numam-dpdk/app/test-pmd/noisy_vnf.c
Phil Yang 059a231080 app/testpmd: enable burst stats for noisy VNF mode
Add burst stats for noisy VNF mode.

Fixes: 3c156061b9 ("app/testpmd: add noisy neighbour forwarding mode")
Cc: stable@dpdk.org

Signed-off-by: Dharmik Thakkar <dharmik.thakkar@arm.com>
Signed-off-by: Phil Yang <phil.yang@arm.com>
Reviewed-by: Honnappa Nagarahalli <honnappa.nagarahalli@arm.com>
Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2020-09-18 18:55:08 +02:00

284 lines
6.9 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Red Hat Corp.
*/
#include <stdarg.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <errno.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_memcpy.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ethdev.h>
#include <rte_flow.h>
#include <rte_malloc.h>
#include "testpmd.h"
struct noisy_config {
struct rte_ring *f;
uint64_t prev_time;
char *vnf_mem;
bool do_buffering;
bool do_flush;
bool do_sim;
};
struct noisy_config *noisy_cfg[RTE_MAX_ETHPORTS];
static inline void
do_write(char *vnf_mem)
{
uint64_t i = rte_rand();
uint64_t w = rte_rand();
vnf_mem[i % ((noisy_lkup_mem_sz * 1024 * 1024) /
RTE_CACHE_LINE_SIZE)] = w;
}
static inline void
do_read(char *vnf_mem)
{
uint64_t i = rte_rand();
uint64_t r;
r = vnf_mem[i % ((noisy_lkup_mem_sz * 1024 * 1024) /
RTE_CACHE_LINE_SIZE)];
r++;
}
static inline void
do_readwrite(char *vnf_mem)
{
do_read(vnf_mem);
do_write(vnf_mem);
}
/*
* Simulate route lookups as defined by commandline parameters
*/
static void
sim_memory_lookups(struct noisy_config *ncf, uint16_t nb_pkts)
{
uint16_t i, j;
if (!ncf->do_sim)
return;
for (i = 0; i < nb_pkts; i++) {
for (j = 0; j < noisy_lkup_num_writes; j++)
do_write(ncf->vnf_mem);
for (j = 0; j < noisy_lkup_num_reads; j++)
do_read(ncf->vnf_mem);
for (j = 0; j < noisy_lkup_num_reads_writes; j++)
do_readwrite(ncf->vnf_mem);
}
}
static uint16_t
do_retry(uint16_t nb_rx, uint16_t nb_tx, struct rte_mbuf **pkts,
struct fwd_stream *fs)
{
uint32_t retry = 0;
while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
rte_delay_us(burst_tx_delay_time);
nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
&pkts[nb_tx], nb_rx - nb_tx);
}
return nb_tx;
}
static uint32_t
drop_pkts(struct rte_mbuf **pkts, uint16_t nb_rx, uint16_t nb_tx)
{
if (nb_tx < nb_rx) {
do {
rte_pktmbuf_free(pkts[nb_tx]);
} while (++nb_tx < nb_rx);
}
return nb_rx - nb_tx;
}
/*
* Forwarding of packets in noisy VNF mode. Forward packets but perform
* memory operations first as specified on cmdline.
*
* Depending on which commandline parameters are specified we have
* different cases to handle:
*
* 1. No FIFO size was given, so we don't do buffering of incoming
* packets. This case is pretty much what iofwd does but in this case
* we also do simulation of memory accesses (depending on which
* parameters were specified for it).
* 2. User wants do buffer packets in a FIFO and sent out overflowing
* packets.
* 3. User wants a FIFO and specifies a time in ms to flush all packets
* out of the FIFO
* 4. Cases 2 and 3 combined
*/
static void
pkt_burst_noisy_vnf(struct fwd_stream *fs)
{
const uint64_t freq_khz = rte_get_timer_hz() / 1000;
struct noisy_config *ncf = noisy_cfg[fs->rx_port];
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
struct rte_mbuf *tmp_pkts[MAX_PKT_BURST];
uint16_t nb_deqd = 0;
uint16_t nb_rx = 0;
uint16_t nb_tx = 0;
uint16_t nb_enqd;
unsigned int fifo_free;
uint64_t delta_ms;
bool needs_flush = false;
