numam-dpdk/lib/librte_sched/rte_sched.c
Pavan Nikhilesh 0b037e8b02 eal: introduce integer divide through reciprocal
In some use cases of integer division, denominator remains constant and
numerator varies. It is possible to optimize division for such specific
scenarios.

The librte_sched uses rte_reciprocal to optimize division so, moving it to
eal/common would allow other libraries and applications to use it.

Signed-off-by: Pavan Nikhilesh <pbhagavatula@caviumnetworks.com>
2018-01-27 22:34:33 +01:00

2170 lines
60 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <string.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_branch_prediction.h>
#include <rte_mbuf.h>
#include <rte_bitmap.h>
#include <rte_reciprocal.h>
#include "rte_sched.h"
#include "rte_sched_common.h"
#include "rte_approx.h"
#ifdef __INTEL_COMPILER
#pragma warning(disable:2259) /* conversion may lose significant bits */
#endif
#ifdef RTE_SCHED_VECTOR
#include <rte_vect.h>
#ifdef RTE_ARCH_X86
#define SCHED_VECTOR_SSE4
#elif defined(RTE_MACHINE_CPUFLAG_NEON)
#define SCHED_VECTOR_NEON
#endif
#endif
#define RTE_SCHED_TB_RATE_CONFIG_ERR (1e-7)
#define RTE_SCHED_WRR_SHIFT 3
#define RTE_SCHED_GRINDER_PCACHE_SIZE (64 / RTE_SCHED_QUEUES_PER_PIPE)
#define RTE_SCHED_PIPE_INVALID UINT32_MAX
#define RTE_SCHED_BMP_POS_INVALID UINT32_MAX
/* Scaling for cycles_per_byte calculation
* Chosen so that minimum rate is 480 bit/sec
*/
#define RTE_SCHED_TIME_SHIFT 8
struct rte_sched_subport {
/* Token bucket (TB) */
uint64_t tb_time; /* time of last update */
uint32_t tb_period;
uint32_t tb_credits_per_period;
uint32_t tb_size;
uint32_t tb_credits;
/* Traffic classes (TCs) */
uint64_t tc_time; /* time of next update */
uint32_t tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
uint32_t tc_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
uint32_t tc_period;
/* TC oversubscription */
uint32_t tc_ov_wm;
uint32_t tc_ov_wm_min;
uint32_t tc_ov_wm_max;
uint8_t tc_ov_period_id;
uint8_t tc_ov;
uint32_t tc_ov_n;
double tc_ov_rate;
/* Statistics */
struct rte_sched_subport_stats stats;
};
struct rte_sched_pipe_profile {
/* Token bucket (TB) */
uint32_t tb_period;
uint32_t tb_credits_per_period;
uint32_t tb_size;
/* Pipe traffic classes */
uint32_t tc_period;
uint32_t tc_credits_per_period[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
uint8_t tc_ov_weight;
/* Pipe queues */
uint8_t wrr_cost[RTE_SCHED_QUEUES_PER_PIPE];
};
struct rte_sched_pipe {
/* Token bucket (TB) */
uint64_t tb_time; /* time of last update */
uint32_t tb_credits;
/* Pipe profile and flags */
uint32_t profile;
/* Traffic classes (TCs) */
uint64_t tc_time; /* time of next update */
uint32_t tc_credits[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
/* Weighted Round Robin (WRR) */
uint8_t wrr_tokens[RTE_SCHED_QUEUES_PER_PIPE];
/* TC oversubscription */
uint32_t tc_ov_credits;
uint8_t tc_ov_period_id;
uint8_t reserved[3];
} __rte_cache_aligned;
struct rte_sched_queue {
uint16_t qw;
uint16_t qr;
};
struct rte_sched_queue_extra {
struct rte_sched_queue_stats stats;
#ifdef RTE_SCHED_RED
struct rte_red red;
#endif
};
enum grinder_state {
e_GRINDER_PREFETCH_PIPE = 0,
e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS,
e_GRINDER_PREFETCH_MBUF,
e_GRINDER_READ_MBUF
};
/*
* Path through the scheduler hierarchy used by the scheduler enqueue
* operation to identify the destination queue for the current
* packet. Stored in the field pkt.hash.sched of struct rte_mbuf of
* each packet, typically written by the classification stage and read
* by scheduler enqueue.
*/
struct rte_sched_port_hierarchy {
uint16_t queue:2; /**< Queue ID (0 .. 3) */
uint16_t traffic_class:2; /**< Traffic class ID (0 .. 3)*/
uint32_t color:2; /**< Color */
uint16_t unused:10;
uint16_t subport; /**< Subport ID */
uint32_t pipe; /**< Pipe ID */
};
struct rte_sched_grinder {
/* Pipe cache */
uint16_t pcache_qmask[RTE_SCHED_GRINDER_PCACHE_SIZE];
uint32_t pcache_qindex[RTE_SCHED_GRINDER_PCACHE_SIZE];
uint32_t pcache_w;
uint32_t pcache_r;
/* Current pipe */
enum grinder_state state;
uint32_t productive;
uint32_t pindex;
struct rte_sched_subport *subport;
struct rte_sched_pipe *pipe;
struct rte_sched_pipe_profile *pipe_params;
/* TC cache */
uint8_t tccache_qmask[4];
uint32_t tccache_qindex[4];
uint32_t tccache_w;
uint32_t tccache_r;
/* Current TC */
uint32_t tc_index;
struct rte_sched_queue *queue[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
struct rte_mbuf **qbase[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
uint32_t qindex[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
uint16_t qsize;
uint32_t qmask;
uint32_t qpos;
struct rte_mbuf *pkt;
/* WRR */
uint16_t wrr_tokens[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
uint16_t wrr_mask[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
uint8_t wrr_cost[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
};
struct rte_sched_port {
/* User parameters */
uint32_t n_subports_per_port;
uint32_t n_pipes_per_subport;
uint32_t rate;
uint32_t mtu;
uint32_t frame_overhead;
uint16_t qsize[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
uint32_t n_pipe_profiles;
uint32_t pipe_tc3_rate_max;
#ifdef RTE_SCHED_RED
struct rte_red_config red_config[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE][e_RTE_METER_COLORS];
#endif
/* Timing */
uint64_t time_cpu_cycles; /* Current CPU time measured in CPU cyles */
uint64_t time_cpu_bytes; /* Current CPU time measured in bytes */
uint64_t time; /* Current NIC TX time measured in bytes */
struct rte_reciprocal inv_cycles_per_byte; /* CPU cycles per byte */
/* Scheduling loop detection */
uint32_t pipe_loop;
uint32_t pipe_exhaustion;
/* Bitmap */
struct rte_bitmap *bmp;
uint32_t grinder_base_bmp_pos[RTE_SCHED_PORT_N_GRINDERS] __rte_aligned_16;
/* Grinders */
struct rte_sched_grinder grinder[RTE_SCHED_PORT_N_GRINDERS];
uint32_t busy_grinders;
struct rte_mbuf **pkts_out;
uint32_t n_pkts_out;
/* Queue base calculation */
uint32_t qsize_add[RTE_SCHED_QUEUES_PER_PIPE];
uint32_t qsize_sum;
/* Large data structures */
struct rte_sched_subport *subport;
struct rte_sched_pipe *pipe;
struct rte_sched_queue *queue;
struct rte_sched_queue_extra *queue_extra;
struct rte_sched_pipe_profile *pipe_profiles;
uint8_t *bmp_array;
struct rte_mbuf **queue_array;
uint8_t memory[0] __rte_cache_aligned;
} __rte_cache_aligned;
enum rte_sched_port_array {
e_RTE_SCHED_PORT_ARRAY_SUBPORT = 0,
e_RTE_SCHED_PORT_ARRAY_PIPE,
e_RTE_SCHED_PORT_ARRAY_QUEUE,
e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA,
e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES,
e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY,
e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY,
e_RTE_SCHED_PORT_ARRAY_TOTAL,
};
#ifdef RTE_SCHED_COLLECT_STATS
static inline uint32_t
rte_sched_port_queues_per_subport(struct rte_sched_port *port)
{
return RTE_SCHED_QUEUES_PER_PIPE * port->n_pipes_per_subport;
}
#endif
static inline uint32_t
rte_sched_port_queues_per_port(struct rte_sched_port *port)
{
return RTE_SCHED_QUEUES_PER_PIPE * port->n_pipes_per_subport * port->n_subports_per_port;
}
static inline struct rte_mbuf **
rte_sched_port_qbase(struct rte_sched_port *port, uint32_t qindex)
{
uint32_t pindex = qindex >> 4;
uint32_t qpos = qindex & 0xF;
return (port->queue_array + pindex *
port->qsize_sum + port->qsize_add[qpos]);
}
static inline uint16_t
rte_sched_port_qsize(struct rte_sched_port *port, uint32_t qindex)
{
uint32_t tc = (qindex >> 2) & 0x3;
