {
|
|
int retry_count, retry_max = 10;
|
|
|
|
/* Auto restart link so settings take effect */
|
|
if (ena_auto_link_update)
|
|
cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
|
|
/* Copy over all the old settings */
|
|
cfg.phy_type_high = pcaps->phy_type_high;
|
|
cfg.phy_type_low = pcaps->phy_type_low;
|
|
cfg.low_power_ctrl = pcaps->low_power_ctrl;
|
|
cfg.eee_cap = pcaps->eee_cap;
|
|
cfg.eeer_value = pcaps->eeer_value;
|
|
cfg.link_fec_opt = pcaps->link_fec_options;
|
|
|
|
status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
|
|
if (status) {
|
|
*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
|
|
goto out;
|
|
}
|
|
|
|
/* Update the link info
|
|
* It sometimes takes a really long time for link to
|
|
* come back from the atomic reset. Thus, we wait a
|
|
* little bit.
|
|
*/
|
|
for (retry_count = 0; retry_count < retry_max; retry_count++) {
|
|
status = ice_update_link_info(pi);
|
|
|
|
if (status == ICE_SUCCESS)
|
|
break;
|
|
|
|
ice_msec_delay(100, true);
|
|
}
|
|
|
|
if (status)
|
|
*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
|
|
}
|
|
|
|
out:
|
|
ice_free(hw, pcaps);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_phy_caps_equals_cfg
|
|
* @phy_caps: PHY capabilities
|
|
* @phy_cfg: PHY configuration
|
|
*
|
|
* Helper function to determine if PHY capabilities matches PHY
|
|
* configuration
|
|
*/
|
|
bool
|
|
ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
|
|
struct ice_aqc_set_phy_cfg_data *phy_cfg)
|
|
{
|
|
u8 caps_mask, cfg_mask;
|
|
|
|
if (!phy_caps || !phy_cfg)
|
|
return false;
|
|
|
|
/* These bits are not common between capabilities and configuration.
|
|
* Do not use them to determine equality.
|
|
*/
|
|
caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
|
|
ICE_AQC_PHY_EN_MOD_QUAL);
|
|
cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
|
|
|
|
if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
|
|
phy_caps->phy_type_high != phy_cfg->phy_type_high ||
|
|
((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
|
|
phy_caps->low_power_ctrl != phy_cfg->low_power_ctrl ||
|
|
phy_caps->eee_cap != phy_cfg->eee_cap ||
|
|
phy_caps->eeer_value != phy_cfg->eeer_value ||
|
|
phy_caps->link_fec_options != phy_cfg->link_fec_opt)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
|
|
* @caps: PHY ability structure to copy date from
|
|
* @cfg: PHY configuration structure to copy data to
|
|
*
|
|
* Helper function to copy AQC PHY get ability data to PHY set configuration
|
|
* data structure
|
|
*/
|
|
void
|
|
ice_copy_phy_caps_to_cfg(struct ice_aqc_get_phy_caps_data *caps,
|
|
struct ice_aqc_set_phy_cfg_data *cfg)
|
|
{
|
|
if (!caps || !cfg)
|
|
return;
|
|
|
|
cfg->phy_type_low = caps->phy_type_low;
|
|
cfg->phy_type_high = caps->phy_type_high;
|
|
cfg->caps = caps->caps;
|
|
cfg->low_power_ctrl = caps->low_power_ctrl;
|
|
cfg->eee_cap = caps->eee_cap;
|
|
cfg->eeer_value = caps->eeer_value;
|
|
cfg->link_fec_opt = caps->link_fec_options;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
|
|
* @cfg: PHY configuration data to set FEC mode
|
|
* @fec: FEC mode to configure
|
|
*
|
|
* Caller should copy ice_aqc_get_phy_caps_data.caps ICE_AQC_PHY_EN_AUTO_FEC
|
|
* (bit 7) and ice_aqc_get_phy_caps_data.link_fec_options to cfg.caps
|
|
* ICE_AQ_PHY_ENA_AUTO_FEC (bit 7) and cfg.link_fec_options before calling.
|
|
*/
|
|
void
|
|
ice_cfg_phy_fec(struct ice_aqc_set_phy_cfg_data *cfg, enum ice_fec_mode fec)
|
|
{
|
|
switch (fec) {
|
|
case ICE_FEC_BASER:
|
|
/* Clear RS bits, and AND BASE-R ability
|
|
* bits and OR request bits.
|
|
*/
|
|
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
|
|
ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
|
|
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
|
|
ICE_AQC_PHY_FEC_25G_KR_REQ;
|
|
break;
|
|
case ICE_FEC_RS:
|
|
/* Clear BASE-R bits, and AND RS ability
|
|
* bits and OR request bits.
|
|
*/
|
|
cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
|
|
cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
|
|
ICE_AQC_PHY_FEC_25G_RS_544_REQ;
|
|
break;
|
|
case ICE_FEC_NONE:
|
|
/* Clear all FEC option bits. */
|
|
cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
|
|
break;
|
|
case ICE_FEC_AUTO:
|
|
/* AND auto FEC bit, and all caps bits. */
|
|
cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ice_get_link_status - get status of the HW network link
|
|
* @pi: port information structure
|
|
* @link_up: pointer to bool (true/false = linkup/linkdown)
|
|
*
|
|
* Variable link_up is true if link is up, false if link is down.
