Sarosh Arif ce6b8c3154 examples: fix port mask parsing failure handling
Giving invalid or zero portmask as command line option to
these applications will have an unexpected response.
The reason behind this is that the return value of function
that parses portmask is stored in a variable whose datatype is
unsigned int, hence returning -1 in case of zero or
invalid portmask causes an unexpected behaviour.
If we return 0 instead of -1 this issue can be resolved.
The program already contains the functionality to print
"invalid portmask" and program usage if zero is returned.

Signed-off-by: Sarosh Arif <sarosh.arif@emumba.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
2020-07-30 23:24:40 +02:00

1574 lines
41 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2017 Intel Corporation
*/
#include <arpa/inet.h>
#include <getopt.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/virtio_net.h>
#include <linux/virtio_ring.h>
#include <signal.h>
#include <stdint.h>
#include <sys/eventfd.h>
#include <sys/param.h>
#include <unistd.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_log.h>
#include <rte_string_fns.h>
#include <rte_malloc.h>
#include <rte_vhost.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_pause.h>
#include "main.h"
#ifndef MAX_QUEUES
#define MAX_QUEUES 128
#endif
/* the maximum number of external ports supported */
#define MAX_SUP_PORTS 1
#define MBUF_CACHE_SIZE 128
#define MBUF_DATA_SIZE RTE_MBUF_DEFAULT_BUF_SIZE
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
#define BURST_RX_WAIT_US 15 /* Defines how long we wait between retries on RX */
#define BURST_RX_RETRIES 4 /* Number of retries on RX. */
#define JUMBO_FRAME_MAX_SIZE 0x2600
/* State of virtio device. */
#define DEVICE_MAC_LEARNING 0
#define DEVICE_RX 1
#define DEVICE_SAFE_REMOVE 2
/* Configurable number of RX/TX ring descriptors */
#define RTE_TEST_RX_DESC_DEFAULT 1024
#define RTE_TEST_TX_DESC_DEFAULT 512
#define INVALID_PORT_ID 0xFF
/* Maximum long option length for option parsing. */
#define MAX_LONG_OPT_SZ 64
/* mask of enabled ports */
static uint32_t enabled_port_mask = 0;
/* Promiscuous mode */
static uint32_t promiscuous;
/* number of devices/queues to support*/
static uint32_t num_queues = 0;
static uint32_t num_devices;
static struct rte_mempool *mbuf_pool;
static int mergeable;
/* Enable VM2VM communications. If this is disabled then the MAC address compare is skipped. */
typedef enum {
VM2VM_DISABLED = 0,
VM2VM_SOFTWARE = 1,
VM2VM_HARDWARE = 2,
VM2VM_LAST
} vm2vm_type;
static vm2vm_type vm2vm_mode = VM2VM_SOFTWARE;
/* Enable stats. */
static uint32_t enable_stats = 0;
/* Enable retries on RX. */
static uint32_t enable_retry = 1;
/* Disable TX checksum offload */
static uint32_t enable_tx_csum;
/* Disable TSO offload */
static uint32_t enable_tso;
static int client_mode;
static int dequeue_zero_copy;
static int builtin_net_driver;
/* Specify timeout (in useconds) between retries on RX. */
static uint32_t burst_rx_delay_time = BURST_RX_WAIT_US;
/* Specify the number of retries on RX. */
static uint32_t burst_rx_retry_num = BURST_RX_RETRIES;
/* Socket file paths. Can be set by user */
static char *socket_files;
static int nb_sockets;
/* empty vmdq configuration structure. Filled in programatically */
static struct rte_eth_conf vmdq_conf_default = {
.rxmode = {
.mq_mode = ETH_MQ_RX_VMDQ_ONLY,
.split_hdr_size = 0,
/*
* VLAN strip is necessary for 1G NIC such as I350,
* this fixes bug of ipv4 forwarding in guest can't
* forward pakets from one virtio dev to another virtio dev.
*/
.offloads = DEV_RX_OFFLOAD_VLAN_STRIP,
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
.offloads = (DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_MULTI_SEGS |
DEV_TX_OFFLOAD_TCP_TSO),
},
.rx_adv_conf = {
/*
* should be overridden separately in code with
* appropriate values
*/
.vmdq_rx_conf = {
.nb_queue_pools = ETH_8_POOLS,
.enable_default_pool = 0,
.default_pool = 0,
.nb_pool_maps = 0,
.pool_map = {{0, 0},},
},
},
};
static unsigned lcore_ids[RTE_MAX_LCORE];
static uint16_t ports[RTE_MAX_ETHPORTS];
static unsigned num_ports = 0; /**< The number of ports specified in command line */
static uint16_t num_pf_queues, num_vmdq_queues;
static uint16_t vmdq_pool_base, vmdq_queue_base;
static uint16_t queues_per_pool;
const uint16_t vlan_tags[] = {
1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007,
1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015,
1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023,
1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031,
1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039,
1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047,
1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055,
1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063,
};
/* ethernet addresses of ports */
static struct rte_ether_addr vmdq_ports_eth_addr[RTE_MAX_ETHPORTS];
static struct vhost_dev_tailq_list vhost_dev_list =
TAILQ_HEAD_INITIALIZER(vhost_dev_list);
static struct lcore_info lcore_info[RTE_MAX_LCORE];
/* Used for queueing bursts of TX packets. */
struct mbuf_table {
unsigned len;
unsigned txq_id;
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
/* TX queue for each data core. */
struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE];
#define MBUF_TABLE_DRAIN_TSC ((rte_get_tsc_hz() + US_PER_S - 1) \
/ US_PER_S * BURST_TX_DRAIN_US)
#define VLAN_HLEN 4
/*
* Builds up the correct configuration for VMDQ VLAN pool map
* according to the pool & queue limits.