return port->qsize[tc];
}
static int
rte_sched_port_check_params(struct rte_sched_port_params *params)
{
uint32_t i, j;
if (params == NULL)
return -1;
/* socket */
if ((params->socket < 0) || (params->socket >= RTE_MAX_NUMA_NODES))
return -3;
/* rate */
if (params->rate == 0)
return -4;
/* mtu */
if (params->mtu == 0)
return -5;
/* n_subports_per_port: non-zero, limited to 16 bits, power of 2 */
if (params->n_subports_per_port == 0 ||
params->n_subports_per_port > 1u << 16 ||
!rte_is_power_of_2(params->n_subports_per_port))
return -6;
/* n_pipes_per_subport: non-zero, power of 2 */
if (params->n_pipes_per_subport == 0 ||
!rte_is_power_of_2(params->n_pipes_per_subport))
return -7;
/* qsize: non-zero, power of 2,
* no bigger than 32K (due to 16-bit read/write pointers)
*/
for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
uint16_t qsize = params->qsize[i];
if (qsize == 0 || !rte_is_power_of_2(qsize))
return -8;
}
/* pipe_profiles and n_pipe_profiles */
if (params->pipe_profiles == NULL ||
params->n_pipe_profiles == 0 ||
params->n_pipe_profiles > RTE_SCHED_PIPE_PROFILES_PER_PORT)
return -9;
for (i = 0; i < params->n_pipe_profiles; i++) {
struct rte_sched_pipe_params *p = params->pipe_profiles + i;
/* TB rate: non-zero, not greater than port rate */
if (p->tb_rate == 0 || p->tb_rate > params->rate)
return -10;
/* TB size: non-zero */
if (p->tb_size == 0)
return -11;
/* TC rate: non-zero, less than pipe rate */
for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++) {
if (p->tc_rate[j] == 0 || p->tc_rate[j] > p->tb_rate)
return -12;
}
/* TC period: non-zero */
if (p->tc_period == 0)
return -13;
#ifdef RTE_SCHED_SUBPORT_TC_OV
/* TC3 oversubscription weight: non-zero */
if (p->tc_ov_weight == 0)
return -14;
#endif
/* Queue WRR weights: non-zero */
for (j = 0; j < RTE_SCHED_QUEUES_PER_PIPE; j++) {
if (p->wrr_weights[j] == 0)
return -15;
}
}
return 0;
}
static uint32_t
rte_sched_port_get_array_base(struct rte_sched_port_params *params, enum rte_sched_port_array array)
{
uint32_t n_subports_per_port = params->n_subports_per_port;
uint32_t n_pipes_per_subport = params->n_pipes_per_subport;
uint32_t n_pipes_per_port = n_pipes_per_subport * n_subports_per_port;
uint32_t n_queues_per_port = RTE_SCHED_QUEUES_PER_PIPE * n_pipes_per_subport * n_subports_per_port;
uint32_t size_subport = n_subports_per_port * sizeof(struct rte_sched_subport);
uint32_t size_pipe = n_pipes_per_port * sizeof(struct rte_sched_pipe);
uint32_t size_queue = n_queues_per_port * sizeof(struct rte_sched_queue);
uint32_t size_queue_extra
= n_queues_per_port * sizeof(struct rte_sched_queue_extra);
uint32_t size_pipe_profiles
= RTE_SCHED_PIPE_PROFILES_PER_PORT * sizeof(struct rte_sched_pipe_profile);
uint32_t size_bmp_array = rte_bitmap_get_memory_footprint(n_queues_per_port);
uint32_t size_per_pipe_queue_array, size_queue_array;
uint32_t base, i;
size_per_pipe_queue_array = 0;
for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
size_per_pipe_queue_array += RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS
* params->qsize[i] * sizeof(struct rte_mbuf *);
}
size_queue_array = n_pipes_per_port * size_per_pipe_queue_array;
base = 0;
if (array == e_RTE_SCHED_PORT_ARRAY_SUBPORT)
return base;
base += RTE_CACHE_LINE_ROUNDUP(size_subport);
if (array == e_RTE_SCHED_PORT_ARRAY_PIPE)
return base;
base += RTE_CACHE_LINE_ROUNDUP(size_pipe);
if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE)
return base;
base += RTE_CACHE_LINE_ROUNDUP(size_queue);
if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA)
return base;
base += RTE_CACHE_LINE_ROUNDUP(size_queue_extra);
if (array == e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES)
return base;
base += RTE_CACHE_LINE_ROUNDUP(size_pipe_profiles);
if (array == e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY)
return base;
base += RTE_CACHE_LINE_ROUNDUP(size_bmp_array);
if (array == e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY)
return base;
base += RTE_CACHE_LINE_ROUNDUP(size_queue_array);
return base;
}
uint32_t
rte_sched_port_get_memory_footprint(struct rte_sched_port_params *params)
{
uint32_t size0, size1;
int status;
status = rte_sched_port_check_params(params);
if (status != 0) {
RTE_LOG(NOTICE, SCHED,
"Port scheduler params check failed (%d)\n", status);
return 0;
}
size0 = sizeof(struct rte_sched_port);
size1 = rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_TOTAL);
return size0 + size1;
}
static void
rte_sched_port_config_qsize(struct rte_sched_port *port)
{
/* TC 0 */
port->qsize_add[0] = 0;
port->qsize_add[1] = port->qsize_add[0] + port->qsize[0];
port->qsize_add[2] = port->qsize_add[1] + port->qsize[0];
port->qsize_add[3] = port->qsize_add[2] + port->qsize[0];
/* TC 1 */
port->qsize_add[4] = port->qsize_add[3] + port->qsize[0];
port->qsize_add[5] = port->qsize_add[4] + port->qsize[1];
port->qsize_add[6] = port->qsize_add[5] + port->qsize[1];
port->qsize_add[7] = port->qsize_add[6] + port->qsize[1];
/* TC 2 */
port->qsize_add[8] = port->qsize_add[7] + port->qsize[1];
port->qsize_add[9] = port->qsize_add[8] + port->qsize[2];
port->qsize_add[10] = port->qsize_add[9] + port->qsize[2];
port->qsize_add[11] = port->qsize_add[10] + port->qsize[2];
/* TC 3 */
port->qsize_add[12] = port->qsize_add[11] + port->qsize[2];
port->qsize_add[13] = port->qsize_add[12] + port->qsize[3];
port->qsize_add[14] = port->qsize_add[13] + port->qsize[3];
port->qsize_add[15] = port->qsize_add[14] + port->qsize[3];
port->qsize_sum = port->qsize_add[15] + port->qsize[3];
}
static void
rte_sched_port_log_pipe_profile(struct rte_sched_port *port, uint32_t i)
{
struct rte_sched_pipe_profile *p = port->pipe_profiles + i;
RTE_LOG(DEBUG, SCHED, "Low level config for pipe profile %u:\n"
" Token bucket: period = %u, credits per period = %u, size = %u\n"
" Traffic classes: period = %u, credits per period = [%u, %u, %u, %u]\n"
" Traffic class 3 oversubscription: weight = %hhu\n"
" WRR cost: [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu], [%hhu, %hhu, %hhu, %hhu]\n",
i,
/* Token bucket */
p->tb_period,
p->tb_credits_per_period,
p->tb_size,
/* Traffic classes */
p->tc_period,
p->tc_credits_per_period[0],
p->tc_credits_per_period[1],
p->tc_credits_per_period[2],
p->tc_credits_per_period[3],
/* Traffic class 3 oversubscription */
p->tc_ov_weight,
/* WRR */
p->wrr_cost[ 0], p->wrr_cost[ 1], p->wrr_cost[ 2], p->wrr_cost[ 3],
p->wrr_cost[ 4], p->wrr_cost[ 5], p->wrr_cost[ 6], p->wrr_cost[ 7],
p->wrr_cost[ 8], p->wrr_cost[ 9], p->wrr_cost[10], p->wrr_cost[11],
p->wrr_cost[12], p->wrr_cost[13], p->wrr_cost[14], p->wrr_cost[15]);
}
static inline uint64_t
rte_sched_time_ms_to_bytes(uint32_t time_ms, uint32_t rate)
{
uint64_t time = time_ms;
time = (time * rate) / 1000;
return time;
}
static void
rte_sched_port_config_pipe_profile_table(struct rte_sched_port *port, struct rte_sched_port_params *params)
{
uint32_t i, j;
for (i = 0; i < port->n_pipe_profiles; i++) {
struct rte_sched_pipe_params *src = params->pipe_profiles + i;
struct rte_sched_pipe_profile *dst = port->pipe_profiles + i;
/* Token Bucket */
if (src->tb_rate == params->rate) {
dst->tb_credits_per_period = 1;
dst->tb_period = 1;
} else {
double tb_rate = (double) src->tb_rate
/ (double) params->rate;
double d = RTE_SCHED_TB_RATE_CONFIG_ERR;
rte_approx(tb_rate, d,
&dst->tb_credits_per_period, &dst->tb_period);
}
dst->tb_size = src->tb_size;
/* Traffic Classes */
dst->tc_period = rte_sched_time_ms_to_bytes(src->tc_period,
params->rate);