|
|
* The variable link_up is invalid if status is non zero. As a
|
|
* result of this call, link status reporting becomes enabled
|
|
*/
|
|
enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
|
|
{
|
|
struct ice_phy_info *phy_info;
|
|
enum ice_status status = ICE_SUCCESS;
|
|
|
|
if (!pi || !link_up)
|
|
return ICE_ERR_PARAM;
|
|
|
|
phy_info = &pi->phy;
|
|
|
|
if (phy_info->get_link_info) {
|
|
status = ice_update_link_info(pi);
|
|
|
|
if (status)
|
|
ice_debug(pi->hw, ICE_DBG_LINK,
|
|
"get link status error, status = %d\n",
|
|
status);
|
|
}
|
|
|
|
*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_link_restart_an
|
|
* @pi: pointer to the port information structure
|
|
* @ena_link: if true: enable link, if false: disable link
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Sets up the link and restarts the Auto-Negotiation over the link.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_restart_an *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.restart_an;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
|
|
|
|
cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
|
|
cmd->lport_num = pi->lport;
|
|
if (ena_link)
|
|
cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
|
|
else
|
|
cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
|
|
|
|
return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_event_mask
|
|
* @hw: pointer to the HW struct
|
|
* @port_num: port number of the physical function
|
|
* @mask: event mask to be set
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set event mask (0x0613)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_event_mask *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_event_mask;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
|
|
|
|
cmd->lport_num = port_num;
|
|
|
|
cmd->event_mask = CPU_TO_LE16(mask);
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_mac_loopback
|
|
* @hw: pointer to the HW struct
|
|
* @ena_lpbk: Enable or Disable loopback
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Enable/disable loopback on a given port
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_mac_lb *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_mac_lb;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
|
|
if (ena_lpbk)
|
|
cmd->lb_mode = ICE_AQ_MAC_LB_EN;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_port_id_led
|
|
* @pi: pointer to the port information
|
|
* @is_orig_mode: is this LED set to original mode (by the net-list)
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Set LED value for the given port (0x06e9)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_set_port_id_led *cmd;
|
|
struct ice_hw *hw = pi->hw;
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd = &desc.params.set_port_id_led;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
|
|
|
|
if (is_orig_mode)
|
|
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
|
|
else
|
|
cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_sff_eeprom
|
|
* @hw: pointer to the HW struct
|
|
* @lport: bits [7:0] = logical port, bit [8] = logical port valid
|
|
* @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
|
|
* @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
|
|
* @page: QSFP page
|
|
* @set_page: set or ignore the page
|
|
* @data: pointer to data buffer to be read/written to the I2C device.
|
|
* @length: 1-16 for read, 1 for write.
|
|
* @write: 0 read, 1 for write.
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Read/Write SFF EEPROM (0x06EE)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
|
|
u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
|
|
bool write, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_sff_eeprom *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
if (!data || (mem_addr & 0xff00))
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
|
|
cmd = &desc.params.read_write_sff_param;
|
|
desc.flags = CPU_TO_LE16(ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF);
|
|
cmd->lport_num = (u8)(lport & 0xff);
|
|
cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
|
|
cmd->i2c_bus_addr = CPU_TO_LE16(((bus_addr >> 1) &
|
|
ICE_AQC_SFF_I2CBUS_7BIT_M) |
|
|
((set_page <<
|
|
ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
|
|
ICE_AQC_SFF_SET_EEPROM_PAGE_M));
|
|
cmd->i2c_mem_addr = CPU_TO_LE16(mem_addr & 0xff);
|
|
cmd->eeprom_page = CPU_TO_LE16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
|
|
if (write)
|
|
cmd->i2c_bus_addr |= CPU_TO_LE16(ICE_AQC_SFF_IS_WRITE);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, data, length, cd);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* __ice_aq_get_set_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_id: VSI FW index
|
|
* @lut_type: LUT table type
|
|
* @lut: pointer to the LUT buffer provided by the caller
|
|
* @lut_size: size of the LUT buffer
|
|
* @glob_lut_idx: global LUT index
|
|
* @set: set true to set the table, false to get the table
|
|
*
|
|
* Internal function to get (0x0B05) or set (0x0B03) RSS look up table
|
|
*/
|
|
static enum ice_status
|
|
__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
|
|
u16 lut_size, u8 glob_lut_idx, bool set)
|
|
{
|
|
struct ice_aqc_get_set_rss_lut *cmd_resp;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
u16 flags = 0;
|
|
|
|
cmd_resp = &desc.params.get_set_rss_lut;
|
|
|
|
if (set) {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
} else {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
|
|
}
|
|
|
|
cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
|
|
ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
|
|
ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
|
|
ICE_AQC_GSET_RSS_LUT_VSI_VALID);
|
|
|
|
switch (lut_type) {
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
|
|
flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
|
|
break;
|
|
default:
|
|
status = ICE_ERR_PARAM;
|
|
goto ice_aq_get_set_rss_lut_exit;
|
|
}
|
|
|
|
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
|
|
flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
|
|
ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
|
|
|
|
if (!set)
|
|
goto ice_aq_get_set_rss_lut_send;
|
|
} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
|
|
if (!set)
|
|
goto ice_aq_get_set_rss_lut_send;
|
|
} else {
|
|
goto ice_aq_get_set_rss_lut_send;
|
|
}
|
|
|
|
/* LUT size is only valid for Global and PF table types */
|
|
switch (lut_size) {
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
|
|
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128_FLAG <<
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
|
|
break;
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
|
|
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
|
|
break;
|
|
case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
|
|
if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
|
|
flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
|
|
ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
|
|
break;
|
|
}
|
|
/* fall-through */
|
|
default:
|
|
status = ICE_ERR_PARAM;
|
|
goto ice_aq_get_set_rss_lut_exit;
|
|
}
|
|
|
|
ice_aq_get_set_rss_lut_send:
|
|
cmd_resp->flags = CPU_TO_LE16(flags);
|
|
status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
|
|
|
|
ice_aq_get_set_rss_lut_exit:
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: software VSI handle