*/
static inline int
get_eth_conf(struct rte_eth_conf *eth_conf, uint32_t num_devices)
{
struct rte_eth_vmdq_rx_conf conf;
struct rte_eth_vmdq_rx_conf *def_conf =
&vmdq_conf_default.rx_adv_conf.vmdq_rx_conf;
unsigned i;
memset(&conf, 0, sizeof(conf));
conf.nb_queue_pools = (enum rte_eth_nb_pools)num_devices;
conf.nb_pool_maps = num_devices;
conf.enable_loop_back = def_conf->enable_loop_back;
conf.rx_mode = def_conf->rx_mode;
for (i = 0; i < conf.nb_pool_maps; i++) {
conf.pool_map[i].vlan_id = vlan_tags[ i ];
conf.pool_map[i].pools = (1UL << i);
}
(void)(rte_memcpy(eth_conf, &vmdq_conf_default, sizeof(*eth_conf)));
(void)(rte_memcpy(&eth_conf->rx_adv_conf.vmdq_rx_conf, &conf,
sizeof(eth_conf->rx_adv_conf.vmdq_rx_conf)));
return 0;
}
/*
* Initialises a given port using global settings and with the rx buffers
* coming from the mbuf_pool passed as parameter
*/
static inline int
port_init(uint16_t port)
{
struct rte_eth_dev_info dev_info;
struct rte_eth_conf port_conf;
struct rte_eth_rxconf *rxconf;
struct rte_eth_txconf *txconf;
int16_t rx_rings, tx_rings;
uint16_t rx_ring_size, tx_ring_size;
int retval;
uint16_t q;
/* The max pool number from dev_info will be used to validate the pool number specified in cmd line */
retval = rte_eth_dev_info_get(port, &dev_info);
if (retval != 0) {
RTE_LOG(ERR, VHOST_PORT,
"Error during getting device (port %u) info: %s\n",
port, strerror(-retval));
return retval;
}
rxconf = &dev_info.default_rxconf;
txconf = &dev_info.default_txconf;
rxconf->rx_drop_en = 1;
/*configure the number of supported virtio devices based on VMDQ limits */
num_devices = dev_info.max_vmdq_pools;
rx_ring_size = RTE_TEST_RX_DESC_DEFAULT;
tx_ring_size = RTE_TEST_TX_DESC_DEFAULT;
/*
* When dequeue zero copy is enabled, guest Tx used vring will be
* updated only when corresponding mbuf is freed. Thus, the nb_tx_desc
* (tx_ring_size here) must be small enough so that the driver will
* hit the free threshold easily and free mbufs timely. Otherwise,
* guest Tx vring would be starved.
*/
if (dequeue_zero_copy)
tx_ring_size = 64;
tx_rings = (uint16_t)rte_lcore_count();
/* Get port configuration. */
retval = get_eth_conf(&port_conf, num_devices);
if (retval < 0)
return retval;
/* NIC queues are divided into pf queues and vmdq queues. */
num_pf_queues = dev_info.max_rx_queues - dev_info.vmdq_queue_num;
queues_per_pool = dev_info.vmdq_queue_num / dev_info.max_vmdq_pools;
num_vmdq_queues = num_devices * queues_per_pool;
num_queues = num_pf_queues + num_vmdq_queues;
vmdq_queue_base = dev_info.vmdq_queue_base;
vmdq_pool_base = dev_info.vmdq_pool_base;
printf("pf queue num: %u, configured vmdq pool num: %u, each vmdq pool has %u queues\n",
num_pf_queues, num_devices, queues_per_pool);
if (!rte_eth_dev_is_valid_port(port))
return -1;
rx_rings = (uint16_t)dev_info.max_rx_queues;
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
port_conf.txmode.offloads |=
DEV_TX_OFFLOAD_MBUF_FAST_FREE;
/* Configure ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0) {
RTE_LOG(ERR, VHOST_PORT, "Failed to configure port %u: %s.\n",
port, strerror(-retval));
return retval;
}
retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &rx_ring_size,
&tx_ring_size);
if (retval != 0) {
RTE_LOG(ERR, VHOST_PORT, "Failed to adjust number of descriptors "
"for port %u: %s.\n", port, strerror(-retval));
return retval;
}
if (rx_ring_size > RTE_TEST_RX_DESC_DEFAULT) {
RTE_LOG(ERR, VHOST_PORT, "Mbuf pool has an insufficient size "
"for Rx queues on port %u.\n", port);
return -1;
}
/* Setup the queues. */
rxconf->offloads = port_conf.rxmode.offloads;
for (q = 0; q < rx_rings; q ++) {
retval = rte_eth_rx_queue_setup(port, q, rx_ring_size,
rte_eth_dev_socket_id(port),
rxconf,
mbuf_pool);
if (retval < 0) {
RTE_LOG(ERR, VHOST_PORT,
"Failed to setup rx queue %u of port %u: %s.\n",
q, port, strerror(-retval));
return retval;
}
}
txconf->offloads = port_conf.txmode.offloads;
for (q = 0; q < tx_rings; q ++) {
retval = rte_eth_tx_queue_setup(port, q, tx_ring_size,
rte_eth_dev_socket_id(port),
txconf);
if (retval < 0) {
RTE_LOG(ERR, VHOST_PORT,
"Failed to setup tx queue %u of port %u: %s.\n",
q, port, strerror(-retval));
return retval;
}
}
/* Start the device. */
retval = rte_eth_dev_start(port);
if (retval < 0) {
RTE_LOG(ERR, VHOST_PORT, "Failed to start port %u: %s\n",
port, strerror(-retval));
return retval;
}
if (promiscuous) {
retval = rte_eth_promiscuous_enable(port);
if (retval != 0) {
RTE_LOG(ERR, VHOST_PORT,
"Failed to enable promiscuous mode on port %u: %s\n",
port, rte_strerror(-retval));
return retval;
}
}
retval = rte_eth_macaddr_get(port, &vmdq_ports_eth_addr[port]);
if (retval < 0) {
RTE_LOG(ERR, VHOST_PORT,
"Failed to get MAC address on port %u: %s\n",
port, rte_strerror(-retval));
return retval;
}
RTE_LOG(INFO, VHOST_PORT, "Max virtio devices supported: %u\n", num_devices);
RTE_LOG(INFO, VHOST_PORT, "Port %u MAC: %02"PRIx8" %02"PRIx8" %02"PRIx8
" %02"PRIx8" %02"PRIx8" %02"PRIx8"\n",
port,
vmdq_ports_eth_addr[port].addr_bytes[0],
vmdq_ports_eth_addr[port].addr_bytes[1],
vmdq_ports_eth_addr[port].addr_bytes[2],
vmdq_ports_eth_addr[port].addr_bytes[3],
vmdq_ports_eth_addr[port].addr_bytes[4],
vmdq_ports_eth_addr[port].addr_bytes[5]);
return 0;
}
/*
* Set socket file path.