for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++)
dst->tc_credits_per_period[j]
= rte_sched_time_ms_to_bytes(src->tc_period,
src->tc_rate[j]);
#ifdef RTE_SCHED_SUBPORT_TC_OV
dst->tc_ov_weight = src->tc_ov_weight;
#endif
/* WRR */
for (j = 0; j < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; j++) {
uint32_t wrr_cost[RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS];
uint32_t lcd, lcd1, lcd2;
uint32_t qindex;
qindex = j * RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS;
wrr_cost[0] = src->wrr_weights[qindex];
wrr_cost[1] = src->wrr_weights[qindex + 1];
wrr_cost[2] = src->wrr_weights[qindex + 2];
wrr_cost[3] = src->wrr_weights[qindex + 3];
lcd1 = rte_get_lcd(wrr_cost[0], wrr_cost[1]);
lcd2 = rte_get_lcd(wrr_cost[2], wrr_cost[3]);
lcd = rte_get_lcd(lcd1, lcd2);
wrr_cost[0] = lcd / wrr_cost[0];
wrr_cost[1] = lcd / wrr_cost[1];
wrr_cost[2] = lcd / wrr_cost[2];
wrr_cost[3] = lcd / wrr_cost[3];
dst->wrr_cost[qindex] = (uint8_t) wrr_cost[0];
dst->wrr_cost[qindex + 1] = (uint8_t) wrr_cost[1];
dst->wrr_cost[qindex + 2] = (uint8_t) wrr_cost[2];
dst->wrr_cost[qindex + 3] = (uint8_t) wrr_cost[3];
}
rte_sched_port_log_pipe_profile(port, i);
}
port->pipe_tc3_rate_max = 0;
for (i = 0; i < port->n_pipe_profiles; i++) {
struct rte_sched_pipe_params *src = params->pipe_profiles + i;
uint32_t pipe_tc3_rate = src->tc_rate[3];
if (port->pipe_tc3_rate_max < pipe_tc3_rate)
port->pipe_tc3_rate_max = pipe_tc3_rate;
}
}
struct rte_sched_port *
rte_sched_port_config(struct rte_sched_port_params *params)
{
struct rte_sched_port *port = NULL;
uint32_t mem_size, bmp_mem_size, n_queues_per_port, i, cycles_per_byte;
/* Check user parameters. Determine the amount of memory to allocate */
mem_size = rte_sched_port_get_memory_footprint(params);
if (mem_size == 0)
return NULL;
/* Allocate memory to store the data structures */
port = rte_zmalloc("qos_params", mem_size, RTE_CACHE_LINE_SIZE);
if (port == NULL)
return NULL;
/* compile time checks */
RTE_BUILD_BUG_ON(RTE_SCHED_PORT_N_GRINDERS == 0);
RTE_BUILD_BUG_ON(RTE_SCHED_PORT_N_GRINDERS & (RTE_SCHED_PORT_N_GRINDERS - 1));
/* User parameters */
port->n_subports_per_port = params->n_subports_per_port;
port->n_pipes_per_subport = params->n_pipes_per_subport;
port->rate = params->rate;
port->mtu = params->mtu + params->frame_overhead;
port->frame_overhead = params->frame_overhead;
memcpy(port->qsize, params->qsize, sizeof(params->qsize));
port->n_pipe_profiles = params->n_pipe_profiles;
#ifdef RTE_SCHED_RED
for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
uint32_t j;
for (j = 0; j < e_RTE_METER_COLORS; j++) {
/* if min/max are both zero, then RED is disabled */
if ((params->red_params[i][j].min_th |
params->red_params[i][j].max_th) == 0) {
continue;
}
if (rte_red_config_init(&port->red_config[i][j],
params->red_params[i][j].wq_log2,
params->red_params[i][j].min_th,
params->red_params[i][j].max_th,
params->red_params[i][j].maxp_inv) != 0) {
return NULL;
}
}
}
#endif
/* Timing */
port->time_cpu_cycles = rte_get_tsc_cycles();
port->time_cpu_bytes = 0;
port->time = 0;
cycles_per_byte = (rte_get_tsc_hz() << RTE_SCHED_TIME_SHIFT)
/ params->rate;
port->inv_cycles_per_byte = rte_reciprocal_value(cycles_per_byte);
/* Scheduling loop detection */
port->pipe_loop = RTE_SCHED_PIPE_INVALID;
port->pipe_exhaustion = 0;
/* Grinders */
port->busy_grinders = 0;
port->pkts_out = NULL;
port->n_pkts_out = 0;
/* Queue base calculation */
rte_sched_port_config_qsize(port);
/* Large data structures */
port->subport = (struct rte_sched_subport *)
(port->memory + rte_sched_port_get_array_base(params,
e_RTE_SCHED_PORT_ARRAY_SUBPORT));
port->pipe = (struct rte_sched_pipe *)
(port->memory + rte_sched_port_get_array_base(params,
e_RTE_SCHED_PORT_ARRAY_PIPE));
port->queue = (struct rte_sched_queue *)
(port->memory + rte_sched_port_get_array_base(params,
e_RTE_SCHED_PORT_ARRAY_QUEUE));
port->queue_extra = (struct rte_sched_queue_extra *)
(port->memory + rte_sched_port_get_array_base(params,
e_RTE_SCHED_PORT_ARRAY_QUEUE_EXTRA));
port->pipe_profiles = (struct rte_sched_pipe_profile *)
(port->memory + rte_sched_port_get_array_base(params,
e_RTE_SCHED_PORT_ARRAY_PIPE_PROFILES));
port->bmp_array = port->memory
+ rte_sched_port_get_array_base(params, e_RTE_SCHED_PORT_ARRAY_BMP_ARRAY);
port->queue_array = (struct rte_mbuf **)
(port->memory + rte_sched_port_get_array_base(params,
e_RTE_SCHED_PORT_ARRAY_QUEUE_ARRAY));
/* Pipe profile table */
rte_sched_port_config_pipe_profile_table(port, params);
/* Bitmap */
n_queues_per_port = rte_sched_port_queues_per_port(port);
bmp_mem_size = rte_bitmap_get_memory_footprint(n_queues_per_port);
port->bmp = rte_bitmap_init(n_queues_per_port, port->bmp_array,
bmp_mem_size);
if (port->bmp == NULL) {
RTE_LOG(ERR, SCHED, "Bitmap init error\n");
return NULL;
}
for (i = 0; i < RTE_SCHED_PORT_N_GRINDERS; i++)
port->grinder_base_bmp_pos[i] = RTE_SCHED_PIPE_INVALID;
return port;
}
void
rte_sched_port_free(struct rte_sched_port *port)
{
uint32_t qindex;
uint32_t n_queues_per_port;
/* Check user parameters */
if (port == NULL)
return;
n_queues_per_port = rte_sched_port_queues_per_port(port);
/* Free enqueued mbufs */
for (qindex = 0; qindex < n_queues_per_port; qindex++) {
struct rte_mbuf **mbufs = rte_sched_port_qbase(port, qindex);
uint16_t qsize = rte_sched_port_qsize(port, qindex);
struct rte_sched_queue *queue = port->queue + qindex;
uint16_t qr = queue->qr & (qsize - 1);
uint16_t qw = queue->qw & (qsize - 1);
for (; qr != qw; qr = (qr + 1) & (qsize - 1))
rte_pktmbuf_free(mbufs[qr]);
}
rte_bitmap_free(port->bmp);
rte_free(port);
}
static void
rte_sched_port_log_subport_config(struct rte_sched_port *port, uint32_t i)
{
struct rte_sched_subport *s = port->subport + i;
RTE_LOG(DEBUG, SCHED, "Low level config for subport %u:\n"
" Token bucket: period = %u, credits per period = %u, size = %u\n"
" Traffic classes: period = %u, credits per period = [%u, %u, %u, %u]\n"
" Traffic class 3 oversubscription: wm min = %u, wm max = %u\n",
i,
/* Token bucket */
s->tb_period,
s->tb_credits_per_period,
s->tb_size,
/* Traffic classes */
s->tc_period,
s->tc_credits_per_period[0],
s->tc_credits_per_period[1],
s->tc_credits_per_period[2],
s->tc_credits_per_period[3],
/* Traffic class 3 oversubscription */
s->tc_ov_wm_min,
s->tc_ov_wm_max);
}
int
rte_sched_subport_config(struct rte_sched_port *port,
uint32_t subport_id,
struct rte_sched_subport_params *params)
{
struct rte_sched_subport *s;
uint32_t i;
/* Check user parameters */
if (port == NULL ||
subport_id >= port->n_subports_per_port ||
params == NULL)
return -1;
if (params->tb_rate == 0 || params->tb_rate > port->rate)
return -2;
if (params->tb_size == 0)
return -3;
for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
if (params->tc_rate[i] == 0 ||
params->tc_rate[i] > params->tb_rate)
return -4;
}
if (params->tc_period == 0)
return -5;
s = port->subport + subport_id;
/* Token Bucket (TB) */
if (params->tb_rate == port->rate) {
s->tb_credits_per_period = 1;
s->tb_period = 1;
} else {
double tb_rate = ((double) params->tb_rate) / ((double) port->rate);
double d = RTE_SCHED_TB_RATE_CONFIG_ERR;
rte_approx(tb_rate, d, &s->tb_credits_per_period, &s->tb_period);
}
s->tb_size = params->tb_size;
s->tb_time = port->time;
s->tb_credits = s->tb_size / 2;
/* Traffic Classes (TCs) */
s->tc_period = rte_sched_time_ms_to_bytes(params->tc_period, port->rate);
for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++) {
s->tc_credits_per_period[i]