|
|
* @lut_type: LUT table type
|
|
* @lut: pointer to the LUT buffer provided by the caller
|
|
* @lut_size: size of the LUT buffer
|
|
*
|
|
* get the RSS lookup table, PF or VSI type
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
|
|
u8 *lut, u16 lut_size)
|
|
{
|
|
if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
|
|
return ICE_ERR_PARAM;
|
|
|
|
return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
|
|
lut_type, lut, lut_size, 0, false);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_rss_lut
|
|
* @hw: pointer to the hardware structure
|
|
* @vsi_handle: software VSI handle
|
|
* @lut_type: LUT table type
|
|
* @lut: pointer to the LUT buffer provided by the caller
|
|
* @lut_size: size of the LUT buffer
|
|
*
|
|
* set the RSS lookup table, PF or VSI type
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
|
|
u8 *lut, u16 lut_size)
|
|
{
|
|
if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
|
|
return ICE_ERR_PARAM;
|
|
|
|
return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
|
|
lut_type, lut, lut_size, 0, true);
|
|
}
|
|
|
|
/**
|
|
* __ice_aq_get_set_rss_key
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_id: VSI FW index
|
|
* @key: pointer to key info struct
|
|
* @set: set true to set the key, false to get the key
|
|
*
|
|
* get (0x0B04) or set (0x0B02) the RSS key per VSI
|
|
*/
|
|
static enum
|
|
ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
|
|
struct ice_aqc_get_set_rss_keys *key,
|
|
bool set)
|
|
{
|
|
struct ice_aqc_get_set_rss_key *cmd_resp;
|
|
u16 key_size = sizeof(*key);
|
|
struct ice_aq_desc desc;
|
|
|
|
cmd_resp = &desc.params.get_set_rss_key;
|
|
|
|
if (set) {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
} else {
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
|
|
}
|
|
|
|
cmd_resp->vsi_id = CPU_TO_LE16(((vsi_id <<
|
|
ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
|
|
ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
|
|
ICE_AQC_GSET_RSS_KEY_VSI_VALID);
|
|
|
|
return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_get_rss_key
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: software VSI handle
|
|
* @key: pointer to key info struct
|
|
*
|
|
* get the RSS key per VSI
|
|
*/
|
|
enum ice_status
|
|
ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
|
|
struct ice_aqc_get_set_rss_keys *key)
|
|
{
|
|
if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
|
|
return ICE_ERR_PARAM;
|
|
|
|
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
|
|
key, false);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_set_rss_key
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: software VSI handle
|
|
* @keys: pointer to key info struct
|
|
*
|
|
* set the RSS key per VSI
|
|
*/
|
|
enum ice_status
|
|
ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
|
|
struct ice_aqc_get_set_rss_keys *keys)
|
|
{
|
|
if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
|
|
return ICE_ERR_PARAM;
|
|
|
|
return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
|
|
keys, true);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_add_lan_txq
|
|
* @hw: pointer to the hardware structure
|
|
* @num_qgrps: Number of added queue groups
|
|
* @qg_list: list of queue groups to be added
|
|
* @buf_size: size of buffer for indirect command
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Add Tx LAN queue (0x0C30)
|
|
*
|
|
* NOTE:
|
|
* Prior to calling add Tx LAN queue:
|
|
* Initialize the following as part of the Tx queue context:
|
|
* Completion queue ID if the queue uses Completion queue, Quanta profile,
|
|
* Cache profile and Packet shaper profile.
|
|
*
|
|
* After add Tx LAN queue AQ command is completed:
|
|
* Interrupts should be associated with specific queues,
|
|
* Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
|
|
* flow.
|
|
*/
|
|
enum ice_status
|
|
ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
|
|
struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
u16 i, sum_header_size, sum_q_size = 0;
|
|
struct ice_aqc_add_tx_qgrp *list;
|
|
struct ice_aqc_add_txqs *cmd;
|
|
struct ice_aq_desc desc;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
|
|
cmd = &desc.params.add_txqs;
|
|
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
|
|
|
|
if (!qg_list)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
|
|
return ICE_ERR_PARAM;
|
|
|
|
sum_header_size = num_qgrps *
|
|
(sizeof(*qg_list) - sizeof(*qg_list->txqs));
|
|
|
|
list = qg_list;
|
|
for (i = 0; i < num_qgrps; i++) {
|
|
struct ice_aqc_add_txqs_perq *q = list->txqs;
|
|
|
|
sum_q_size += list->num_txqs * sizeof(*q);
|
|
list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
|
|
}
|
|
|
|
if (buf_size != (sum_header_size + sum_q_size))
|
|
return ICE_ERR_PARAM;
|
|
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
cmd->num_qgrps = num_qgrps;
|
|
|
|
return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
|
|
}
|
|
|
|
/**
|
|
* ice_aq_dis_lan_txq
|
|
* @hw: pointer to the hardware structure
|
|
* @num_qgrps: number of groups in the list
|
|
* @qg_list: the list of groups to disable
|
|
* @buf_size: the total size of the qg_list buffer in bytes
|
|
* @rst_src: if called due to reset, specifies the reset source
|
|
* @vmvf_num: the relative VM or VF number that is undergoing the reset
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Disable LAN Tx queue (0x0C31)
|
|
*/
|
|
static enum ice_status
|
|
ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
|
|
struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
|
|
enum ice_disq_rst_src rst_src, u16 vmvf_num,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_dis_txqs *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
u16 i, sz = 0;
|
|
|
|
ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
|
|
cmd = &desc.params.dis_txqs;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
|
|
|
|
/* qg_list can be NULL only in VM/VF reset flow */
|
|
if (!qg_list && !rst_src)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
|
|
return ICE_ERR_PARAM;
|
|
|
|
cmd->num_entries = num_qgrps;
|
|
|
|
cmd->vmvf_and_timeout = CPU_TO_LE16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
|
|
ICE_AQC_Q_DIS_TIMEOUT_M);
|
|
|
|
switch (rst_src) {
|
|
case ICE_VM_RESET:
|
|
cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
|
|
cmd->vmvf_and_timeout |=
|
|
CPU_TO_LE16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
|
|
break;
|
|
case ICE_NO_RESET:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* flush pipe on time out */
|
|
cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
|
|
/* If no queue group info, we are in a reset flow. Issue the AQ */
|
|
if (!qg_list)
|
|
goto do_aq;
|
|
|
|
/* set RD bit to indicate that command buffer is provided by the driver
|
|
* and it needs to be read by the firmware
|
|
*/
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
for (i = 0; i < num_qgrps; ++i) {
|
|
/* Calculate the size taken up by the queue IDs in this group */
|
|
sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
|
|
|
|
/* Add the size of the group header */
|
|
sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
|
|
|
|
/* If the num of queues is even, add 2 bytes of padding */
|
|
if ((qg_list[i].num_qs % 2) == 0)
|
|
sz += 2;
|
|
}
|
|
|
|
if (buf_size != sz)
|
|