*/
static int
us_vhost_parse_socket_path(const char *q_arg)
{
char *old;
/* parse number string */
if (strnlen(q_arg, PATH_MAX) == PATH_MAX)
return -1;
old = socket_files;
socket_files = realloc(socket_files, PATH_MAX * (nb_sockets + 1));
if (socket_files == NULL) {
free(old);
return -1;
}
strlcpy(socket_files + nb_sockets * PATH_MAX, q_arg, PATH_MAX);
nb_sockets++;
return 0;
}
/*
* Parse the portmask provided at run time.
*/
static int
parse_portmask(const char *portmask)
{
char *end = NULL;
unsigned long pm;
errno = 0;
/* parse hexadecimal string */
pm = strtoul(portmask, &end, 16);
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0))
return 0;
return pm;
}
/*
* Parse num options at run time.
*/
static int
parse_num_opt(const char *q_arg, uint32_t max_valid_value)
{
char *end = NULL;
unsigned long num;
errno = 0;
/* parse unsigned int string */
num = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0') || (errno != 0))
return -1;
if (num > max_valid_value)
return -1;
return num;
}
/*
* Display usage
*/
static void
us_vhost_usage(const char *prgname)
{
RTE_LOG(INFO, VHOST_CONFIG, "%s [EAL options] -- -p PORTMASK\n"
" --vm2vm [0|1|2]\n"
" --rx_retry [0|1] --mergeable [0|1] --stats [0-N]\n"
" --socket-file <path>\n"
" --nb-devices ND\n"
" -p PORTMASK: Set mask for ports to be used by application\n"
" --vm2vm [0|1|2]: disable/software(default)/hardware vm2vm comms\n"
" --rx-retry [0|1]: disable/enable(default) retries on rx. Enable retry if destintation queue is full\n"
" --rx-retry-delay [0-N]: timeout(in usecond) between retries on RX. This makes effect only if retries on rx enabled\n"
" --rx-retry-num [0-N]: the number of retries on rx. This makes effect only if retries on rx enabled\n"
" --mergeable [0|1]: disable(default)/enable RX mergeable buffers\n"
" --stats [0-N]: 0: Disable stats, N: Time in seconds to print stats\n"
" --socket-file: The path of the socket file.\n"
" --tx-csum [0|1] disable/enable TX checksum offload.\n"
" --tso [0|1] disable/enable TCP segment offload.\n"
" --client register a vhost-user socket as client mode.\n"
" --dequeue-zero-copy enables dequeue zero copy\n",
prgname);
}
/*
* Parse the arguments given in the command line of the application.
*/
static int
us_vhost_parse_args(int argc, char **argv)
{
int opt, ret;
int option_index;
unsigned i;
const char *prgname = argv[0];
static struct option long_option[] = {
{"vm2vm", required_argument, NULL, 0},
{"rx-retry", required_argument, NULL, 0},
{"rx-retry-delay", required_argument, NULL, 0},
{"rx-retry-num", required_argument, NULL, 0},
{"mergeable", required_argument, NULL, 0},
{"stats", required_argument, NULL, 0},
{"socket-file", required_argument, NULL, 0},
{"tx-csum", required_argument, NULL, 0},
{"tso", required_argument, NULL, 0},
{"client", no_argument, &client_mode, 1},
{"dequeue-zero-copy", no_argument, &dequeue_zero_copy, 1},
{"builtin-net-driver", no_argument, &builtin_net_driver, 1},
{NULL, 0, 0, 0},
};
/* Parse command line */
while ((opt = getopt_long(argc, argv, "p:P",
long_option, &option_index)) != EOF) {
switch (opt) {
/* Portmask */
case 'p':
enabled_port_mask = parse_portmask(optarg);
if (enabled_port_mask == 0) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid portmask\n");
us_vhost_usage(prgname);
return -1;
}
break;
case 'P':
promiscuous = 1;
vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.rx_mode =
ETH_VMDQ_ACCEPT_BROADCAST |
ETH_VMDQ_ACCEPT_MULTICAST;
break;
case 0:
/* Enable/disable vm2vm comms. */
if (!strncmp(long_option[option_index].name, "vm2vm",
MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, (VM2VM_LAST - 1));
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for "
"vm2vm [0|1|2]\n");
us_vhost_usage(prgname);
return -1;
} else {
vm2vm_mode = (vm2vm_type)ret;
}
}
/* Enable/disable retries on RX. */
if (!strncmp(long_option[option_index].name, "rx-retry", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry [0|1]\n");
us_vhost_usage(prgname);
return -1;
} else {
enable_retry = ret;
}
}
/* Enable/disable TX checksum offload. */
if (!strncmp(long_option[option_index].name, "tx-csum", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for tx-csum [0|1]\n");
us_vhost_usage(prgname);
return -1;
} else
enable_tx_csum = ret;
}
/* Enable/disable TSO offload. */
if (!strncmp(long_option[option_index].name, "tso", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for tso [0|1]\n");
us_vhost_usage(prgname);
return -1;
} else
enable_tso = ret;
}
/* Specify the retries delay time (in useconds) on RX. */
if (!strncmp(long_option[option_index].name, "rx-retry-delay", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-delay [0-N]\n");
us_vhost_usage(prgname);
return -1;
} else {
burst_rx_delay_time = ret;
}
}
/* Specify the retries number on RX. */
if (!strncmp(long_option[option_index].name, "rx-retry-num", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for rx-retry-num [0-N]\n");
us_vhost_usage(prgname);
return -1;
} else {
burst_rx_retry_num = ret;
}
}
/* Enable/disable RX mergeable buffers. */