= rte_sched_time_ms_to_bytes(params->tc_period,
params->tc_rate[i]);
}
s->tc_time = port->time + s->tc_period;
for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++)
s->tc_credits[i] = s->tc_credits_per_period[i];
#ifdef RTE_SCHED_SUBPORT_TC_OV
/* TC oversubscription */
s->tc_ov_wm_min = port->mtu;
s->tc_ov_wm_max = rte_sched_time_ms_to_bytes(params->tc_period,
port->pipe_tc3_rate_max);
s->tc_ov_wm = s->tc_ov_wm_max;
s->tc_ov_period_id = 0;
s->tc_ov = 0;
s->tc_ov_n = 0;
s->tc_ov_rate = 0;
#endif
rte_sched_port_log_subport_config(port, subport_id);
return 0;
}
int
rte_sched_pipe_config(struct rte_sched_port *port,
uint32_t subport_id,
uint32_t pipe_id,
int32_t pipe_profile)
{
struct rte_sched_subport *s;
struct rte_sched_pipe *p;
struct rte_sched_pipe_profile *params;
uint32_t deactivate, profile, i;
/* Check user parameters */
profile = (uint32_t) pipe_profile;
deactivate = (pipe_profile < 0);
if (port == NULL ||
subport_id >= port->n_subports_per_port ||
pipe_id >= port->n_pipes_per_subport ||
(!deactivate && profile >= port->n_pipe_profiles))
return -1;
/* Check that subport configuration is valid */
s = port->subport + subport_id;
if (s->tb_period == 0)
return -2;
p = port->pipe + (subport_id * port->n_pipes_per_subport + pipe_id);
/* Handle the case when pipe already has a valid configuration */
if (p->tb_time) {
params = port->pipe_profiles + p->profile;
#ifdef RTE_SCHED_SUBPORT_TC_OV
double subport_tc3_rate = (double) s->tc_credits_per_period[3]
/ (double) s->tc_period;
double pipe_tc3_rate = (double) params->tc_credits_per_period[3]
/ (double) params->tc_period;
uint32_t tc3_ov = s->tc_ov;
/* Unplug pipe from its subport */
s->tc_ov_n -= params->tc_ov_weight;
s->tc_ov_rate -= pipe_tc3_rate;
s->tc_ov = s->tc_ov_rate > subport_tc3_rate;
if (s->tc_ov != tc3_ov) {
RTE_LOG(DEBUG, SCHED,
"Subport %u TC3 oversubscription is OFF (%.4lf >= %.4lf)\n",
subport_id, subport_tc3_rate, s->tc_ov_rate);
}
#endif
/* Reset the pipe */
memset(p, 0, sizeof(struct rte_sched_pipe));
}
if (deactivate)
return 0;
/* Apply the new pipe configuration */
p->profile = profile;
params = port->pipe_profiles + p->profile;
/* Token Bucket (TB) */
p->tb_time = port->time;
p->tb_credits = params->tb_size / 2;
/* Traffic Classes (TCs) */
p->tc_time = port->time + params->tc_period;
for (i = 0; i < RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE; i++)
p->tc_credits[i] = params->tc_credits_per_period[i];
#ifdef RTE_SCHED_SUBPORT_TC_OV
{
/* Subport TC3 oversubscription */
double subport_tc3_rate = (double) s->tc_credits_per_period[3]
/ (double) s->tc_period;
double pipe_tc3_rate = (double) params->tc_credits_per_period[3]
/ (double) params->tc_period;
uint32_t tc3_ov = s->tc_ov;
s->tc_ov_n += params->tc_ov_weight;
s->tc_ov_rate += pipe_tc3_rate;
s->tc_ov = s->tc_ov_rate > subport_tc3_rate;
if (s->tc_ov != tc3_ov) {
RTE_LOG(DEBUG, SCHED,
"Subport %u TC3 oversubscription is ON (%.4lf < %.4lf)\n",
subport_id, subport_tc3_rate, s->tc_ov_rate);
}
p->tc_ov_period_id = s->tc_ov_period_id;
p->tc_ov_credits = s->tc_ov_wm;
}
#endif
return 0;
}
void
rte_sched_port_pkt_write(struct rte_mbuf *pkt,
uint32_t subport, uint32_t pipe, uint32_t traffic_class,
uint32_t queue, enum rte_meter_color color)
{
struct rte_sched_port_hierarchy *sched
= (struct rte_sched_port_hierarchy *) &pkt->hash.sched;
RTE_BUILD_BUG_ON(sizeof(*sched) > sizeof(pkt->hash.sched));
sched->color = (uint32_t) color;
sched->subport = subport;
sched->pipe = pipe;
sched->traffic_class = traffic_class;
sched->queue = queue;
}
void
rte_sched_port_pkt_read_tree_path(const struct rte_mbuf *pkt,
uint32_t *subport, uint32_t *pipe,
uint32_t *traffic_class, uint32_t *queue)
{
const struct rte_sched_port_hierarchy *sched
= (const struct rte_sched_port_hierarchy *) &pkt->hash.sched;
*subport = sched->subport;
*pipe = sched->pipe;
*traffic_class = sched->traffic_class;
*queue = sched->queue;
}
enum rte_meter_color
rte_sched_port_pkt_read_color(const struct rte_mbuf *pkt)
{
const struct rte_sched_port_hierarchy *sched
= (const struct rte_sched_port_hierarchy *) &pkt->hash.sched;
return (enum rte_meter_color) sched->color;
}
int
rte_sched_subport_read_stats(struct rte_sched_port *port,
uint32_t subport_id,
struct rte_sched_subport_stats *stats,
uint32_t *tc_ov)
{
struct rte_sched_subport *s;
/* Check user parameters */
if (port == NULL || subport_id >= port->n_subports_per_port ||
stats == NULL || tc_ov == NULL)
return -1;
s = port->subport + subport_id;
/* Copy subport stats and clear */
memcpy(stats, &s->stats, sizeof(struct rte_sched_subport_stats));
memset(&s->stats, 0, sizeof(struct rte_sched_subport_stats));
/* Subport TC oversubscription status */
*tc_ov = s->tc_ov;
return 0;
}
int
rte_sched_queue_read_stats(struct rte_sched_port *port,
uint32_t queue_id,
struct rte_sched_queue_stats *stats,
uint16_t *qlen)
{
struct rte_sched_queue *q;
struct rte_sched_queue_extra *qe;
/* Check user parameters */
if ((port == NULL) ||
(queue_id >= rte_sched_port_queues_per_port(port)) ||
(stats == NULL) ||
(qlen == NULL)) {
return -1;
}
q = port->queue + queue_id;
qe = port->queue_extra + queue_id;
/* Copy queue stats and clear */
memcpy(stats, &qe->stats, sizeof(struct rte_sched_queue_stats));
memset(&qe->stats, 0, sizeof(struct rte_sched_queue_stats));
/* Queue length */
*qlen = q->qw - q->qr;
return 0;
}
static inline uint32_t
rte_sched_port_qindex(struct rte_sched_port *port, uint32_t subport, uint32_t pipe, uint32_t traffic_class, uint32_t queue)
{
uint32_t result;
result = subport * port->n_pipes_per_subport + pipe;
result = result * RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE + traffic_class;
result = result * RTE_SCHED_QUEUES_PER_TRAFFIC_CLASS + queue;
return result;
}
#ifdef RTE_SCHED_DEBUG
static inline int
rte_sched_port_queue_is_empty(struct rte_sched_port *port, uint32_t qindex)
{
struct rte_sched_queue *queue = port->queue + qindex;
return queue->qr == queue->qw;
}
#endif /* RTE_SCHED_DEBUG */
#ifdef RTE_SCHED_COLLECT_STATS
static inline void
rte_sched_port_update_subport_stats(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf *pkt)
{
struct rte_sched_subport *s = port->subport + (qindex / rte_sched_port_queues_per_subport(port));
uint32_t tc_index = (qindex >> 2) & 0x3;
uint32_t pkt_len = pkt->pkt_len;
s->stats.n_pkts_tc[tc_index] += 1;
s->stats.n_bytes_tc[tc_index] += pkt_len;
}
#ifdef RTE_SCHED_RED
static inline void
rte_sched_port_update_subport_stats_on_drop(struct rte_sched_port *port,
uint32_t qindex,
struct rte_mbuf *pkt, uint32_t red)
#else
static inline void
rte_sched_port_update_subport_stats_on_drop(struct rte_sched_port *port,
uint32_t qindex,
struct rte_mbuf *pkt, __rte_unused uint32_t red)
#endif
{
struct rte_sched_subport *s = port->subport + (qindex / rte_sched_port_queues_per_subport(port));
uint32_t tc_index = (qindex >> 2) & 0x3;
uint32_t pkt_len = pkt->pkt_len;
s->stats.n_pkts_tc_dropped[tc_index] += 1;
s->stats.n_bytes_tc_dropped[tc_index] += pkt_len;
#ifdef RTE_SCHED_RED
s->stats.n_pkts_red_dropped[tc_index] += red;
#endif
}
static inline void
rte_sched_port_update_queue_stats(struct rte_sched_port *port, uint32_t qindex, struct rte_mbuf *pkt)
{
struct rte_sched_queue_extra *qe = port->queue_extra + qindex;
uint32_t pkt_len = pkt->pkt_len;
qe->stats.n_pkts += 1;
qe->stats.n_bytes += pkt_len;
}
#ifdef RTE_SCHED_RED
static inline void
rte_sched_port_update_queue_stats_on_drop(struct rte_sched_port *port,
uint32_t qindex,
