numam-dpdk/drivers/event/octeontx2/otx2_worker.c
Pavan Nikhilesh cb4261e0bf event/octeontx2: improve datapath memory locality
When event device is transmitting packet on OCTEONTX2 it needs to access
the destined ethernet device TXq data.
Currently, we get the TXq data through rte_eth_devices global array.
Instead save the TXq address inside event port memory.

Cc: stable@dpdk.org

Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com>
2020-06-30 07:41:26 +02:00

377 lines
9.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include "otx2_worker.h"
static __rte_noinline uint8_t
otx2_ssogws_new_event(struct otx2_ssogws *ws, const struct rte_event *ev)
{
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
const uint64_t event_ptr = ev->u64;
const uint16_t grp = ev->queue_id;
if (ws->xaq_lmt <= *ws->fc_mem)
return 0;
otx2_ssogws_add_work(ws, event_ptr, tag, new_tt, grp);
return 1;
}
static __rte_always_inline void
otx2_ssogws_fwd_swtag(struct otx2_ssogws *ws, const struct rte_event *ev)
{
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
const uint8_t cur_tt = ws->cur_tt;
/* 96XX model
* cur_tt/new_tt SSO_SYNC_ORDERED SSO_SYNC_ATOMIC SSO_SYNC_UNTAGGED
*
* SSO_SYNC_ORDERED norm norm untag
* SSO_SYNC_ATOMIC norm norm untag
* SSO_SYNC_UNTAGGED norm norm NOOP
*/
if (new_tt == SSO_SYNC_UNTAGGED) {
if (cur_tt != SSO_SYNC_UNTAGGED)
otx2_ssogws_swtag_untag(ws);
} else {
otx2_ssogws_swtag_norm(ws, tag, new_tt);
}
ws->swtag_req = 1;
}
static __rte_always_inline void
otx2_ssogws_fwd_group(struct otx2_ssogws *ws, const struct rte_event *ev,
const uint16_t grp)
{
const uint32_t tag = (uint32_t)ev->event;
const uint8_t new_tt = ev->sched_type;
otx2_write64(ev->u64, OTX2_SSOW_GET_BASE_ADDR(ws->getwrk_op) +
SSOW_LF_GWS_OP_UPD_WQP_GRP1);
rte_smp_wmb();
otx2_ssogws_swtag_desched(ws, tag, new_tt, grp);
}
static __rte_always_inline void
otx2_ssogws_forward_event(struct otx2_ssogws *ws, const struct rte_event *ev)
{
const uint8_t grp = ev->queue_id;
/* Group hasn't changed, Use SWTAG to forward the event */
if (ws->cur_grp == grp)
otx2_ssogws_fwd_swtag(ws, ev);
else
/*
* Group has been changed for group based work pipelining,
* Use deschedule/add_work operation to transfer the event to
* new group/core
*/
otx2_ssogws_fwd_group(ws, ev, grp);
}
static __rte_always_inline void
otx2_ssogws_release_event(struct otx2_ssogws *ws)
{
otx2_ssogws_swtag_flush(ws);
}
#define R(name, f6, f5, f4, f3, f2, f1, f0, flags) \
uint16_t __rte_hot \
otx2_ssogws_deq_ ##name(void *port, struct rte_event *ev, \
uint64_t timeout_ticks) \
{ \
struct otx2_ssogws *ws = port; \
\
RTE_SET_USED(timeout_ticks); \
\
if (ws->swtag_req) { \
ws->swtag_req = 0; \
otx2_ssogws_swtag_wait(ws); \
return 1; \
} \
\
return otx2_ssogws_get_work(ws, ev, flags, ws->lookup_mem); \
} \
\
uint16_t __rte_hot \
otx2_ssogws_deq_burst_ ##name(void *port, struct rte_event ev[], \
uint16_t nb_events, \
uint64_t timeout_ticks) \
{ \
RTE_SET_USED(nb_events); \
\
return otx2_ssogws_deq_ ##name(port, ev, timeout_ticks); \
} \