if (!strncmp(long_option[option_index].name, "mergeable", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, 1);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG, "Invalid argument for mergeable [0|1]\n");
us_vhost_usage(prgname);
return -1;
} else {
mergeable = !!ret;
if (ret) {
vmdq_conf_default.rxmode.offloads |=
DEV_RX_OFFLOAD_JUMBO_FRAME;
vmdq_conf_default.rxmode.max_rx_pkt_len
= JUMBO_FRAME_MAX_SIZE;
}
}
}
/* Enable/disable stats. */
if (!strncmp(long_option[option_index].name, "stats", MAX_LONG_OPT_SZ)) {
ret = parse_num_opt(optarg, INT32_MAX);
if (ret == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for stats [0..N]\n");
us_vhost_usage(prgname);
return -1;
} else {
enable_stats = ret;
}
}
/* Set socket file path. */
if (!strncmp(long_option[option_index].name,
"socket-file", MAX_LONG_OPT_SZ)) {
if (us_vhost_parse_socket_path(optarg) == -1) {
RTE_LOG(INFO, VHOST_CONFIG,
"Invalid argument for socket name (Max %d characters)\n",
PATH_MAX);
us_vhost_usage(prgname);
return -1;
}
}
break;
/* Invalid option - print options. */
default:
us_vhost_usage(prgname);
return -1;
}
}
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
if (enabled_port_mask & (1 << i))
ports[num_ports++] = i;
}
if ((num_ports == 0) || (num_ports > MAX_SUP_PORTS)) {
RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u,"
"but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS);
return -1;
}
return 0;
}
/*
* Update the global var NUM_PORTS and array PORTS according to system ports number
* and return valid ports number
*/
static unsigned check_ports_num(unsigned nb_ports)
{
unsigned valid_num_ports = num_ports;
unsigned portid;
if (num_ports > nb_ports) {
RTE_LOG(INFO, VHOST_PORT, "\nSpecified port number(%u) exceeds total system port number(%u)\n",
num_ports, nb_ports);
num_ports = nb_ports;
}
for (portid = 0; portid < num_ports; portid ++) {
if (!rte_eth_dev_is_valid_port(ports[portid])) {
RTE_LOG(INFO, VHOST_PORT,
"\nSpecified port ID(%u) is not valid\n",
ports[portid]);
ports[portid] = INVALID_PORT_ID;
valid_num_ports--;
}
}
return valid_num_ports;
}
static __rte_always_inline struct vhost_dev *
find_vhost_dev(struct rte_ether_addr *mac)
{
struct vhost_dev *vdev;
TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
if (vdev->ready == DEVICE_RX &&
rte_is_same_ether_addr(mac, &vdev->mac_address))
return vdev;
}
return NULL;
}
/*
* This function learns the MAC address of the device and registers this along with a
* vlan tag to a VMDQ.
*/
static int
link_vmdq(struct vhost_dev *vdev, struct rte_mbuf *m)
{
struct rte_ether_hdr *pkt_hdr;
int i, ret;
/* Learn MAC address of guest device from packet */
pkt_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
if (find_vhost_dev(&pkt_hdr->s_addr)) {
RTE_LOG(ERR, VHOST_DATA,
"(%d) device is using a registered MAC!\n",
vdev->vid);
return -1;
}
for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
vdev->mac_address.addr_bytes[i] = pkt_hdr->s_addr.addr_bytes[i];
/* vlan_tag currently uses the device_id. */
vdev->vlan_tag = vlan_tags[vdev->vid];
/* Print out VMDQ registration info. */
RTE_LOG(INFO, VHOST_DATA,
"(%d) mac %02x:%02x:%02x:%02x:%02x:%02x and vlan %d registered\n",
vdev->vid,
vdev->mac_address.addr_bytes[0], vdev->mac_address.addr_bytes[1],
vdev->mac_address.addr_bytes[2], vdev->mac_address.addr_bytes[3],
vdev->mac_address.addr_bytes[4], vdev->mac_address.addr_bytes[5],
vdev->vlan_tag);
/* Register the MAC address. */
ret = rte_eth_dev_mac_addr_add(ports[0], &vdev->mac_address,
(uint32_t)vdev->vid + vmdq_pool_base);
if (ret)
RTE_LOG(ERR, VHOST_DATA,
"(%d) failed to add device MAC address to VMDQ\n",
vdev->vid);
rte_eth_dev_set_vlan_strip_on_queue(ports[0], vdev->vmdq_rx_q, 1);
/* Set device as ready for RX. */
vdev->ready = DEVICE_RX;
return 0;
}
/*
* Removes MAC address and vlan tag from VMDQ. Ensures that nothing is adding buffers to the RX
* queue before disabling RX on the device.
*/
static inline void
unlink_vmdq(struct vhost_dev *vdev)
{
unsigned i = 0;
unsigned rx_count;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
if (vdev->ready == DEVICE_RX) {
/*clear MAC and VLAN settings*/
rte_eth_dev_mac_addr_remove(ports[0], &vdev->mac_address);
for (i = 0; i < 6; i++)
vdev->mac_address.addr_bytes[i] = 0;
vdev->vlan_tag = 0;
/*Clear out the receive buffers*/
rx_count = rte_eth_rx_burst(ports[0],
(uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
while (rx_count) {
for (i = 0; i < rx_count; i++)
rte_pktmbuf_free(pkts_burst[i]);
rx_count = rte_eth_rx_burst(ports[0],
(uint16_t)vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
}
vdev->ready = DEVICE_MAC_LEARNING;
}
}
static __rte_always_inline void
virtio_xmit(struct vhost_dev *dst_vdev, struct vhost_dev *src_vdev,
struct rte_mbuf *m)
{
uint16_t ret;
if (builtin_net_driver) {
ret = vs_enqueue_pkts(dst_vdev, VIRTIO_RXQ, &m, 1);
} else {
ret = rte_vhost_enqueue_burst(dst_vdev->vid, VIRTIO_RXQ, &m, 1);
}
if (enable_stats) {
rte_atomic64_inc(&dst_vdev->stats.rx_total_atomic);
rte_atomic64_add(&dst_vdev->stats.rx_atomic, ret);
src_vdev->stats.tx_total++;
src_vdev->stats.tx += ret;
}
}
/*
* Check if the packet destination MAC address is for a local device. If so then put
* the packet on that devices RX queue. If not then return.