struct rte_mbuf *pkt, uint32_t red)
#else
static inline void
rte_sched_port_update_queue_stats_on_drop(struct rte_sched_port *port,
uint32_t qindex,
struct rte_mbuf *pkt, __rte_unused uint32_t red)
#endif
{
struct rte_sched_queue_extra *qe = port->queue_extra + qindex;
uint32_t pkt_len = pkt->pkt_len;
qe->stats.n_pkts_dropped += 1;
qe->stats.n_bytes_dropped += pkt_len;
#ifdef RTE_SCHED_RED
qe->stats.n_pkts_red_dropped += red;
#endif
}
#endif /* RTE_SCHED_COLLECT_STATS */
#ifdef RTE_SCHED_RED
static inline int
rte_sched_port_red_drop(struct rte_sched_port *port, struct rte_mbuf *pkt, uint32_t qindex, uint16_t qlen)
{
struct rte_sched_queue_extra *qe;
struct rte_red_config *red_cfg;
struct rte_red *red;
uint32_t tc_index;
enum rte_meter_color color;
tc_index = (qindex >> 2) & 0x3;
color = rte_sched_port_pkt_read_color(pkt);
red_cfg = &port->red_config[tc_index][color];
if ((red_cfg->min_th | red_cfg->max_th) == 0)
return 0;
qe = port->queue_extra + qindex;
red = &qe->red;
return rte_red_enqueue(red_cfg, red, qlen, port->time);
}
static inline void
rte_sched_port_set_queue_empty_timestamp(struct rte_sched_port *port, uint32_t qindex)
{
struct rte_sched_queue_extra *qe = port->queue_extra + qindex;
struct rte_red *red = &qe->red;
rte_red_mark_queue_empty(red, port->time);
}
#else
#define rte_sched_port_red_drop(port, pkt, qindex, qlen) 0
#define rte_sched_port_set_queue_empty_timestamp(port, qindex)
#endif /* RTE_SCHED_RED */
#ifdef RTE_SCHED_DEBUG
static inline void
debug_check_queue_slab(struct rte_sched_port *port, uint32_t bmp_pos,
uint64_t bmp_slab)
{
uint64_t mask;
uint32_t i, panic;
if (bmp_slab == 0)
rte_panic("Empty slab at position %u\n", bmp_pos);
panic = 0;
for (i = 0, mask = 1; i < 64; i++, mask <<= 1) {
if (mask & bmp_slab) {
if (rte_sched_port_queue_is_empty(port, bmp_pos + i)) {
printf("Queue %u (slab offset %u) is empty\n", bmp_pos + i, i);
panic = 1;
}
}
}
if (panic)
rte_panic("Empty queues in slab 0x%" PRIx64 "starting at position %u\n",
bmp_slab, bmp_pos);
}
#endif /* RTE_SCHED_DEBUG */
static inline uint32_t
rte_sched_port_enqueue_qptrs_prefetch0(struct rte_sched_port *port,
struct rte_mbuf *pkt)
{
struct rte_sched_queue *q;
#ifdef RTE_SCHED_COLLECT_STATS
struct rte_sched_queue_extra *qe;
#endif
uint32_t subport, pipe, traffic_class, queue, qindex;
rte_sched_port_pkt_read_tree_path(pkt, &subport, &pipe, &traffic_class, &queue);
qindex = rte_sched_port_qindex(port, subport, pipe, traffic_class, queue);
q = port->queue + qindex;
rte_prefetch0(q);
#ifdef RTE_SCHED_COLLECT_STATS
qe = port->queue_extra + qindex;
rte_prefetch0(qe);
#endif
return qindex;
}
static inline void
rte_sched_port_enqueue_qwa_prefetch0(struct rte_sched_port *port,
uint32_t qindex, struct rte_mbuf **qbase)
{
struct rte_sched_queue *q;
struct rte_mbuf **q_qw;
uint16_t qsize;
q = port->queue + qindex;
qsize = rte_sched_port_qsize(port, qindex);
q_qw = qbase + (q->qw & (qsize - 1));
rte_prefetch0(q_qw);
rte_bitmap_prefetch0(port->bmp, qindex);
}
static inline int
rte_sched_port_enqueue_qwa(struct rte_sched_port *port, uint32_t qindex,
struct rte_mbuf **qbase, struct rte_mbuf *pkt)
{
struct rte_sched_queue *q;
uint16_t qsize;
uint16_t qlen;
q = port->queue + qindex;
qsize = rte_sched_port_qsize(port, qindex);
qlen = q->qw - q->qr;
/* Drop the packet (and update drop stats) when queue is full */
if (unlikely(rte_sched_port_red_drop(port, pkt, qindex, qlen) ||
(qlen >= qsize))) {
rte_pktmbuf_free(pkt);
#ifdef RTE_SCHED_COLLECT_STATS
rte_sched_port_update_subport_stats_on_drop(port, qindex, pkt,
qlen < qsize);
rte_sched_port_update_queue_stats_on_drop(port, qindex, pkt,
qlen < qsize);
#endif
return 0;
}
/* Enqueue packet */
qbase[q->qw & (qsize - 1)] = pkt;
q->qw++;
/* Activate queue in the port bitmap */
rte_bitmap_set(port->bmp, qindex);
/* Statistics */
#ifdef RTE_SCHED_COLLECT_STATS
rte_sched_port_update_subport_stats(port, qindex, pkt);
rte_sched_port_update_queue_stats(port, qindex, pkt);
#endif
return 1;
}
/*
* The enqueue function implements a 4-level pipeline with each stage
* processing two different packets. The purpose of using a pipeline
* is to hide the latency of prefetching the data structures. The
* naming convention is presented in the diagram below:
*
* p00 _______ p10 _______ p20 _______ p30 _______
* ----->| |----->| |----->| |----->| |----->
* | 0 | | 1 | | 2 | | 3 |
* ----->|_______|----->|_______|----->|_______|----->|_______|----->
* p01 p11 p21 p31
*
*/
int
rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts,
uint32_t n_pkts)
{
struct rte_mbuf *pkt00, *pkt01, *pkt10, *pkt11, *pkt20, *pkt21,
*pkt30, *pkt31, *pkt_last;
struct rte_mbuf **q00_base, **q01_base, **q10_base, **q11_base,
**q20_base, **q21_base, **q30_base, **q31_base, **q_last_base;
uint32_t q00, q01, q10, q11, q20, q21, q30, q31, q_last;
uint32_t r00, r01, r10, r11, r20, r21, r30, r31, r_last;
uint32_t result, i;
result = 0;
/*
* Less then 6 input packets available, which is not enough to
* feed the pipeline
*/
if (unlikely(n_pkts < 6)) {
struct rte_mbuf **q_base[5];
uint32_t q[5];
/* Prefetch the mbuf structure of each packet */
for (i = 0; i < n_pkts; i++)
rte_prefetch0(pkts[i]);
/* Prefetch the queue structure for each queue */
for (i = 0; i < n_pkts; i++)
q[i] = rte_sched_port_enqueue_qptrs_prefetch0(port,
pkts[i]);
/* Prefetch the write pointer location of each queue */
for (i = 0; i < n_pkts; i++) {
q_base[i] = rte_sched_port_qbase(port, q[i]);
rte_sched_port_enqueue_qwa_prefetch0(port, q[i],
q_base[i]);
}
/* Write each packet to its queue */
for (i = 0; i < n_pkts; i++)
result += rte_sched_port_enqueue_qwa(port, q[i],
q_base[i], pkts[i]);
return result;
}
/* Feed the first 3 stages of the pipeline (6 packets needed) */
pkt20 = pkts[0];
pkt21 = pkts[1];
rte_prefetch0(pkt20);
rte_prefetch0(pkt21);
pkt10 = pkts[2];
pkt11 = pkts[3];
rte_prefetch0(pkt10);
rte_prefetch0(pkt11);
q20 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt20);
q21 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt21);
pkt00 = pkts[4];
pkt01 = pkts[5];
rte_prefetch0(pkt00);
rte_prefetch0(pkt01);
q10 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt10);
q11 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt11);
q20_base = rte_sched_port_qbase(port, q20);
q21_base = rte_sched_port_qbase(port, q21);
rte_sched_port_enqueue_qwa_prefetch0(port, q20, q20_base);
rte_sched_port_enqueue_qwa_prefetch0(port, q21, q21_base);
/* Run the pipeline */
for (i = 6; i < (n_pkts & (~1)); i += 2) {
/* Propagate stage inputs */
pkt30 = pkt20;
pkt31 = pkt21;
pkt20 = pkt10;
pkt21 = pkt11;
pkt10 = pkt00;
pkt11 = pkt01;
q30 = q20;
q31 = q21;
q20 = q10;
q21 = q11;
q30_base = q20_base;
q31_base = q21_base;
/* Stage 0: Get packets in */
pkt00 = pkts[i];
pkt01 = pkts[i + 1];
rte_prefetch0(pkt00);
rte_prefetch0(pkt01);
/* Stage 1: Prefetch queue structure storing queue pointers */
q10 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt10);
q11 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt11);
/* Stage 2: Prefetch queue write location */
q20_base = rte_sched_port_qbase(port, q20);
q21_base = rte_sched_port_qbase(port, q21);
rte_sched_port_enqueue_qwa_prefetch0(port, q20, q20_base);
rte_sched_port_enqueue_qwa_prefetch0(port, q21, q21_base);
/* Stage 3: Write packet to queue and activate queue */
r30 = rte_sched_port_enqueue_qwa(port, q30, q30_base, pkt30);
r31 = rte_sched_port_enqueue_qwa(port, q31, q31_base, pkt31);
result += r30 + r31;
}
/*
* Drain the pipeline (exactly 6 packets).