return ICE_ERR_PARAM;
|
|
|
|
do_aq:
|
|
status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
|
|
if (status) {
|
|
if (!qg_list)
|
|
ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
|
|
vmvf_num, hw->adminq.sq_last_status);
|
|
else
|
|
ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
|
|
LE16_TO_CPU(qg_list[0].q_id[0]),
|
|
hw->adminq.sq_last_status);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_aq_move_recfg_lan_txq
|
|
* @hw: pointer to the hardware structure
|
|
* @num_qs: number of queues to move/reconfigure
|
|
* @is_move: true if this operation involves node movement
|
|
* @is_tc_change: true if this operation involves a TC change
|
|
* @subseq_call: true if this operation is a subsequent call
|
|
* @flush_pipe: on timeout, true to flush pipe, false to return EAGAIN
|
|
* @timeout: timeout in units of 100 usec (valid values 0-50)
|
|
* @blocked_cgds: out param, bitmap of CGDs that timed out if returning EAGAIN
|
|
* @buf: struct containing src/dest TEID and per-queue info
|
|
* @buf_size: size of buffer for indirect command
|
|
* @txqs_moved: out param, number of queues successfully moved
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* Move / Reconfigure Tx LAN queues (0x0C32)
|
|
*/
|
|
enum ice_status
|
|
ice_aq_move_recfg_lan_txq(struct ice_hw *hw, u8 num_qs, bool is_move,
|
|
bool is_tc_change, bool subseq_call, bool flush_pipe,
|
|
u8 timeout, u32 *blocked_cgds,
|
|
struct ice_aqc_move_txqs_data *buf, u16 buf_size,
|
|
u8 *txqs_moved, struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_move_txqs *cmd;
|
|
struct ice_aq_desc desc;
|
|
enum ice_status status;
|
|
|
|
cmd = &desc.params.move_txqs;
|
|
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_move_recfg_txqs);
|
|
|
|
#define ICE_LAN_TXQ_MOVE_TIMEOUT_MAX 50
|
|
if (timeout > ICE_LAN_TXQ_MOVE_TIMEOUT_MAX)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (is_tc_change && !flush_pipe && !blocked_cgds)
|
|
return ICE_ERR_PARAM;
|
|
|
|
if (!is_move && !is_tc_change)
|
|
return ICE_ERR_PARAM;
|
|
|
|
desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
|
|
|
|
if (is_move)
|
|
cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_MOVE;
|
|
|
|
if (is_tc_change)
|
|
cmd->cmd_type |= ICE_AQC_Q_CMD_TYPE_TC_CHANGE;
|
|
|
|
if (subseq_call)
|
|
cmd->cmd_type |= ICE_AQC_Q_CMD_SUBSEQ_CALL;
|
|
|
|
if (flush_pipe)
|
|
cmd->cmd_type |= ICE_AQC_Q_CMD_FLUSH_PIPE;
|
|
|
|
cmd->num_qs = num_qs;
|
|
cmd->timeout = ((timeout << ICE_AQC_Q_CMD_TIMEOUT_S) &
|
|
ICE_AQC_Q_CMD_TIMEOUT_M);
|
|
|
|
status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
|
|
|
|
if (!status && txqs_moved)
|
|
*txqs_moved = cmd->num_qs;
|
|
|
|
if (hw->adminq.sq_last_status == ICE_AQ_RC_EAGAIN &&
|
|
is_tc_change && !flush_pipe)
|
|
*blocked_cgds = LE32_TO_CPU(cmd->blocked_cgds);
|
|
|
|
return status;
|
|
}
|
|
|
|
/* End of FW Admin Queue command wrappers */
|
|
|
|
/**
|
|
* ice_write_byte - write a byte to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u8 src_byte, dest_byte, mask;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
mask = (u8)(BIT(ce_info->width) - 1);
|
|
|
|
src_byte = *from;
|
|
src_byte &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_byte <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&dest_byte, dest, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
|
|
|
|
dest_byte &= ~mask; /* get the bits not changing */
|
|
dest_byte |= src_byte; /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
ice_memcpy(dest, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_write_word - write a word to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u16 src_word, mask;
|
|
__le16 dest_word;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
mask = BIT(ce_info->width) - 1;
|
|
|
|
/* don't swizzle the bits until after the mask because the mask bits
|
|
* will be in a different bit position on big endian machines
|
|
*/
|
|
src_word = *(u16 *)from;
|
|
src_word &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_word <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&dest_word, dest, sizeof(dest_word), ICE_DMA_TO_NONDMA);
|
|
|
|
dest_word &= ~(CPU_TO_LE16(mask)); /* get the bits not changing */
|
|
dest_word |= CPU_TO_LE16(src_word); /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
ice_memcpy(dest, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_write_dword - write a dword to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u32 src_dword, mask;
|
|
__le32 dest_dword;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
|
|
/* if the field width is exactly 32 on an x86 machine, then the shift
|
|
* operation will not work because the SHL instructions count is masked
|
|
* to 5 bits so the shift will do nothing
|
|
*/
|
|
if (ce_info->width < 32)
|
|
mask = BIT(ce_info->width) - 1;
|
|
else
|
|
mask = (u32)~0;
|
|
|
|
/* don't swizzle the bits until after the mask because the mask bits
|
|
* will be in a different bit position on big endian machines
|
|
*/
|
|
src_dword = *(u32 *)from;
|
|
src_dword &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_dword <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&dest_dword, dest, sizeof(dest_dword), ICE_DMA_TO_NONDMA);
|
|
|
|
dest_dword &= ~(CPU_TO_LE32(mask)); /* get the bits not changing */
|
|
dest_dword |= CPU_TO_LE32(src_dword); /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
ice_memcpy(dest, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_write_qword - write a qword to a packed context structure
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
u64 src_qword, mask;
|
|
__le64 dest_qword;
|
|
u8 *from, *dest;
|
|
u16 shift_width;
|
|
|
|
/* copy from the next struct field */
|
|
from = src_ctx + ce_info->offset;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
|
|
/* if the field width is exactly 64 on an x86 machine, then the shift
|
|
* operation will not work because the SHL instructions count is masked
|
|
* to 6 bits so the shift will do nothing
|
|
*/
|
|
if (ce_info->width < 64)
|
|
mask = BIT_ULL(ce_info->width) - 1;
|
|
else
|
|
mask = (u64)~0;
|
|
|
|
/* don't swizzle the bits until after the mask because the mask bits
|
|
* will be in a different bit position on big endian machines
|
|
*/
|
|
src_qword = *(u64 *)from;
|
|
src_qword &= mask;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
src_qword <<= shift_width;
|
|
|
|
/* get the current bits from the target bit string */
|
|
dest = dest_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&dest_qword, dest, sizeof(dest_qword), ICE_DMA_TO_NONDMA);
|
|
|
|
dest_qword &= ~(CPU_TO_LE64(mask)); /* get the bits not changing */
|
|
dest_qword |= CPU_TO_LE64(src_qword); /* add in the new bits */
|
|
|
|
/* put it all back */
|
|
ice_memcpy(dest, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_set_ctx - set context bits in packed structure
|
|
* @src_ctx: pointer to a generic non-packed context structure
|
|
* @dest_ctx: pointer to memory for the packed structure
|
|
* @ce_info: a description of the structure to be transformed
|
|
*/
|
|
enum ice_status
|
|
ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
|
|
{
|
|
int f;
|
|
|
|
for (f = 0; ce_info[f].width; f++) {
|
|
/* We have to deal with each element of the FW response
|
|
* using the correct size so that we are correct regardless
|
|
* of the endianness of the machine.