*/
static __rte_always_inline int
virtio_tx_local(struct vhost_dev *vdev, struct rte_mbuf *m)
{
struct rte_ether_hdr *pkt_hdr;
struct vhost_dev *dst_vdev;
pkt_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
dst_vdev = find_vhost_dev(&pkt_hdr->d_addr);
if (!dst_vdev)
return -1;
if (vdev->vid == dst_vdev->vid) {
RTE_LOG_DP(DEBUG, VHOST_DATA,
"(%d) TX: src and dst MAC is same. Dropping packet.\n",
vdev->vid);
return 0;
}
RTE_LOG_DP(DEBUG, VHOST_DATA,
"(%d) TX: MAC address is local\n", dst_vdev->vid);
if (unlikely(dst_vdev->remove)) {
RTE_LOG_DP(DEBUG, VHOST_DATA,
"(%d) device is marked for removal\n", dst_vdev->vid);
return 0;
}
virtio_xmit(dst_vdev, vdev, m);
return 0;
}
/*
* Check if the destination MAC of a packet is one local VM,
* and get its vlan tag, and offset if it is.
*/
static __rte_always_inline int
find_local_dest(struct vhost_dev *vdev, struct rte_mbuf *m,
uint32_t *offset, uint16_t *vlan_tag)
{
struct vhost_dev *dst_vdev;
struct rte_ether_hdr *pkt_hdr =
rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
dst_vdev = find_vhost_dev(&pkt_hdr->d_addr);
if (!dst_vdev)
return 0;
if (vdev->vid == dst_vdev->vid) {
RTE_LOG_DP(DEBUG, VHOST_DATA,
"(%d) TX: src and dst MAC is same. Dropping packet.\n",
vdev->vid);
return -1;
}
/*
* HW vlan strip will reduce the packet length
* by minus length of vlan tag, so need restore
* the packet length by plus it.
*/
*offset = VLAN_HLEN;
*vlan_tag = vlan_tags[vdev->vid];
RTE_LOG_DP(DEBUG, VHOST_DATA,
"(%d) TX: pkt to local VM device id: (%d), vlan tag: %u.\n",
vdev->vid, dst_vdev->vid, *vlan_tag);
return 0;
}
static uint16_t
get_psd_sum(void *l3_hdr, uint64_t ol_flags)
{
if (ol_flags & PKT_TX_IPV4)
return rte_ipv4_phdr_cksum(l3_hdr, ol_flags);
else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
return rte_ipv6_phdr_cksum(l3_hdr, ol_flags);
}
static void virtio_tx_offload(struct rte_mbuf *m)
{
void *l3_hdr;
struct rte_ipv4_hdr *ipv4_hdr = NULL;
struct rte_tcp_hdr *tcp_hdr = NULL;
struct rte_ether_hdr *eth_hdr =
rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
l3_hdr = (char *)eth_hdr + m->l2_len;
if (m->ol_flags & PKT_TX_IPV4) {
ipv4_hdr = l3_hdr;
ipv4_hdr->hdr_checksum = 0;
m->ol_flags |= PKT_TX_IP_CKSUM;
}
tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + m->l3_len);
tcp_hdr->cksum = get_psd_sum(l3_hdr, m->ol_flags);
}
static inline void
free_pkts(struct rte_mbuf **pkts, uint16_t n)
{
while (n--)
rte_pktmbuf_free(pkts[n]);
}
static __rte_always_inline void
do_drain_mbuf_table(struct mbuf_table *tx_q)
{
uint16_t count;
count = rte_eth_tx_burst(ports[0], tx_q->txq_id,
tx_q->m_table, tx_q->len);
if (unlikely(count < tx_q->len))
free_pkts(&tx_q->m_table[count], tx_q->len - count);
tx_q->len = 0;
}
/*
* This function routes the TX packet to the correct interface. This
* may be a local device or the physical port.
*/
static __rte_always_inline void
virtio_tx_route(struct vhost_dev *vdev, struct rte_mbuf *m, uint16_t vlan_tag)
{
struct mbuf_table *tx_q;
unsigned offset = 0;
const uint16_t lcore_id = rte_lcore_id();
struct rte_ether_hdr *nh;
nh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
if (unlikely(rte_is_broadcast_ether_addr(&nh->d_addr))) {
struct vhost_dev *vdev2;
TAILQ_FOREACH(vdev2, &vhost_dev_list, global_vdev_entry) {
if (vdev2 != vdev)
virtio_xmit(vdev2, vdev, m);
}
goto queue2nic;
}
/*check if destination is local VM*/
if ((vm2vm_mode == VM2VM_SOFTWARE) && (virtio_tx_local(vdev, m) == 0)) {
rte_pktmbuf_free(m);
return;
}
if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) {
if (unlikely(find_local_dest(vdev, m, &offset,
&vlan_tag) != 0)) {
rte_pktmbuf_free(m);
return;
}
}
RTE_LOG_DP(DEBUG, VHOST_DATA,
"(%d) TX: MAC address is external\n", vdev->vid);
queue2nic:
/*Add packet to the port tx queue*/
tx_q = &lcore_tx_queue[lcore_id];
nh = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
if (unlikely(nh->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))) {
/* Guest has inserted the vlan tag. */
struct rte_vlan_hdr *vh = (struct rte_vlan_hdr *) (nh + 1);
uint16_t vlan_tag_be = rte_cpu_to_be_16(vlan_tag);
if ((vm2vm_mode == VM2VM_HARDWARE) &&
(vh->vlan_tci != vlan_tag_be))
vh->vlan_tci = vlan_tag_be;
} else {
m->ol_flags |= PKT_TX_VLAN_PKT;
/*
* Find the right seg to adjust the data len when offset is
* bigger than tail room size.