\
uint16_t __rte_hot \
otx2_ssogws_deq_timeout_ ##name(void *port, struct rte_event *ev, \
uint64_t timeout_ticks) \
{ \
struct otx2_ssogws *ws = port; \
uint16_t ret = 1; \
uint64_t iter; \
\
if (ws->swtag_req) { \
ws->swtag_req = 0; \
otx2_ssogws_swtag_wait(ws); \
return ret; \
} \
\
ret = otx2_ssogws_get_work(ws, ev, flags, ws->lookup_mem); \
for (iter = 1; iter < timeout_ticks && (ret == 0); iter++) \
ret = otx2_ssogws_get_work(ws, ev, flags, \
ws->lookup_mem); \
\
return ret; \
} \
\
uint16_t __rte_hot \
otx2_ssogws_deq_timeout_burst_ ##name(void *port, struct rte_event ev[],\
uint16_t nb_events, \
uint64_t timeout_ticks) \
{ \
RTE_SET_USED(nb_events); \
\
return otx2_ssogws_deq_timeout_ ##name(port, ev, timeout_ticks);\
} \
\
uint16_t __rte_hot \
otx2_ssogws_deq_seg_ ##name(void *port, struct rte_event *ev, \
uint64_t timeout_ticks) \
{ \
struct otx2_ssogws *ws = port; \
\
RTE_SET_USED(timeout_ticks); \
\
if (ws->swtag_req) { \
ws->swtag_req = 0; \
otx2_ssogws_swtag_wait(ws); \
return 1; \
} \
\
return otx2_ssogws_get_work(ws, ev, flags | NIX_RX_MULTI_SEG_F, \
ws->lookup_mem); \
} \
\
uint16_t __rte_hot \
otx2_ssogws_deq_seg_burst_ ##name(void *port, struct rte_event ev[], \
uint16_t nb_events, \
uint64_t timeout_ticks) \
{ \
RTE_SET_USED(nb_events); \
\
return otx2_ssogws_deq_seg_ ##name(port, ev, timeout_ticks); \
} \
\
uint16_t __rte_hot \
otx2_ssogws_deq_seg_timeout_ ##name(void *port, struct rte_event *ev, \
uint64_t timeout_ticks) \
{ \
struct otx2_ssogws *ws = port; \
uint16_t ret = 1; \
uint64_t iter; \
\
if (ws->swtag_req) { \
ws->swtag_req = 0; \
otx2_ssogws_swtag_wait(ws); \
return ret; \
} \
\
ret = otx2_ssogws_get_work(ws, ev, flags | NIX_RX_MULTI_SEG_F, \
ws->lookup_mem); \
for (iter = 1; iter < timeout_ticks && (ret == 0); iter++) \
ret = otx2_ssogws_get_work(ws, ev, \
flags | NIX_RX_MULTI_SEG_F, \
ws->lookup_mem); \
\
return ret; \
} \
\
uint16_t __rte_hot \
otx2_ssogws_deq_seg_timeout_burst_ ##name(void *port, \
struct rte_event ev[], \
uint16_t nb_events, \
uint64_t timeout_ticks) \
{ \
RTE_SET_USED(nb_events); \
\
return otx2_ssogws_deq_seg_timeout_ ##name(port, ev, \
timeout_ticks); \
}
SSO_RX_ADPTR_ENQ_FASTPATH_FUNC
#undef R
uint16_t __rte_hot
otx2_ssogws_enq(void *port, const struct rte_event *ev)
{
struct otx2_ssogws *ws = port;
switch (ev->op) {
case RTE_EVENT_OP_NEW:
rte_smp_mb();
return otx2_ssogws_new_event(ws, ev);
case RTE_EVENT_OP_FORWARD:
otx2_ssogws_forward_event(ws, ev);
break;
case RTE_EVENT_OP_RELEASE:
otx2_ssogws_release_event(ws);
break;
default:
return 0;
}
return 1;
}
uint16_t __rte_hot
otx2_ssogws_enq_burst(void *port, const struct rte_event ev[],
uint16_t nb_events)
{
RTE_SET_USED(nb_events);
return otx2_ssogws_enq(port, ev);
}
uint16_t __rte_hot
otx2_ssogws_enq_new_burst(void *port, const struct rte_event ev[],
uint16_t nb_events)
{
struct otx2_ssogws *ws = port;
uint16_t i, rc = 1;
rte_smp_mb();
if (ws->xaq_lmt <= *ws->fc_mem)
return 0;
for (i = 0; i < nb_events && rc; i++)
rc = otx2_ssogws_new_event(ws, &ev[i]);