|
|
*/
|
|
switch (ce_info[f].size_of) {
|
|
case sizeof(u8):
|
|
ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case sizeof(u16):
|
|
ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case sizeof(u32):
|
|
ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case sizeof(u64):
|
|
ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
default:
|
|
return ICE_ERR_INVAL_SIZE;
|
|
}
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_read_byte - read context byte into struct
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_read_byte(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
|
|
{
|
|
u8 dest_byte, mask;
|
|
u8 *src, *target;
|
|
u16 shift_width;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
mask = (u8)(BIT(ce_info->width) - 1);
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
|
|
/* get the current bits from the src bit string */
|
|
src = src_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&dest_byte, src, sizeof(dest_byte), ICE_DMA_TO_NONDMA);
|
|
|
|
dest_byte &= ~(mask);
|
|
|
|
dest_byte >>= shift_width;
|
|
|
|
/* get the address from the struct field */
|
|
target = dest_ctx + ce_info->offset;
|
|
|
|
/* put it back in the struct */
|
|
ice_memcpy(target, &dest_byte, sizeof(dest_byte), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_read_word - read context word into struct
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_read_word(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
|
|
{
|
|
u16 dest_word, mask;
|
|
u8 *src, *target;
|
|
__le16 src_word;
|
|
u16 shift_width;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
mask = BIT(ce_info->width) - 1;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
|
|
/* get the current bits from the src bit string */
|
|
src = src_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&src_word, src, sizeof(src_word), ICE_DMA_TO_NONDMA);
|
|
|
|
/* the data in the memory is stored as little endian so mask it
|
|
* correctly
|
|
*/
|
|
src_word &= ~(CPU_TO_LE16(mask));
|
|
|
|
/* get the data back into host order before shifting */
|
|
dest_word = LE16_TO_CPU(src_word);
|
|
|
|
dest_word >>= shift_width;
|
|
|
|
/* get the address from the struct field */
|
|
target = dest_ctx + ce_info->offset;
|
|
|
|
/* put it back in the struct */
|
|
ice_memcpy(target, &dest_word, sizeof(dest_word), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_read_dword - read context dword into struct
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_read_dword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
|
|
{
|
|
u32 dest_dword, mask;
|
|
__le32 src_dword;
|
|
u8 *src, *target;
|
|
u16 shift_width;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
|
|
/* if the field width is exactly 32 on an x86 machine, then the shift
|
|
* operation will not work because the SHL instructions count is masked
|
|
* to 5 bits so the shift will do nothing
|
|
*/
|
|
if (ce_info->width < 32)
|
|
mask = BIT(ce_info->width) - 1;
|
|
else
|
|
mask = (u32)~0;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
|
|
/* get the current bits from the src bit string */
|
|
src = src_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&src_dword, src, sizeof(src_dword), ICE_DMA_TO_NONDMA);
|
|
|
|
/* the data in the memory is stored as little endian so mask it
|
|
* correctly
|
|
*/
|
|
src_dword &= ~(CPU_TO_LE32(mask));
|
|
|
|
/* get the data back into host order before shifting */
|
|
dest_dword = LE32_TO_CPU(src_dword);
|
|
|
|
dest_dword >>= shift_width;
|
|
|
|
/* get the address from the struct field */
|
|
target = dest_ctx + ce_info->offset;
|
|
|
|
/* put it back in the struct */
|
|
ice_memcpy(target, &dest_dword, sizeof(dest_dword), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_read_qword - read context qword into struct
|
|
* @src_ctx: the context structure to read from
|
|
* @dest_ctx: the context to be written to
|
|
* @ce_info: a description of the struct to be filled
|
|
*/
|
|
static void
|
|
ice_read_qword(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
|
|
{
|
|
u64 dest_qword, mask;
|
|
__le64 src_qword;
|
|
u8 *src, *target;
|
|
u16 shift_width;
|
|
|
|
/* prepare the bits and mask */
|
|
shift_width = ce_info->lsb % 8;
|
|
|
|
/* if the field width is exactly 64 on an x86 machine, then the shift
|
|
* operation will not work because the SHL instructions count is masked
|
|
* to 6 bits so the shift will do nothing
|
|
*/
|
|
if (ce_info->width < 64)
|
|
mask = BIT_ULL(ce_info->width) - 1;
|
|
else
|
|
mask = (u64)~0;
|
|
|
|
/* shift to correct alignment */
|
|
mask <<= shift_width;
|
|
|
|
/* get the current bits from the src bit string */
|
|
src = src_ctx + (ce_info->lsb / 8);
|
|
|
|
ice_memcpy(&src_qword, src, sizeof(src_qword), ICE_DMA_TO_NONDMA);
|
|
|
|
/* the data in the memory is stored as little endian so mask it
|
|
* correctly
|
|
*/
|
|
src_qword &= ~(CPU_TO_LE64(mask));
|
|
|
|
/* get the data back into host order before shifting */
|
|
dest_qword = LE64_TO_CPU(src_qword);
|
|
|
|
dest_qword >>= shift_width;
|
|
|
|
/* get the address from the struct field */
|
|
target = dest_ctx + ce_info->offset;
|
|
|
|
/* put it back in the struct */
|
|
ice_memcpy(target, &dest_qword, sizeof(dest_qword), ICE_NONDMA_TO_DMA);
|
|
}
|
|
|
|
/**
|
|
* ice_get_ctx - extract context bits from a packed structure
|
|
* @src_ctx: pointer to a generic packed context structure
|
|
* @dest_ctx: pointer to a generic non-packed context structure
|
|
* @ce_info: a description of the structure to be read from
|
|
*/
|
|
enum ice_status
|
|
ice_get_ctx(u8 *src_ctx, u8 *dest_ctx, struct ice_ctx_ele *ce_info)
|
|
{
|
|
int f;
|
|
|
|
for (f = 0; ce_info[f].width; f++) {
|
|
switch (ce_info[f].size_of) {
|
|
case 1:
|
|
ice_read_byte(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case 2:
|
|
ice_read_word(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case 4:
|
|
ice_read_dword(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
case 8:
|
|
ice_read_qword(src_ctx, dest_ctx, &ce_info[f]);
|
|
break;
|
|
default:
|
|
/* nothing to do, just keep going */
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ICE_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: software VSI handle
|
|
* @tc: TC number
|
|
* @q_handle: software queue handle
|
|
*/
|
|
struct ice_q_ctx *
|
|
ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
|
|
{
|
|
struct ice_vsi_ctx *vsi;
|
|
struct ice_q_ctx *q_ctx;
|
|
|
|
vsi = ice_get_vsi_ctx(hw, vsi_handle);
|
|
if (!vsi)
|
|
return NULL;
|
|
if (q_handle >= vsi->num_lan_q_entries[tc])
|
|
return NULL;
|
|
if (!vsi->lan_q_ctx[tc])
|
|
return NULL;
|
|
q_ctx = vsi->lan_q_ctx[tc];
|
|
return &q_ctx[q_handle];
|
|
}
|
|
|
|
/**
|
|
* ice_ena_vsi_txq
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc: TC number
|
|
* @q_handle: software queue handle
|
|
* @num_qgrps: Number of added queue groups
|
|
* @buf: list of queue groups to be added
|
|
* @buf_size: size of buffer for indirect command
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function adds one LAN queue
|
|
*/
|
|
enum ice_status
|
|
ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
|
|
u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
struct ice_aqc_txsched_elem_data node = { 0 };
|
|
struct ice_sched_node *parent;
|
|
struct ice_q_ctx *q_ctx;
|
|
enum ice_status status;
|
|
struct ice_hw *hw;
|
|
|
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
|
return ICE_ERR_CFG;
|
|
|
|
if (num_qgrps > 1 || buf->num_txqs > 1)
|
|
return ICE_ERR_MAX_LIMIT;
|
|
|
|
hw = pi->hw;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_acquire_lock(&pi->sched_lock);
|
|
|
|
q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
|
|
if (!q_ctx) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
|
|
q_handle);
|
|
status = ICE_ERR_PARAM;
|
|
goto ena_txq_exit;
|
|
}
|
|
|
|
/* find a parent node */
|
|
parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
|
|
ICE_SCHED_NODE_OWNER_LAN);
|
|
if (!parent) {
|
|
status = ICE_ERR_PARAM;
|
|
goto ena_txq_exit;
|
|
}
|
|
|
|
buf->parent_teid = parent->info.node_teid;
|
|
node.parent_teid = parent->info.node_teid;
|
|
/* Mark that the values in the "generic" section as valid. The default
|
|
* value in the "generic" section is zero. This means that :
|
|
* - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
|
|
* - 0 priority among siblings, indicated by Bit 1-3.
|
|
* - WFQ, indicated by Bit 4.
|
|
* - 0 Adjustment value is used in PSM credit update flow, indicated by
|
|
* Bit 5-6.
|
|
* - Bit 7 is reserved.
|
|
* Without setting the generic section as valid in valid_sections, the
|
|
* Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
|
|
*/
|
|
buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
|
|
|
|
/* add the LAN queue */
|
|
status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
|
|
if (status != ICE_SUCCESS) {
|
|
ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
|
|
LE16_TO_CPU(buf->txqs[0].txq_id),
|
|
hw->adminq.sq_last_status);
|
|
goto ena_txq_exit;
|
|
}
|
|
|
|
node.node_teid = buf->txqs[0].q_teid;
|
|
node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
|
|
q_ctx->q_handle = q_handle;
|
|
q_ctx->q_teid = LE32_TO_CPU(node.node_teid);
|
|
|
|
/* add a leaf node into scheduler tree queue layer */
|
|
status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
|
|
if (!status)
|
|
status = ice_sched_replay_q_bw(pi, q_ctx);
|
|
|
|
ena_txq_exit:
|
|
ice_release_lock(&pi->sched_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_dis_vsi_txq
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc: TC number
|
|
* @num_queues: number of queues
|
|
* @q_handles: pointer to software queue handle array
|
|
* @q_ids: pointer to the q_id array
|
|
* @q_teids: pointer to queue node teids
|
|
* @rst_src: if called due to reset, specifies the reset source
|
|
* @vmvf_num: the relative VM or VF number that is undergoing the reset
|
|
* @cd: pointer to command details structure or NULL
|
|
*
|
|
* This function removes queues and their corresponding nodes in SW DB
|
|
*/
|
|
enum ice_status
|
|
ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
|
|
u16 *q_handles, u16 *q_ids, u32 *q_teids,
|
|
enum ice_disq_rst_src rst_src, u16 vmvf_num,
|
|
struct ice_sq_cd *cd)
|
|
{
|
|
enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
|
|
struct ice_aqc_dis_txq_item qg_list;
|
|
struct ice_q_ctx *q_ctx;
|
|
u16 i;
|
|
|
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
|
return ICE_ERR_CFG;
|
|
|
|
if (!num_queues) {
|
|
/* if queue is disabled already yet the disable queue command
|
|
* has to be sent to complete the VF reset, then call
|
|
* ice_aq_dis_lan_txq without any queue information
|
|
*/
|
|
if (rst_src)
|
|
return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src,
|
|
vmvf_num, NULL);
|
|
return ICE_ERR_CFG;
|
|
}
|
|
|
|
ice_acquire_lock(&pi->sched_lock);
|
|
|
|
for (i = 0; i < num_queues; i++) {
|
|
struct ice_sched_node *node;
|
|
|
|
node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
|
|
if (!node)
|
|
continue;
|
|
q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]);
|
|
if (!q_ctx) {
|
|
ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
|
|
q_handles[i]);
|
|
continue;
|
|
}
|
|
if (q_ctx->q_handle != q_handles[i]) {
|
|
ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
|
|
q_ctx->q_handle, q_handles[i]);
|
|
continue;
|
|
}
|
|
qg_list.parent_teid = node->info.parent_teid;
|
|
qg_list.num_qs = 1;
|
|
qg_list.q_id[0] = CPU_TO_LE16(q_ids[i]);
|
|
status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
|
|
sizeof(qg_list), rst_src, vmvf_num,
|
|
cd);
|
|
|
|
if (status != ICE_SUCCESS)
|
|
break;
|
|
ice_free_sched_node(pi, node);
|
|
q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
|
|
}
|
|
ice_release_lock(&pi->sched_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_vsi_qs - configure the new/existing VSI queues
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc_bitmap: TC bitmap
|
|
* @maxqs: max queues array per TC
|
|
* @owner: LAN or RDMA
|
|
*
|
|
* This function adds/updates the VSI queues per TC.