*/
if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) {
if (likely(offset <= rte_pktmbuf_tailroom(m)))
m->data_len += offset;
else {
struct rte_mbuf *seg = m;
while ((seg->next != NULL) &&
(offset > rte_pktmbuf_tailroom(seg)))
seg = seg->next;
seg->data_len += offset;
}
m->pkt_len += offset;
}
m->vlan_tci = vlan_tag;
}
if (m->ol_flags & PKT_TX_TCP_SEG)
virtio_tx_offload(m);
tx_q->m_table[tx_q->len++] = m;
if (enable_stats) {
vdev->stats.tx_total++;
vdev->stats.tx++;
}
if (unlikely(tx_q->len == MAX_PKT_BURST))
do_drain_mbuf_table(tx_q);
}
static __rte_always_inline void
drain_mbuf_table(struct mbuf_table *tx_q)
{
static uint64_t prev_tsc;
uint64_t cur_tsc;
if (tx_q->len == 0)
return;
cur_tsc = rte_rdtsc();
if (unlikely(cur_tsc - prev_tsc > MBUF_TABLE_DRAIN_TSC)) {
prev_tsc = cur_tsc;
RTE_LOG_DP(DEBUG, VHOST_DATA,
"TX queue drained after timeout with burst size %u\n",
tx_q->len);
do_drain_mbuf_table(tx_q);
}
}
static __rte_always_inline void
drain_eth_rx(struct vhost_dev *vdev)
{
uint16_t rx_count, enqueue_count;
struct rte_mbuf *pkts[MAX_PKT_BURST];
rx_count = rte_eth_rx_burst(ports[0], vdev->vmdq_rx_q,
pkts, MAX_PKT_BURST);
if (!rx_count)
return;
/*
* When "enable_retry" is set, here we wait and retry when there
* is no enough free slots in the queue to hold @rx_count packets,
* to diminish packet loss.
*/
if (enable_retry &&
unlikely(rx_count > rte_vhost_avail_entries(vdev->vid,
VIRTIO_RXQ))) {
uint32_t retry;
for (retry = 0; retry < burst_rx_retry_num; retry++) {
rte_delay_us(burst_rx_delay_time);
if (rx_count <= rte_vhost_avail_entries(vdev->vid,
VIRTIO_RXQ))
break;
}
}
if (builtin_net_driver) {
enqueue_count = vs_enqueue_pkts(vdev, VIRTIO_RXQ,
pkts, rx_count);
} else {
enqueue_count = rte_vhost_enqueue_burst(vdev->vid, VIRTIO_RXQ,
pkts, rx_count);
}
if (enable_stats) {
rte_atomic64_add(&vdev->stats.rx_total_atomic, rx_count);
rte_atomic64_add(&vdev->stats.rx_atomic, enqueue_count);
}
free_pkts(pkts, rx_count);
}
static __rte_always_inline void
drain_virtio_tx(struct vhost_dev *vdev)
{
struct rte_mbuf *pkts[MAX_PKT_BURST];
uint16_t count;
uint16_t i;
if (builtin_net_driver) {
count = vs_dequeue_pkts(vdev, VIRTIO_TXQ, mbuf_pool,
pkts, MAX_PKT_BURST);
} else {
count = rte_vhost_dequeue_burst(vdev->vid, VIRTIO_TXQ,
mbuf_pool, pkts, MAX_PKT_BURST);
}
/* setup VMDq for the first packet */
if (unlikely(vdev->ready == DEVICE_MAC_LEARNING) && count) {
if (vdev->remove || link_vmdq(vdev, pkts[0]) == -1)
free_pkts(pkts, count);
}
for (i = 0; i < count; ++i)
virtio_tx_route(vdev, pkts[i], vlan_tags[vdev->vid]);
}
/*
* Main function of vhost-switch. It basically does:
*
* for each vhost device {
* - drain_eth_rx()
*
* Which drains the host eth Rx queue linked to the vhost device,
* and deliver all of them to guest virito Rx ring associated with
* this vhost device.
*
* - drain_virtio_tx()
*
* Which drains the guest virtio Tx queue and deliver all of them
* to the target, which could be another vhost device, or the
* physical eth dev. The route is done in function "virtio_tx_route".
* }
*/
static int
switch_worker(void *arg __rte_unused)
{
unsigned i;
unsigned lcore_id = rte_lcore_id();
struct vhost_dev *vdev;
struct mbuf_table *tx_q;
RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started\n", lcore_id);
tx_q = &lcore_tx_queue[lcore_id];
for (i = 0; i < rte_lcore_count(); i++) {
if (lcore_ids[i] == lcore_id) {
tx_q->txq_id = i;
break;
}
}
while(1) {
drain_mbuf_table(tx_q);
/*
* Inform the configuration core that we have exited the
* linked list and that no devices are in use if requested.
*/
if (lcore_info[lcore_id].dev_removal_flag == REQUEST_DEV_REMOVAL)
lcore_info[lcore_id].dev_removal_flag = ACK_DEV_REMOVAL;
/*
* Process vhost devices
*/
TAILQ_FOREACH(vdev, &lcore_info[lcore_id].vdev_list,
lcore_vdev_entry) {
if (unlikely(vdev->remove)) {
unlink_vmdq(vdev);
vdev->ready = DEVICE_SAFE_REMOVE;
continue;
}
if (likely(vdev->ready == DEVICE_RX))
drain_eth_rx(vdev);
if (likely(!vdev->remove))
drain_virtio_tx(vdev);
}
}
return 0;
}
/*
* Remove a device from the specific data core linked list and from the
* main linked list. Synchonization occurs through the use of the
* lcore dev_removal_flag. Device is made volatile here to avoid re-ordering
* of dev->remove=1 which can cause an infinite loop in the rte_pause loop.