return nb_events;
}
uint16_t __rte_hot
otx2_ssogws_enq_fwd_burst(void *port, const struct rte_event ev[],
uint16_t nb_events)
{
struct otx2_ssogws *ws = port;
RTE_SET_USED(nb_events);
otx2_ssogws_forward_event(ws, ev);
return 1;
}
#define T(name, f6, f5, f4, f3, f2, f1, f0, sz, flags) \
uint16_t __rte_hot \
otx2_ssogws_tx_adptr_enq_ ## name(void *port, struct rte_event ev[], \
uint16_t nb_events) \
{ \
struct otx2_ssogws *ws = port; \
uint64_t cmd[sz]; \
\
RTE_SET_USED(nb_events); \
return otx2_ssogws_event_tx(ws, ev, cmd, (const uint64_t \
(*)[RTE_MAX_QUEUES_PER_PORT]) \
&ws->tx_adptr_data, \
flags); \
}
SSO_TX_ADPTR_ENQ_FASTPATH_FUNC
#undef T
#define T(name, f6, f5, f4, f3, f2, f1, f0, sz, flags) \
uint16_t __rte_hot \
otx2_ssogws_tx_adptr_enq_seg_ ## name(void *port, struct rte_event ev[],\
uint16_t nb_events) \
{ \
struct otx2_ssogws *ws = port; \
uint64_t cmd[(sz) + NIX_TX_MSEG_SG_DWORDS - 2]; \
\
RTE_SET_USED(nb_events); \
return otx2_ssogws_event_tx(ws, ev, cmd, (const uint64_t \
(*)[RTE_MAX_QUEUES_PER_PORT]) \
&ws->tx_adptr_data, \
(flags) | NIX_TX_MULTI_SEG_F); \
}
SSO_TX_ADPTR_ENQ_FASTPATH_FUNC
#undef T
void
ssogws_flush_events(struct otx2_ssogws *ws, uint8_t queue_id, uintptr_t base,
otx2_handle_event_t fn, void *arg)
{
uint64_t cq_ds_cnt = 1;
uint64_t aq_cnt = 1;
uint64_t ds_cnt = 1;
struct rte_event ev;
uint64_t enable;
uint64_t val;
enable = otx2_read64(base + SSO_LF_GGRP_QCTL);
if (!enable)
return;
val = queue_id; /* GGRP ID */
val |= BIT_ULL(18); /* Grouped */
val |= BIT_ULL(16); /* WAIT */
aq_cnt = otx2_read64(base + SSO_LF_GGRP_AQ_CNT);
ds_cnt = otx2_read64(base + SSO_LF_GGRP_MISC_CNT);
cq_ds_cnt = otx2_read64(base + SSO_LF_GGRP_INT_CNT);
cq_ds_cnt &= 0x3FFF3FFF0000;
while (aq_cnt || cq_ds_cnt || ds_cnt) {
otx2_write64(val, ws->getwrk_op);
otx2_ssogws_get_work_empty(ws, &ev, 0);
if (fn != NULL && ev.u64 != 0)
fn(arg, ev);
if (ev.sched_type != SSO_TT_EMPTY)
otx2_ssogws_swtag_flush(ws);
rte_mb();
aq_cnt = otx2_read64(base + SSO_LF_GGRP_AQ_CNT);
ds_cnt = otx2_read64(base + SSO_LF_GGRP_MISC_CNT);
cq_ds_cnt = otx2_read64(base + SSO_LF_GGRP_INT_CNT);
/* Extract cq and ds count */
cq_ds_cnt &= 0x3FFF3FFF0000;
}
otx2_write64(0, OTX2_SSOW_GET_BASE_ADDR(ws->getwrk_op) +
SSOW_LF_GWS_OP_GWC_INVAL);
rte_mb();
}
void
ssogws_reset(struct otx2_ssogws *ws)
{
uintptr_t base = OTX2_SSOW_GET_BASE_ADDR(ws->getwrk_op);
uint64_t pend_state;
uint8_t pend_tt;
uint64_t tag;
/* Wait till getwork/swtp/waitw/desched completes. */
do {
pend_state = otx2_read64(base + SSOW_LF_GWS_PENDSTATE);
rte_mb();
} while (pend_state & (BIT_ULL(63) | BIT_ULL(62) | BIT_ULL(58)));
tag = otx2_read64(base + SSOW_LF_GWS_TAG);
pend_tt = (tag >> 32) & 0x3;
if (pend_tt != SSO_TT_EMPTY) { /* Work was pending */
if (pend_tt == SSO_SYNC_ATOMIC || pend_tt == SSO_SYNC_ORDERED)
otx2_ssogws_swtag_untag(ws);
otx2_ssogws_desched(ws);
}
rte_mb();
/* Wait for desched to complete. */
do {
pend_state = otx2_read64(base + SSOW_LF_GWS_PENDSTATE);
rte_mb();
} while (pend_state & BIT_ULL(58));
}