* Handle the last packet in the case
* of an odd number of input packets.
*/
pkt_last = pkts[n_pkts - 1];
rte_prefetch0(pkt_last);
q00 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt00);
q01 = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt01);
q10_base = rte_sched_port_qbase(port, q10);
q11_base = rte_sched_port_qbase(port, q11);
rte_sched_port_enqueue_qwa_prefetch0(port, q10, q10_base);
rte_sched_port_enqueue_qwa_prefetch0(port, q11, q11_base);
r20 = rte_sched_port_enqueue_qwa(port, q20, q20_base, pkt20);
r21 = rte_sched_port_enqueue_qwa(port, q21, q21_base, pkt21);
result += r20 + r21;
q_last = rte_sched_port_enqueue_qptrs_prefetch0(port, pkt_last);
q00_base = rte_sched_port_qbase(port, q00);
q01_base = rte_sched_port_qbase(port, q01);
rte_sched_port_enqueue_qwa_prefetch0(port, q00, q00_base);
rte_sched_port_enqueue_qwa_prefetch0(port, q01, q01_base);
r10 = rte_sched_port_enqueue_qwa(port, q10, q10_base, pkt10);
r11 = rte_sched_port_enqueue_qwa(port, q11, q11_base, pkt11);
result += r10 + r11;
q_last_base = rte_sched_port_qbase(port, q_last);
rte_sched_port_enqueue_qwa_prefetch0(port, q_last, q_last_base);
r00 = rte_sched_port_enqueue_qwa(port, q00, q00_base, pkt00);
r01 = rte_sched_port_enqueue_qwa(port, q01, q01_base, pkt01);
result += r00 + r01;
if (n_pkts & 1) {
r_last = rte_sched_port_enqueue_qwa(port, q_last, q_last_base, pkt_last);
result += r_last;
}
return result;
}
#ifndef RTE_SCHED_SUBPORT_TC_OV
static inline void
grinder_credits_update(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
struct rte_sched_subport *subport = grinder->subport;
struct rte_sched_pipe *pipe = grinder->pipe;
struct rte_sched_pipe_profile *params = grinder->pipe_params;
uint64_t n_periods;
/* Subport TB */
n_periods = (port->time - subport->tb_time) / subport->tb_period;
subport->tb_credits += n_periods * subport->tb_credits_per_period;
subport->tb_credits = rte_sched_min_val_2_u32(subport->tb_credits, subport->tb_size);
subport->tb_time += n_periods * subport->tb_period;
/* Pipe TB */
n_periods = (port->time - pipe->tb_time) / params->tb_period;
pipe->tb_credits += n_periods * params->tb_credits_per_period;
pipe->tb_credits = rte_sched_min_val_2_u32(pipe->tb_credits, params->tb_size);
pipe->tb_time += n_periods * params->tb_period;
/* Subport TCs */
if (unlikely(port->time >= subport->tc_time)) {
subport->tc_credits[0] = subport->tc_credits_per_period[0];
subport->tc_credits[1] = subport->tc_credits_per_period[1];
subport->tc_credits[2] = subport->tc_credits_per_period[2];
subport->tc_credits[3] = subport->tc_credits_per_period[3];
subport->tc_time = port->time + subport->tc_period;
}
/* Pipe TCs */
if (unlikely(port->time >= pipe->tc_time)) {
pipe->tc_credits[0] = params->tc_credits_per_period[0];
pipe->tc_credits[1] = params->tc_credits_per_period[1];
pipe->tc_credits[2] = params->tc_credits_per_period[2];
pipe->tc_credits[3] = params->tc_credits_per_period[3];
pipe->tc_time = port->time + params->tc_period;
}
}
#else
static inline uint32_t
grinder_tc_ov_credits_update(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
struct rte_sched_subport *subport = grinder->subport;
uint32_t tc_ov_consumption[RTE_SCHED_TRAFFIC_CLASSES_PER_PIPE];
uint32_t tc_ov_consumption_max;
uint32_t tc_ov_wm = subport->tc_ov_wm;
if (subport->tc_ov == 0)
return subport->tc_ov_wm_max;
tc_ov_consumption[0] = subport->tc_credits_per_period[0] - subport->tc_credits[0];
tc_ov_consumption[1] = subport->tc_credits_per_period[1] - subport->tc_credits[1];
tc_ov_consumption[2] = subport->tc_credits_per_period[2] - subport->tc_credits[2];
tc_ov_consumption[3] = subport->tc_credits_per_period[3] - subport->tc_credits[3];
tc_ov_consumption_max = subport->tc_credits_per_period[3] -
(tc_ov_consumption[0] + tc_ov_consumption[1] + tc_ov_consumption[2]);
if (tc_ov_consumption[3] > (tc_ov_consumption_max - port->mtu)) {
tc_ov_wm -= tc_ov_wm >> 7;
if (tc_ov_wm < subport->tc_ov_wm_min)
tc_ov_wm = subport->tc_ov_wm_min;
return tc_ov_wm;
}
tc_ov_wm += (tc_ov_wm >> 7) + 1;
if (tc_ov_wm > subport->tc_ov_wm_max)
tc_ov_wm = subport->tc_ov_wm_max;
return tc_ov_wm;
}
static inline void
grinder_credits_update(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
struct rte_sched_subport *subport = grinder->subport;
struct rte_sched_pipe *pipe = grinder->pipe;
struct rte_sched_pipe_profile *params = grinder->pipe_params;
uint64_t n_periods;
/* Subport TB */
n_periods = (port->time - subport->tb_time) / subport->tb_period;
subport->tb_credits += n_periods * subport->tb_credits_per_period;
subport->tb_credits = rte_sched_min_val_2_u32(subport->tb_credits, subport->tb_size);
subport->tb_time += n_periods * subport->tb_period;
/* Pipe TB */
n_periods = (port->time - pipe->tb_time) / params->tb_period;
pipe->tb_credits += n_periods * params->tb_credits_per_period;
pipe->tb_credits = rte_sched_min_val_2_u32(pipe->tb_credits, params->tb_size);
pipe->tb_time += n_periods * params->tb_period;
/* Subport TCs */
if (unlikely(port->time >= subport->tc_time)) {
subport->tc_ov_wm = grinder_tc_ov_credits_update(port, pos);
subport->tc_credits[0] = subport->tc_credits_per_period[0];
subport->tc_credits[1] = subport->tc_credits_per_period[1];
subport->tc_credits[2] = subport->tc_credits_per_period[2];
subport->tc_credits[3] = subport->tc_credits_per_period[3];
subport->tc_time = port->time + subport->tc_period;
subport->tc_ov_period_id++;
}
/* Pipe TCs */
if (unlikely(port->time >= pipe->tc_time)) {
pipe->tc_credits[0] = params->tc_credits_per_period[0];
pipe->tc_credits[1] = params->tc_credits_per_period[1];
pipe->tc_credits[2] = params->tc_credits_per_period[2];
pipe->tc_credits[3] = params->tc_credits_per_period[3];
pipe->tc_time = port->time + params->tc_period;
}
/* Pipe TCs - Oversubscription */
if (unlikely(pipe->tc_ov_period_id != subport->tc_ov_period_id)) {
pipe->tc_ov_credits = subport->tc_ov_wm * params->tc_ov_weight;
pipe->tc_ov_period_id = subport->tc_ov_period_id;
}
}
#endif /* RTE_SCHED_TS_CREDITS_UPDATE, RTE_SCHED_SUBPORT_TC_OV */
#ifndef RTE_SCHED_SUBPORT_TC_OV
static inline int
grinder_credits_check(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
struct rte_sched_subport *subport = grinder->subport;
struct rte_sched_pipe *pipe = grinder->pipe;
struct rte_mbuf *pkt = grinder->pkt;
uint32_t tc_index = grinder->tc_index;
uint32_t pkt_len = pkt->pkt_len + port->frame_overhead;
uint32_t subport_tb_credits = subport->tb_credits;
uint32_t subport_tc_credits = subport->tc_credits[tc_index];
uint32_t pipe_tb_credits = pipe->tb_credits;
uint32_t pipe_tc_credits = pipe->tc_credits[tc_index];
int enough_credits;
/* Check queue credits */
enough_credits = (pkt_len <= subport_tb_credits) &&
(pkt_len <= subport_tc_credits) &&
(pkt_len <= pipe_tb_credits) &&
(pkt_len <= pipe_tc_credits);
if (!enough_credits)
return 0;
/* Update port credits */
subport->tb_credits -= pkt_len;
subport->tc_credits[tc_index] -= pkt_len;
pipe->tb_credits -= pkt_len;
pipe->tc_credits[tc_index] -= pkt_len;
return 1;
}
#else
static inline int
grinder_credits_check(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
struct rte_sched_subport *subport = grinder->subport;
