numam-dpdk/lib/eal/include/rte_tailq.h
William Tu f1f6ebc0ea eal: remove sys/queue.h from public headers
Currently there are some public headers that include 'sys/queue.h', which
is not POSIX, but usually provided by the Linux/BSD system library.
(Not in POSIX.1, POSIX.1-2001, or POSIX.1-2008. Present on the BSDs.)
The file is missing on Windows. During the Windows build, DPDK uses a
bundled copy, so building a DPDK library works fine.  But when OVS or other
applications use DPDK as a library, because some DPDK public headers
include 'sys/queue.h', on Windows, it triggers an error due to no such
file.

One solution is to install the 'lib/eal/windows/include/sys/queue.h' into
Windows environment, such as [1]. However, this means DPDK exports the
functionalities of 'sys/queue.h' into the environment, which might cause
symbols, macros, headers clashing with other applications.

The patch fixes it by removing the "#include <sys/queue.h>" from
DPDK public headers, so programs including DPDK headers don't depend
on the system to provide 'sys/queue.h'. When these public headers use
macros such as TAILQ_xxx, we replace it by the ones with RTE_ prefix.
For Windows, we copy the definitions from <sys/queue.h> to rte_os.h
in Windows EAL. Note that these RTE_ macros are compatible with
<sys/queue.h>, both at the level of API (to use with <sys/queue.h>
macros in C files) and ABI (to avoid breaking it).

Additionally, the TAILQ_FOREACH_SAFE is not part of <sys/queue.h>,
the patch replaces it with RTE_TAILQ_FOREACH_SAFE.

[1] http://mails.dpdk.org/archives/dev/2021-August/216304.html

Suggested-by: Nick Connolly <nick.connolly@mayadata.io>
Suggested-by: Dmitry Kozlyuk <dmitry.kozliuk@gmail.com>
Signed-off-by: William Tu <u9012063@gmail.com>
Acked-by: Dmitry Kozlyuk <dmitry.kozliuk@gmail.com>
Acked-by: Narcisa Vasile <navasile@linux.microsoft.com>
2021-10-01 13:09:43 +02:00

138 lines
3.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef _RTE_TAILQ_H_
#define _RTE_TAILQ_H_
/**
* @file
* Here defines rte_tailq APIs for only internal use
*
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <stdio.h>
#include <rte_debug.h>
/** dummy structure type used by the rte_tailq APIs */
struct rte_tailq_entry {
RTE_TAILQ_ENTRY(rte_tailq_entry) next; /**< Pointer entries for a tailq list */
void *data; /**< Pointer to the data referenced by this tailq entry */
};
/** dummy */
RTE_TAILQ_HEAD(rte_tailq_entry_head, rte_tailq_entry);
#define RTE_TAILQ_NAMESIZE 32
/**
* The structure defining a tailq header entry for storing
* in the rte_config structure in shared memory. Each tailq
* is identified by name.
* Any library storing a set of objects e.g. rings, mempools, hash-tables,
* is recommended to use an entry here, so as to make it easy for
* a multi-process app to find already-created elements in shared memory.
*/
struct rte_tailq_head {
struct rte_tailq_entry_head tailq_head; /**< NOTE: must be first element */
char name[RTE_TAILQ_NAMESIZE];
};
struct rte_tailq_elem {
/**
* Reference to head in shared mem, updated at init time by
* rte_eal_tailqs_init()
*/
struct rte_tailq_head *head;
RTE_TAILQ_ENTRY(rte_tailq_elem) next;
const char name[RTE_TAILQ_NAMESIZE];
};
/**
* Return the first tailq entry cast to the right struct.
*/
#define RTE_TAILQ_CAST(tailq_entry, struct_name) \
(struct struct_name *)&(tailq_entry)->tailq_head
/**
* Utility macro to make looking up a tailqueue for a particular struct easier.
*
* @param name
* The name of tailq
*
* @param struct_name
* The name of the list type we are using. (Generally this is the same as the
* first parameter passed to TAILQ_HEAD macro)
*
* @return
* The return value from rte_eal_tailq_lookup, typecast to the appropriate
* structure pointer type.
* NULL on error, since the tailq_head is the first
* element in the rte_tailq_head structure.
*/
#define RTE_TAILQ_LOOKUP(name, struct_name) \
RTE_TAILQ_CAST(rte_eal_tailq_lookup(name), struct_name)
/**
* Dump tail queues to a file.
*
* @param f
* A pointer to a file for output
*/
void rte_dump_tailq(FILE *f);
/**
* Lookup for a tail queue.
*
* Get a pointer to a tail queue header of a tail
* queue identified by the name given as an argument.
* Note: this function is not multi-thread safe, and should only be called from
* a single thread at a time
*
* @param name
* The name of the queue.
* @return
* A pointer to the tail queue head structure.
*/
struct rte_tailq_head *rte_eal_tailq_lookup(const char *name);
/**
* Register a tail queue.
*
* Register a tail queue from shared memory.
* This function is mainly used by EAL_REGISTER_TAILQ macro which is used to
* register tailq from the different dpdk libraries. Since this macro is a
* constructor, the function has no access to dpdk shared memory, so the
* registered tailq can not be used before call to rte_eal_init() which calls
* rte_eal_tailqs_init().
*
* @param t
* The tailq element which contains the name of the tailq you want to
* create (/retrieve when in secondary process).
* @return
* 0 on success or -1 in case of an error.
*/
int rte_eal_tailq_register(struct rte_tailq_elem *t);
#define EAL_REGISTER_TAILQ(t) \
RTE_INIT(tailqinitfn_ ##t) \
{ \
if (rte_eal_tailq_register(&t) < 0) \
rte_panic("Cannot initialize tailq: %s\n", t.name); \
}
/* This macro permits both remove and free var within the loop safely.*/
#define RTE_TAILQ_FOREACH_SAFE(var, head, field, tvar) \
for ((var) = RTE_TAILQ_FIRST((head)); \
(var) && ((tvar) = RTE_TAILQ_NEXT((var), field), 1); \
(var) = (tvar))
#ifdef __cplusplus
}
#endif
#endif /* _RTE_TAILQ_H_ */