*/
static void
destroy_device(int vid)
{
struct vhost_dev *vdev = NULL;
int lcore;
TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
if (vdev->vid == vid)
break;
}
if (!vdev)
return;
/*set the remove flag. */
vdev->remove = 1;
while(vdev->ready != DEVICE_SAFE_REMOVE) {
rte_pause();
}
if (builtin_net_driver)
vs_vhost_net_remove(vdev);
TAILQ_REMOVE(&lcore_info[vdev->coreid].vdev_list, vdev,
lcore_vdev_entry);
TAILQ_REMOVE(&vhost_dev_list, vdev, global_vdev_entry);
/* Set the dev_removal_flag on each lcore. */
RTE_LCORE_FOREACH_SLAVE(lcore)
lcore_info[lcore].dev_removal_flag = REQUEST_DEV_REMOVAL;
/*
* Once each core has set the dev_removal_flag to ACK_DEV_REMOVAL
* we can be sure that they can no longer access the device removed
* from the linked lists and that the devices are no longer in use.
*/
RTE_LCORE_FOREACH_SLAVE(lcore) {
while (lcore_info[lcore].dev_removal_flag != ACK_DEV_REMOVAL)
rte_pause();
}
lcore_info[vdev->coreid].device_num--;
RTE_LOG(INFO, VHOST_DATA,
"(%d) device has been removed from data core\n",
vdev->vid);
rte_free(vdev);
}
/*
* A new device is added to a data core. First the device is added to the main linked list
* and then allocated to a specific data core.
*/
static int
new_device(int vid)
{
int lcore, core_add = 0;
uint32_t device_num_min = num_devices;
struct vhost_dev *vdev;
vdev = rte_zmalloc("vhost device", sizeof(*vdev), RTE_CACHE_LINE_SIZE);
if (vdev == NULL) {
RTE_LOG(INFO, VHOST_DATA,
"(%d) couldn't allocate memory for vhost dev\n",
vid);
return -1;
}
vdev->vid = vid;
if (builtin_net_driver)
vs_vhost_net_setup(vdev);
TAILQ_INSERT_TAIL(&vhost_dev_list, vdev, global_vdev_entry);
vdev->vmdq_rx_q = vid * queues_per_pool + vmdq_queue_base;
/*reset ready flag*/
vdev->ready = DEVICE_MAC_LEARNING;
vdev->remove = 0;
/* Find a suitable lcore to add the device. */
RTE_LCORE_FOREACH_SLAVE(lcore) {
if (lcore_info[lcore].device_num < device_num_min) {
device_num_min = lcore_info[lcore].device_num;
core_add = lcore;
}
}
vdev->coreid = core_add;
TAILQ_INSERT_TAIL(&lcore_info[vdev->coreid].vdev_list, vdev,
lcore_vdev_entry);
lcore_info[vdev->coreid].device_num++;
/* Disable notifications. */
rte_vhost_enable_guest_notification(vid, VIRTIO_RXQ, 0);
rte_vhost_enable_guest_notification(vid, VIRTIO_TXQ, 0);
RTE_LOG(INFO, VHOST_DATA,
"(%d) device has been added to data core %d\n",
vid, vdev->coreid);
return 0;
}
/*
* These callback allow devices to be added to the data core when configuration
* has been fully complete.
*/
static const struct vhost_device_ops virtio_net_device_ops =
{
.new_device = new_device,
.destroy_device = destroy_device,
};
/*
* This is a thread will wake up after a period to print stats if the user has
* enabled them.
*/
static void *
print_stats(__rte_unused void *arg)
{
struct vhost_dev *vdev;
uint64_t tx_dropped, rx_dropped;
uint64_t tx, tx_total, rx, rx_total;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char top_left[] = { 27, '[', '1', ';', '1', 'H','\0' };
while(1) {
sleep(enable_stats);
/* Clear screen and move to top left */
printf("%s%s\n", clr, top_left);
printf("Device statistics =================================\n");
TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
tx_total = vdev->stats.tx_total;
tx = vdev->stats.tx;
tx_dropped = tx_total - tx;
rx_total = rte_atomic64_read(&vdev->stats.rx_total_atomic);
rx = rte_atomic64_read(&vdev->stats.rx_atomic);
rx_dropped = rx_total - rx;
printf("Statistics for device %d\n"
"-----------------------\n"
"TX total: %" PRIu64 "\n"
"TX dropped: %" PRIu64 "\n"
"TX successful: %" PRIu64 "\n"
"RX total: %" PRIu64 "\n"
"RX dropped: %" PRIu64 "\n"
"RX successful: %" PRIu64 "\n",
vdev->vid,
tx_total, tx_dropped, tx,
rx_total, rx_dropped, rx);
}
printf("===================================================\n");
fflush(stdout);
}
return NULL;
}
static void
unregister_drivers(int socket_num)
{
int i, ret;
for (i = 0; i < socket_num; i++) {
ret = rte_vhost_driver_unregister(socket_files + i * PATH_MAX);
if (ret != 0)
RTE_LOG(ERR, VHOST_CONFIG,
"Fail to unregister vhost driver for %s.\n",
socket_files + i * PATH_MAX);
}
}
/* When we receive a INT signal, unregister vhost driver */
static void
sigint_handler(__rte_unused int signum)
{
/* Unregister vhost driver. */
unregister_drivers(nb_sockets);
exit(0);
}
/*
* While creating an mbuf pool, one key thing is to figure out how
* many mbuf entries is enough for our use. FYI, here are some
* guidelines:
*
* - Each rx queue would reserve @nr_rx_desc mbufs at queue setup stage
*
* - For each switch core (A CPU core does the packet switch), we need
* also make some reservation for receiving the packets from virtio
* Tx queue. How many is enough depends on the usage. It's normally
* a simple calculation like following:
*
* MAX_PKT_BURST * max packet size / mbuf size
*
* So, we definitely need allocate more mbufs when TSO is enabled.
*
* - Similarly, for each switching core, we should serve @nr_rx_desc
* mbufs for receiving the packets from physical NIC device.
*
* - We also need make sure, for each switch core, we have allocated
* enough mbufs to fill up the mbuf cache.