struct rte_sched_pipe *pipe = grinder->pipe;
struct rte_mbuf *pkt = grinder->pkt;
uint32_t tc_index = grinder->tc_index;
uint32_t pkt_len = pkt->pkt_len + port->frame_overhead;
uint32_t subport_tb_credits = subport->tb_credits;
uint32_t subport_tc_credits = subport->tc_credits[tc_index];
uint32_t pipe_tb_credits = pipe->tb_credits;
uint32_t pipe_tc_credits = pipe->tc_credits[tc_index];
uint32_t pipe_tc_ov_mask1[] = {UINT32_MAX, UINT32_MAX, UINT32_MAX, pipe->tc_ov_credits};
uint32_t pipe_tc_ov_mask2[] = {0, 0, 0, UINT32_MAX};
uint32_t pipe_tc_ov_credits = pipe_tc_ov_mask1[tc_index];
int enough_credits;
/* Check pipe and subport credits */
enough_credits = (pkt_len <= subport_tb_credits) &&
(pkt_len <= subport_tc_credits) &&
(pkt_len <= pipe_tb_credits) &&
(pkt_len <= pipe_tc_credits) &&
(pkt_len <= pipe_tc_ov_credits);
if (!enough_credits)
return 0;
/* Update pipe and subport credits */
subport->tb_credits -= pkt_len;
subport->tc_credits[tc_index] -= pkt_len;
pipe->tb_credits -= pkt_len;
pipe->tc_credits[tc_index] -= pkt_len;
pipe->tc_ov_credits -= pipe_tc_ov_mask2[tc_index] & pkt_len;
return 1;
}
#endif /* RTE_SCHED_SUBPORT_TC_OV */
static inline int
grinder_schedule(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
struct rte_sched_queue *queue = grinder->queue[grinder->qpos];
struct rte_mbuf *pkt = grinder->pkt;
uint32_t pkt_len = pkt->pkt_len + port->frame_overhead;
if (!grinder_credits_check(port, pos))
return 0;
/* Advance port time */
port->time += pkt_len;
/* Send packet */
port->pkts_out[port->n_pkts_out++] = pkt;
queue->qr++;
grinder->wrr_tokens[grinder->qpos] += pkt_len * grinder->wrr_cost[grinder->qpos];
if (queue->qr == queue->qw) {
uint32_t qindex = grinder->qindex[grinder->qpos];
rte_bitmap_clear(port->bmp, qindex);
grinder->qmask &= ~(1 << grinder->qpos);
grinder->wrr_mask[grinder->qpos] = 0;
rte_sched_port_set_queue_empty_timestamp(port, qindex);
}
/* Reset pipe loop detection */
port->pipe_loop = RTE_SCHED_PIPE_INVALID;
grinder->productive = 1;
return 1;
}
#ifdef SCHED_VECTOR_SSE4
static inline int
grinder_pipe_exists(struct rte_sched_port *port, uint32_t base_pipe)
{
__m128i index = _mm_set1_epi32(base_pipe);
__m128i pipes = _mm_load_si128((__m128i *)port->grinder_base_bmp_pos);
__m128i res = _mm_cmpeq_epi32(pipes, index);
pipes = _mm_load_si128((__m128i *)(port->grinder_base_bmp_pos + 4));
pipes = _mm_cmpeq_epi32(pipes, index);
res = _mm_or_si128(res, pipes);
if (_mm_testz_si128(res, res))
return 0;
return 1;
}
#elif defined(SCHED_VECTOR_NEON)
static inline int
grinder_pipe_exists(struct rte_sched_port *port, uint32_t base_pipe)
{
uint32x4_t index, pipes;
uint32_t *pos = (uint32_t *)port->grinder_base_bmp_pos;
index = vmovq_n_u32(base_pipe);
pipes = vld1q_u32(pos);
if (!vminvq_u32(veorq_u32(pipes, index)))
return 1;
pipes = vld1q_u32(pos + 4);
if (!vminvq_u32(veorq_u32(pipes, index)))
return 1;
return 0;
}
#else
static inline int
grinder_pipe_exists(struct rte_sched_port *port, uint32_t base_pipe)
{
uint32_t i;
for (i = 0; i < RTE_SCHED_PORT_N_GRINDERS; i++) {
if (port->grinder_base_bmp_pos[i] == base_pipe)
return 1;
}
return 0;
}
#endif /* RTE_SCHED_OPTIMIZATIONS */
static inline void
grinder_pcache_populate(struct rte_sched_port *port, uint32_t pos, uint32_t bmp_pos, uint64_t bmp_slab)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
uint16_t w[4];
grinder->pcache_w = 0;
grinder->pcache_r = 0;
w[0] = (uint16_t) bmp_slab;
w[1] = (uint16_t) (bmp_slab >> 16);
w[2] = (uint16_t) (bmp_slab >> 32);
w[3] = (uint16_t) (bmp_slab >> 48);
grinder->pcache_qmask[grinder->pcache_w] = w[0];
grinder->pcache_qindex[grinder->pcache_w] = bmp_pos;
grinder->pcache_w += (w[0] != 0);
grinder->pcache_qmask[grinder->pcache_w] = w[1];
grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 16;
grinder->pcache_w += (w[1] != 0);
grinder->pcache_qmask[grinder->pcache_w] = w[2];
grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 32;
grinder->pcache_w += (w[2] != 0);
grinder->pcache_qmask[grinder->pcache_w] = w[3];
grinder->pcache_qindex[grinder->pcache_w] = bmp_pos + 48;
grinder->pcache_w += (w[3] != 0);
}
static inline void
grinder_tccache_populate(struct rte_sched_port *port, uint32_t pos, uint32_t qindex, uint16_t qmask)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
uint8_t b[4];
grinder->tccache_w = 0;
grinder->tccache_r = 0;
b[0] = (uint8_t) (qmask & 0xF);
b[1] = (uint8_t) ((qmask >> 4) & 0xF);
b[2] = (uint8_t) ((qmask >> 8) & 0xF);
b[3] = (uint8_t) ((qmask >> 12) & 0xF);
grinder->tccache_qmask[grinder->tccache_w] = b[0];
grinder->tccache_qindex[grinder->tccache_w] = qindex;
grinder->tccache_w += (b[0] != 0);
grinder->tccache_qmask[grinder->tccache_w] = b[1];
grinder->tccache_qindex[grinder->tccache_w] = qindex + 4;
grinder->tccache_w += (b[1] != 0);
grinder->tccache_qmask[grinder->tccache_w] = b[2];
grinder->tccache_qindex[grinder->tccache_w] = qindex + 8;
grinder->tccache_w += (b[2] != 0);
grinder->tccache_qmask[grinder->tccache_w] = b[3];
grinder->tccache_qindex[grinder->tccache_w] = qindex + 12;
grinder->tccache_w += (b[3] != 0);
}
static inline int
grinder_next_tc(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
struct rte_mbuf **qbase;
uint32_t qindex;
uint16_t qsize;
if (grinder->tccache_r == grinder->tccache_w)
return 0;
qindex = grinder->tccache_qindex[grinder->tccache_r];
qbase = rte_sched_port_qbase(port, qindex);
qsize = rte_sched_port_qsize(port, qindex);
grinder->tc_index = (qindex >> 2) & 0x3;
grinder->qmask = grinder->tccache_qmask[grinder->tccache_r];
grinder->qsize = qsize;
grinder->qindex[0] = qindex;
grinder->qindex[1] = qindex + 1;
grinder->qindex[2] = qindex + 2;
grinder->qindex[3] = qindex + 3;
grinder->queue[0] = port->queue + qindex;
grinder->queue[1] = port->queue + qindex + 1;
grinder->queue[2] = port->queue + qindex + 2;
grinder->queue[3] = port->queue + qindex + 3;
grinder->qbase[0] = qbase;
grinder->qbase[1] = qbase + qsize;
grinder->qbase[2] = qbase + 2 * qsize;
grinder->qbase[3] = qbase + 3 * qsize;
grinder->tccache_r++;
return 1;
}
static inline int
grinder_next_pipe(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
uint32_t pipe_qindex;
uint16_t pipe_qmask;
if (grinder->pcache_r < grinder->pcache_w) {
pipe_qmask = grinder->pcache_qmask[grinder->pcache_r];
pipe_qindex = grinder->pcache_qindex[grinder->pcache_r];
grinder->pcache_r++;
} else {
uint64_t bmp_slab = 0;
uint32_t bmp_pos = 0;
/* Get another non-empty pipe group */
if (unlikely(rte_bitmap_scan(port->bmp, &bmp_pos, &bmp_slab) <= 0))
return 0;
#ifdef RTE_SCHED_DEBUG
debug_check_queue_slab(port, bmp_pos, bmp_slab);
#endif
/* Return if pipe group already in one of the other grinders */
port->grinder_base_bmp_pos[pos] = RTE_SCHED_BMP_POS_INVALID;
if (unlikely(grinder_pipe_exists(port, bmp_pos)))
return 0;
port->grinder_base_bmp_pos[pos] = bmp_pos;
/* Install new pipe group into grinder's pipe cache */
grinder_pcache_populate(port, pos, bmp_pos, bmp_slab);
pipe_qmask = grinder->pcache_qmask[0];
pipe_qindex = grinder->pcache_qindex[0];
grinder->pcache_r = 1;
}
/* Install new pipe in the grinder */
grinder->pindex = pipe_qindex >> 4;