uint64_t now;
nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue,
pkts_burst, nb_pkt_per_burst);
inc_rx_burst_stats(fs, nb_rx);
if (unlikely(nb_rx == 0))
goto flush;
fs->rx_packets += nb_rx;
if (!ncf->do_buffering) {
sim_memory_lookups(ncf, nb_rx);
nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
pkts_burst, nb_rx);
if (unlikely(nb_tx < nb_rx) && fs->retry_enabled)
nb_tx += do_retry(nb_rx, nb_tx, pkts_burst, fs);
inc_tx_burst_stats(fs, nb_tx);
fs->tx_packets += nb_tx;
fs->fwd_dropped += drop_pkts(pkts_burst, nb_rx, nb_tx);
return;
}
fifo_free = rte_ring_free_count(ncf->f);
if (fifo_free >= nb_rx) {
nb_enqd = rte_ring_enqueue_burst(ncf->f,
(void **) pkts_burst, nb_rx, NULL);
if (nb_enqd < nb_rx)
fs->fwd_dropped += drop_pkts(pkts_burst,
nb_rx, nb_enqd);
} else {
nb_deqd = rte_ring_dequeue_burst(ncf->f,
(void **) tmp_pkts, nb_rx, NULL);
nb_enqd = rte_ring_enqueue_burst(ncf->f,
(void **) pkts_burst, nb_deqd, NULL);
if (nb_deqd > 0) {
nb_tx = rte_eth_tx_burst(fs->tx_port,
fs->tx_queue, tmp_pkts,
nb_deqd);
if (unlikely(nb_tx < nb_rx) && fs->retry_enabled)
nb_tx += do_retry(nb_rx, nb_tx, tmp_pkts, fs);
inc_tx_burst_stats(fs, nb_tx);
fs->fwd_dropped += drop_pkts(tmp_pkts, nb_deqd, nb_tx);
}
}
sim_memory_lookups(ncf, nb_enqd);
flush:
if (ncf->do_flush) {
if (!ncf->prev_time)
now = ncf->prev_time = rte_get_timer_cycles();
else
now = rte_get_timer_cycles();
delta_ms = (now - ncf->prev_time) / freq_khz;
needs_flush = delta_ms >= noisy_tx_sw_buf_flush_time &&
noisy_tx_sw_buf_flush_time > 0 && !nb_tx;
}
while (needs_flush && !rte_ring_empty(ncf->f)) {
unsigned int sent;
nb_deqd = rte_ring_dequeue_burst(ncf->f, (void **)tmp_pkts,
MAX_PKT_BURST, NULL);
sent = rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
tmp_pkts, nb_deqd);
if (unlikely(sent < nb_deqd) && fs->retry_enabled)
nb_tx += do_retry(nb_rx, nb_tx, tmp_pkts, fs);
inc_tx_burst_stats(fs, nb_tx);
fs->fwd_dropped += drop_pkts(tmp_pkts, nb_deqd, sent);
ncf->prev_time = rte_get_timer_cycles();
}
}
#define NOISY_STRSIZE 256
#define NOISY_RING "noisy_ring_%d\n"
static void
noisy_fwd_end(portid_t pi)
{
rte_ring_free(noisy_cfg[pi]->f);
rte_free(noisy_cfg[pi]->vnf_mem);
rte_free(noisy_cfg[pi]);
}
static void
noisy_fwd_begin(portid_t pi)
{
struct noisy_config *n;
char name[NOISY_STRSIZE];
noisy_cfg[pi] = rte_zmalloc("testpmd noisy fifo and timers",
sizeof(struct noisy_config),
RTE_CACHE_LINE_SIZE);
if (noisy_cfg[pi] == NULL) {
rte_exit(EXIT_FAILURE,
"rte_zmalloc(%d) struct noisy_config) failed\n",
(int) pi);
}
n = noisy_cfg[pi];
n->do_buffering = noisy_tx_sw_bufsz > 0;
n->do_sim = noisy_lkup_num_writes + noisy_lkup_num_reads +
noisy_lkup_num_reads_writes;
n->do_flush = noisy_tx_sw_buf_flush_time > 0;
if (n->do_buffering) {
snprintf(name, NOISY_STRSIZE, NOISY_RING, pi);
n->f = rte_ring_create(name, noisy_tx_sw_bufsz,
rte_socket_id(), 0);
if (!n->f)
rte_exit(EXIT_FAILURE,
"rte_ring_create(%d), size %d) failed\n",
(int) pi,
noisy_tx_sw_bufsz);
}
if (noisy_lkup_mem_sz > 0) {
n->vnf_mem = (char *) rte_zmalloc("vnf sim memory",
noisy_lkup_mem_sz * 1024 * 1024,
RTE_CACHE_LINE_SIZE);
if (!n->vnf_mem)
rte_exit(EXIT_FAILURE,
"rte_zmalloc(%" PRIu64 ") for vnf memory) failed\n",
noisy_lkup_mem_sz);
} else if (n->do_sim) {
rte_exit(EXIT_FAILURE,
"--noisy-lkup-memory-size must be > 0\n");
}
}
struct fwd_engine noisy_vnf_engine = {
.fwd_mode_name = "noisy",
.port_fwd_begin = noisy_fwd_begin,
.port_fwd_end = noisy_fwd_end,
.packet_fwd = pkt_burst_noisy_vnf,
};