|
|
*/
|
|
static enum ice_status
|
|
ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
|
|
u16 *maxqs, u8 owner)
|
|
{
|
|
enum ice_status status = ICE_SUCCESS;
|
|
u8 i;
|
|
|
|
if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
|
|
return ICE_ERR_CFG;
|
|
|
|
if (!ice_is_vsi_valid(pi->hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
ice_acquire_lock(&pi->sched_lock);
|
|
|
|
ice_for_each_traffic_class(i) {
|
|
/* configuration is possible only if TC node is present */
|
|
if (!ice_sched_get_tc_node(pi, i))
|
|
continue;
|
|
|
|
status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
|
|
ice_is_tc_ena(tc_bitmap, i));
|
|
if (status)
|
|
break;
|
|
}
|
|
|
|
ice_release_lock(&pi->sched_lock);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_cfg_vsi_lan - configure VSI LAN queues
|
|
* @pi: port information structure
|
|
* @vsi_handle: software VSI handle
|
|
* @tc_bitmap: TC bitmap
|
|
* @max_lanqs: max LAN queues array per TC
|
|
*
|
|
* This function adds/updates the VSI LAN queues per TC.
|
|
*/
|
|
enum ice_status
|
|
ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
|
|
u16 *max_lanqs)
|
|
{
|
|
return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
|
|
ICE_SCHED_NODE_OWNER_LAN);
|
|
}
|
|
|
|
/**
|
|
* ice_replay_pre_init - replay pre initialization
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Initializes required config data for VSI, FD, ACL, and RSS before replay.
|
|
*/
|
|
static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
|
|
{
|
|
struct ice_switch_info *sw = hw->switch_info;
|
|
u8 i;
|
|
|
|
/* Delete old entries from replay filter list head if there is any */
|
|
ice_rm_all_sw_replay_rule_info(hw);
|
|
/* In start of replay, move entries into replay_rules list, it
|
|
* will allow adding rules entries back to filt_rules list,
|
|
* which is operational list.
|
|
*/
|
|
for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
|
|
LIST_REPLACE_INIT(&sw->recp_list[i].filt_rules,
|
|
&sw->recp_list[i].filt_replay_rules);
|
|
ice_sched_replay_agg_vsi_preinit(hw);
|
|
|
|
return ice_sched_replay_tc_node_bw(hw->port_info);
|
|
}
|
|
|
|
/**
|
|
* ice_replay_vsi - replay VSI configuration
|
|
* @hw: pointer to the HW struct
|
|
* @vsi_handle: driver VSI handle
|
|
*
|
|
* Restore all VSI configuration after reset. It is required to call this
|
|
* function with main VSI first.
|
|
*/
|
|
enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
|
|
{
|
|
enum ice_status status;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return ICE_ERR_PARAM;
|
|
|
|
/* Replay pre-initialization if there is any */
|
|
if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
|
|
status = ice_replay_pre_init(hw);
|
|
if (status)
|
|
return status;
|
|
}
|
|
/* Replay per VSI all RSS configurations */
|
|
status = ice_replay_rss_cfg(hw, vsi_handle);
|
|
if (status)
|
|
return status;
|
|
/* Replay per VSI all filters */
|
|
status = ice_replay_vsi_all_fltr(hw, vsi_handle);
|
|
if (!status)
|
|
status = ice_replay_vsi_agg(hw, vsi_handle);
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_replay_post - post replay configuration cleanup
|
|
* @hw: pointer to the HW struct
|
|
*
|
|
* Post replay cleanup.
|
|
*/
|
|
void ice_replay_post(struct ice_hw *hw)
|
|
{
|
|
/* Delete old entries from replay filter list head */
|
|
ice_rm_all_sw_replay_rule_info(hw);
|
|
ice_sched_replay_agg(hw);
|
|
}
|
|
|
|
/**
|
|
* ice_stat_update40 - read 40 bit stat from the chip and update stat values
|
|
* @hw: ptr to the hardware info
|
|
* @reg: offset of 64 bit HW register to read from
|
|
* @prev_stat_loaded: bool to specify if previous stats are loaded
|
|
* @prev_stat: ptr to previous loaded stat value
|
|
* @cur_stat: ptr to current stat value
|
|
*/
|
|
void
|
|
ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
|
|
u64 *prev_stat, u64 *cur_stat)
|
|
{
|
|
u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
|
|
|
|
/* device stats are not reset at PFR, they likely will not be zeroed
|
|
* when the driver starts. Thus, save the value from the first read
|
|
* without adding to the statistic value so that we report stats which
|
|
* count up from zero.
|
|
*/
|
|
if (!prev_stat_loaded) {
|
|
*prev_stat = new_data;
|
|
return;
|
|
}
|
|
|
|
/* Calculate the difference between the new and old values, and then
|
|
* add it to the software stat value.