grinder->subport = port->subport + (grinder->pindex / port->n_pipes_per_subport);
grinder->pipe = port->pipe + grinder->pindex;
grinder->pipe_params = NULL; /* to be set after the pipe structure is prefetched */
grinder->productive = 0;
grinder_tccache_populate(port, pos, pipe_qindex, pipe_qmask);
grinder_next_tc(port, pos);
/* Check for pipe exhaustion */
if (grinder->pindex == port->pipe_loop) {
port->pipe_exhaustion = 1;
port->pipe_loop = RTE_SCHED_PIPE_INVALID;
}
return 1;
}
static inline void
grinder_wrr_load(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
struct rte_sched_pipe *pipe = grinder->pipe;
struct rte_sched_pipe_profile *pipe_params = grinder->pipe_params;
uint32_t tc_index = grinder->tc_index;
uint32_t qmask = grinder->qmask;
uint32_t qindex;
qindex = tc_index * 4;
grinder->wrr_tokens[0] = ((uint16_t) pipe->wrr_tokens[qindex]) << RTE_SCHED_WRR_SHIFT;
grinder->wrr_tokens[1] = ((uint16_t) pipe->wrr_tokens[qindex + 1]) << RTE_SCHED_WRR_SHIFT;
grinder->wrr_tokens[2] = ((uint16_t) pipe->wrr_tokens[qindex + 2]) << RTE_SCHED_WRR_SHIFT;
grinder->wrr_tokens[3] = ((uint16_t) pipe->wrr_tokens[qindex + 3]) << RTE_SCHED_WRR_SHIFT;
grinder->wrr_mask[0] = (qmask & 0x1) * 0xFFFF;
grinder->wrr_mask[1] = ((qmask >> 1) & 0x1) * 0xFFFF;
grinder->wrr_mask[2] = ((qmask >> 2) & 0x1) * 0xFFFF;
grinder->wrr_mask[3] = ((qmask >> 3) & 0x1) * 0xFFFF;
grinder->wrr_cost[0] = pipe_params->wrr_cost[qindex];
grinder->wrr_cost[1] = pipe_params->wrr_cost[qindex + 1];
grinder->wrr_cost[2] = pipe_params->wrr_cost[qindex + 2];
grinder->wrr_cost[3] = pipe_params->wrr_cost[qindex + 3];
}
static inline void
grinder_wrr_store(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
struct rte_sched_pipe *pipe = grinder->pipe;
uint32_t tc_index = grinder->tc_index;
uint32_t qindex;
qindex = tc_index * 4;
pipe->wrr_tokens[qindex] = (grinder->wrr_tokens[0] & grinder->wrr_mask[0])
>> RTE_SCHED_WRR_SHIFT;
pipe->wrr_tokens[qindex + 1] = (grinder->wrr_tokens[1] & grinder->wrr_mask[1])
>> RTE_SCHED_WRR_SHIFT;
pipe->wrr_tokens[qindex + 2] = (grinder->wrr_tokens[2] & grinder->wrr_mask[2])
>> RTE_SCHED_WRR_SHIFT;
pipe->wrr_tokens[qindex + 3] = (grinder->wrr_tokens[3] & grinder->wrr_mask[3])
>> RTE_SCHED_WRR_SHIFT;
}
static inline void
grinder_wrr(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
uint16_t wrr_tokens_min;
grinder->wrr_tokens[0] |= ~grinder->wrr_mask[0];
grinder->wrr_tokens[1] |= ~grinder->wrr_mask[1];
grinder->wrr_tokens[2] |= ~grinder->wrr_mask[2];
grinder->wrr_tokens[3] |= ~grinder->wrr_mask[3];
grinder->qpos = rte_min_pos_4_u16(grinder->wrr_tokens);
wrr_tokens_min = grinder->wrr_tokens[grinder->qpos];
grinder->wrr_tokens[0] -= wrr_tokens_min;
grinder->wrr_tokens[1] -= wrr_tokens_min;
grinder->wrr_tokens[2] -= wrr_tokens_min;
grinder->wrr_tokens[3] -= wrr_tokens_min;
}
#define grinder_evict(port, pos)
static inline void
grinder_prefetch_pipe(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
rte_prefetch0(grinder->pipe);
rte_prefetch0(grinder->queue[0]);
}
static inline void
grinder_prefetch_tc_queue_arrays(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
uint16_t qsize, qr[4];
qsize = grinder->qsize;
qr[0] = grinder->queue[0]->qr & (qsize - 1);
qr[1] = grinder->queue[1]->qr & (qsize - 1);
qr[2] = grinder->queue[2]->qr & (qsize - 1);
qr[3] = grinder->queue[3]->qr & (qsize - 1);
rte_prefetch0(grinder->qbase[0] + qr[0]);
rte_prefetch0(grinder->qbase[1] + qr[1]);
grinder_wrr_load(port, pos);
grinder_wrr(port, pos);
rte_prefetch0(grinder->qbase[2] + qr[2]);
rte_prefetch0(grinder->qbase[3] + qr[3]);
}
static inline void
grinder_prefetch_mbuf(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
uint32_t qpos = grinder->qpos;
struct rte_mbuf **qbase = grinder->qbase[qpos];
uint16_t qsize = grinder->qsize;
uint16_t qr = grinder->queue[qpos]->qr & (qsize - 1);
grinder->pkt = qbase[qr];
rte_prefetch0(grinder->pkt);
if (unlikely((qr & 0x7) == 7)) {
uint16_t qr_next = (grinder->queue[qpos]->qr + 1) & (qsize - 1);
rte_prefetch0(qbase + qr_next);
}
}
static inline uint32_t
grinder_handle(struct rte_sched_port *port, uint32_t pos)
{
struct rte_sched_grinder *grinder = port->grinder + pos;
switch (grinder->state) {
case e_GRINDER_PREFETCH_PIPE:
{
if (grinder_next_pipe(port, pos)) {
grinder_prefetch_pipe(port, pos);
port->busy_grinders++;
grinder->state = e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS;
return 0;
}
return 0;
}
case e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS:
{
struct rte_sched_pipe *pipe = grinder->pipe;
grinder->pipe_params = port->pipe_profiles + pipe->profile;
grinder_prefetch_tc_queue_arrays(port, pos);
grinder_credits_update(port, pos);
grinder->state = e_GRINDER_PREFETCH_MBUF;
return 0;
}
case e_GRINDER_PREFETCH_MBUF:
{
grinder_prefetch_mbuf(port, pos);
grinder->state = e_GRINDER_READ_MBUF;
return 0;
}
case e_GRINDER_READ_MBUF:
{
uint32_t result = 0;
result = grinder_schedule(port, pos);
/* Look for next packet within the same TC */
if (result && grinder->qmask) {
grinder_wrr(port, pos);
grinder_prefetch_mbuf(port, pos);
return 1;
}
grinder_wrr_store(port, pos);
/* Look for another active TC within same pipe */
if (grinder_next_tc(port, pos)) {
grinder_prefetch_tc_queue_arrays(port, pos);
grinder->state = e_GRINDER_PREFETCH_MBUF;
return result;
}
if (grinder->productive == 0 &&
port->pipe_loop == RTE_SCHED_PIPE_INVALID)
port->pipe_loop = grinder->pindex;
grinder_evict(port, pos);
/* Look for another active pipe */
if (grinder_next_pipe(port, pos)) {
grinder_prefetch_pipe(port, pos);
grinder->state = e_GRINDER_PREFETCH_TC_QUEUE_ARRAYS;
return result;
}
/* No active pipe found */
port->busy_grinders--;
grinder->state = e_GRINDER_PREFETCH_PIPE;
return result;
}
default:
rte_panic("Algorithmic error (invalid state)\n");
return 0;
}
}
static inline void
rte_sched_port_time_resync(struct rte_sched_port *port)
{
uint64_t cycles = rte_get_tsc_cycles();
uint64_t cycles_diff = cycles - port->time_cpu_cycles;
uint64_t bytes_diff;
/* Compute elapsed time in bytes */
bytes_diff = rte_reciprocal_divide(cycles_diff << RTE_SCHED_TIME_SHIFT,
port->inv_cycles_per_byte);
/* Advance port time */
port->time_cpu_cycles = cycles;
port->time_cpu_bytes += bytes_diff;
if (port->time < port->time_cpu_bytes)
port->time = port->time_cpu_bytes;
/* Reset pipe loop detection */
port->pipe_loop = RTE_SCHED_PIPE_INVALID;
}
static inline int
rte_sched_port_exceptions(struct rte_sched_port *port, int second_pass)
{
int exceptions;
/* Check if any exception flag is set */
exceptions = (second_pass && port->busy_grinders == 0) ||
(port->pipe_exhaustion == 1);
/* Clear exception flags */
port->pipe_exhaustion = 0;
return exceptions;
}
int
rte_sched_port_dequeue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts)
{
uint32_t i, count;
port->pkts_out = pkts;
port->n_pkts_out = 0;
rte_sched_port_time_resync(port);
/* Take each queue in the grinder one step further */
for (i = 0, count = 0; ; i++) {
count += grinder_handle(port, i & (RTE_SCHED_PORT_N_GRINDERS - 1));
if ((count == n_pkts) ||
rte_sched_port_exceptions(port, i >= RTE_SCHED_PORT_N_GRINDERS)) {
break;
}
}
return count;
}