*/
static void
create_mbuf_pool(uint16_t nr_port, uint32_t nr_switch_core, uint32_t mbuf_size,
uint32_t nr_queues, uint32_t nr_rx_desc, uint32_t nr_mbuf_cache)
{
uint32_t nr_mbufs;
uint32_t nr_mbufs_per_core;
uint32_t mtu = 1500;
if (mergeable)
mtu = 9000;
if (enable_tso)
mtu = 64 * 1024;
nr_mbufs_per_core = (mtu + mbuf_size) * MAX_PKT_BURST /
(mbuf_size - RTE_PKTMBUF_HEADROOM);
nr_mbufs_per_core += nr_rx_desc;
nr_mbufs_per_core = RTE_MAX(nr_mbufs_per_core, nr_mbuf_cache);
nr_mbufs = nr_queues * nr_rx_desc;
nr_mbufs += nr_mbufs_per_core * nr_switch_core;
nr_mbufs *= nr_port;
mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", nr_mbufs,
nr_mbuf_cache, 0, mbuf_size,
rte_socket_id());
if (mbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
}
/*
* Main function, does initialisation and calls the per-lcore functions.
*/
int
main(int argc, char *argv[])
{
unsigned lcore_id, core_id = 0;
unsigned nb_ports, valid_num_ports;
int ret, i;
uint16_t portid;
static pthread_t tid;
uint64_t flags = 0;
signal(SIGINT, sigint_handler);
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");
argc -= ret;
argv += ret;
/* parse app arguments */
ret = us_vhost_parse_args(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid argument\n");
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
TAILQ_INIT(&lcore_info[lcore_id].vdev_list);
if (rte_lcore_is_enabled(lcore_id))
lcore_ids[core_id++] = lcore_id;
}
if (rte_lcore_count() > RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE,"Not enough cores\n");
/* Get the number of physical ports. */
nb_ports = rte_eth_dev_count_avail();
/*
* Update the global var NUM_PORTS and global array PORTS
* and get value of var VALID_NUM_PORTS according to system ports number
*/
valid_num_ports = check_ports_num(nb_ports);
if ((valid_num_ports == 0) || (valid_num_ports > MAX_SUP_PORTS)) {
RTE_LOG(INFO, VHOST_PORT, "Current enabled port number is %u,"
"but only %u port can be enabled\n",num_ports, MAX_SUP_PORTS);
return -1;
}
/*
* FIXME: here we are trying to allocate mbufs big enough for
* @MAX_QUEUES, but the truth is we're never going to use that
* many queues here. We probably should only do allocation for
* those queues we are going to use.
*/
create_mbuf_pool(valid_num_ports, rte_lcore_count() - 1, MBUF_DATA_SIZE,
MAX_QUEUES, RTE_TEST_RX_DESC_DEFAULT, MBUF_CACHE_SIZE);
if (vm2vm_mode == VM2VM_HARDWARE) {
/* Enable VT loop back to let L2 switch to do it. */
vmdq_conf_default.rx_adv_conf.vmdq_rx_conf.enable_loop_back = 1;
RTE_LOG(DEBUG, VHOST_CONFIG,
"Enable loop back for L2 switch in vmdq.\n");
}
/* initialize all ports */
RTE_ETH_FOREACH_DEV(portid) {
/* skip ports that are not enabled */
if ((enabled_port_mask & (1 << portid)) == 0) {
RTE_LOG(INFO, VHOST_PORT,
"Skipping disabled port %d\n", portid);
continue;
}
if (port_init(portid) != 0)
rte_exit(EXIT_FAILURE,
"Cannot initialize network ports\n");
}
/* Enable stats if the user option is set. */
if (enable_stats) {
ret = rte_ctrl_thread_create(&tid, "print-stats", NULL,
print_stats, NULL);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot create print-stats thread\n");
}
/* Launch all data cores. */
RTE_LCORE_FOREACH_SLAVE(lcore_id)
rte_eal_remote_launch(switch_worker, NULL, lcore_id);
if (client_mode)
flags |= RTE_VHOST_USER_CLIENT;
if (dequeue_zero_copy)
flags |= RTE_VHOST_USER_DEQUEUE_ZERO_COPY;
/* Register vhost user driver to handle vhost messages. */
for (i = 0; i < nb_sockets; i++) {
char *file = socket_files + i * PATH_MAX;
ret = rte_vhost_driver_register(file, flags);
if (ret != 0) {
unregister_drivers(i);
rte_exit(EXIT_FAILURE,
"vhost driver register failure.\n");
}
if (builtin_net_driver)
rte_vhost_driver_set_features(file, VIRTIO_NET_FEATURES);
if (mergeable == 0) {
rte_vhost_driver_disable_features(file,
1ULL << VIRTIO_NET_F_MRG_RXBUF);
}
if (enable_tx_csum == 0) {
rte_vhost_driver_disable_features(file,
1ULL << VIRTIO_NET_F_CSUM);
}
if (enable_tso == 0) {
rte_vhost_driver_disable_features(file,
1ULL << VIRTIO_NET_F_HOST_TSO4);
rte_vhost_driver_disable_features(file,
1ULL << VIRTIO_NET_F_HOST_TSO6);
rte_vhost_driver_disable_features(file,
1ULL << VIRTIO_NET_F_GUEST_TSO4);
rte_vhost_driver_disable_features(file,
1ULL << VIRTIO_NET_F_GUEST_TSO6);
}
if (promiscuous) {
rte_vhost_driver_enable_features(file,
1ULL << VIRTIO_NET_F_CTRL_RX);
}
ret = rte_vhost_driver_callback_register(file,
&virtio_net_device_ops);
if (ret != 0) {
rte_exit(EXIT_FAILURE,
"failed to register vhost driver callbacks.\n");
}
if (rte_vhost_driver_start(file) < 0) {
rte_exit(EXIT_FAILURE,
"failed to start vhost driver.\n");
}
}
RTE_LCORE_FOREACH_SLAVE(lcore_id)
rte_eal_wait_lcore(lcore_id);
return 0;
}