|
|
*/
|
|
if (new_data >= *prev_stat)
|
|
*cur_stat += new_data - *prev_stat;
|
|
else
|
|
/* to manage the potential roll-over */
|
|
*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
|
|
|
|
/* Update the previously stored value to prepare for next read */
|
|
*prev_stat = new_data;
|
|
}
|
|
|
|
/**
|
|
* ice_stat_update32 - read 32 bit stat from the chip and update stat values
|
|
* @hw: ptr to the hardware info
|
|
* @reg: offset of HW register to read from
|
|
* @prev_stat_loaded: bool to specify if previous stats are loaded
|
|
* @prev_stat: ptr to previous loaded stat value
|
|
* @cur_stat: ptr to current stat value
|
|
*/
|
|
void
|
|
ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
|
|
u64 *prev_stat, u64 *cur_stat)
|
|
{
|
|
u32 new_data;
|
|
|
|
new_data = rd32(hw, reg);
|
|
|
|
/* device stats are not reset at PFR, they likely will not be zeroed
|
|
* when the driver starts. Thus, save the value from the first read
|
|
* without adding to the statistic value so that we report stats which
|
|
* count up from zero.
|
|
*/
|
|
if (!prev_stat_loaded) {
|
|
*prev_stat = new_data;
|
|
return;
|
|
}
|
|
|
|
/* Calculate the difference between the new and old values, and then
|
|
* add it to the software stat value.
|
|
*/
|
|
if (new_data >= *prev_stat)
|
|
*cur_stat += new_data - *prev_stat;
|
|
else
|
|
/* to manage the potential roll-over */
|
|
*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
|
|
|
|
/* Update the previously stored value to prepare for next read */
|
|
*prev_stat = new_data;
|
|
}
|
|
|
|
/**
|
|
* ice_stat_update_repc - read GLV_REPC stats from chip and update stat values
|
|
* @hw: ptr to the hardware info
|
|
* @vsi_handle: VSI handle
|
|
* @prev_stat_loaded: bool to specify if the previous stat values are loaded
|
|
* @cur_stats: ptr to current stats structure
|
|
*
|
|
* The GLV_REPC statistic register actually tracks two 16bit statistics, and
|
|
* thus cannot be read using the normal ice_stat_update32 function.
|
|
*
|
|
* Read the GLV_REPC register associated with the given VSI, and update the
|
|
* rx_no_desc and rx_error values in the ice_eth_stats structure.
|
|
*
|
|
* Because the statistics in GLV_REPC stick at 0xFFFF, the register must be
|
|
* cleared each time it's read.
|
|
*
|
|
* Note that the GLV_RDPC register also counts the causes that would trigger
|
|
* GLV_REPC. However, it does not give the finer grained detail about why the
|
|
* packets are being dropped. The GLV_REPC values can be used to distinguish
|
|
* whether Rx packets are dropped due to errors or due to no available
|
|
* descriptors.
|
|
*/
|
|
void
|
|
ice_stat_update_repc(struct ice_hw *hw, u16 vsi_handle, bool prev_stat_loaded,
|
|
struct ice_eth_stats *cur_stats)
|
|
{
|
|
u16 vsi_num, no_desc, error_cnt;
|
|
u32 repc;
|
|
|
|
if (!ice_is_vsi_valid(hw, vsi_handle))
|
|
return;
|
|
|
|
vsi_num = ice_get_hw_vsi_num(hw, vsi_handle);
|
|
|
|
/* If we haven't loaded stats yet, just clear the current value */
|
|
if (!prev_stat_loaded) {
|
|
wr32(hw, GLV_REPC(vsi_num), 0);
|
|
return;
|
|
}
|
|
|
|
repc = rd32(hw, GLV_REPC(vsi_num));
|
|
no_desc = (repc & GLV_REPC_NO_DESC_CNT_M) >> GLV_REPC_NO_DESC_CNT_S;
|
|
error_cnt = (repc & GLV_REPC_ERROR_CNT_M) >> GLV_REPC_ERROR_CNT_S;
|
|
|
|
/* Clear the count by writing to the stats register */
|
|
wr32(hw, GLV_REPC(vsi_num), 0);
|
|
|
|
cur_stats->rx_no_desc += no_desc;
|
|
cur_stats->rx_errors += error_cnt;
|
|
}
|
|
|
|
/**
|
|
* ice_sched_query_elem - query element information from HW
|
|
* @hw: pointer to the HW struct
|
|
* @node_teid: node TEID to be queried
|
|
* @buf: buffer to element information
|
|
*
|
|
* This function queries HW element information
|
|
*/
|
|
enum ice_status
|
|
ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
|
|
struct ice_aqc_get_elem *buf)
|
|
{
|
|
u16 buf_size, num_elem_ret = 0;
|
|
enum ice_status status;
|
|
|
|
buf_size = sizeof(*buf);
|
|
ice_memset(buf, 0, buf_size, ICE_NONDMA_MEM);
|
|
buf->generic[0].node_teid = CPU_TO_LE32(node_teid);
|
|
status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
|
|
NULL);
|
|
if (status != ICE_SUCCESS || num_elem_ret != 1)
|
|
ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* ice_get_fw_mode - returns FW mode
|
|
* @hw: pointer to the HW struct
|
|
*/
|
|
enum ice_fw_modes ice_get_fw_mode(struct ice_hw *hw)
|
|
{
|
|
#define ICE_FW_MODE_DBG_M BIT(0)
|
|
#define ICE_FW_MODE_REC_M BIT(1)
|
|
#define ICE_FW_MODE_ROLLBACK_M BIT(2)
|
|
u32 fw_mode;
|
|
|
|
/* check the current FW mode */
|
|
fw_mode = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_MODES_M;
|
|
|
|
if (fw_mode & ICE_FW_MODE_DBG_M)
|
|
return ICE_FW_MODE_DBG;
|
|
else if (fw_mode & ICE_FW_MODE_REC_M)
|
|
return ICE_FW_MODE_REC;
|
|
else if (fw_mode & ICE_FW_MODE_ROLLBACK_M)
|
|
return ICE_FW_MODE_ROLLBACK;
|
|
else
|
|
return ICE_FW_MODE_NORMAL;
|
|
}
|