numam-dpdk/drivers/net/fm10k/fm10k_ethdev.c
Wang Xiao W d9623c4fa0 fm10k: enable TSO support
This patch enables fm10k TSO feature for both non-tunneling packet
and tunneling packet.

Signed-off-by: Wang Xiao W <xiao.w.wang@intel.com>
Acked-by: Michael Qiu <michael.qiu@intel.com>
2015-10-29 23:47:44 +01:00

2321 lines
63 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_string_fns.h>
#include <rte_dev.h>
#include <rte_spinlock.h>
#include "fm10k.h"
#include "base/fm10k_api.h"
/* Default delay to acquire mailbox lock */
#define FM10K_MBXLOCK_DELAY_US 20
#define UINT64_LOWER_32BITS_MASK 0x00000000ffffffffULL
/* Max try times to acquire switch status */
#define MAX_QUERY_SWITCH_STATE_TIMES 10
/* Wait interval to get switch status */
#define WAIT_SWITCH_MSG_US 100000
/* Number of chars per uint32 type */
#define CHARS_PER_UINT32 (sizeof(uint32_t))
#define BIT_MASK_PER_UINT32 ((1 << CHARS_PER_UINT32) - 1)
static void fm10k_close_mbx_service(struct fm10k_hw *hw);
static void fm10k_dev_promiscuous_enable(struct rte_eth_dev *dev);
static void fm10k_dev_promiscuous_disable(struct rte_eth_dev *dev);
static void fm10k_dev_allmulticast_enable(struct rte_eth_dev *dev);
static void fm10k_dev_allmulticast_disable(struct rte_eth_dev *dev);
static inline int fm10k_glort_valid(struct fm10k_hw *hw);
static int
fm10k_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on);
static void
fm10k_MAC_filter_set(struct rte_eth_dev *dev, const u8 *mac, bool add);
static void
fm10k_MACVLAN_remove_all(struct rte_eth_dev *dev);
static void fm10k_tx_queue_release(void *queue);
static void fm10k_rx_queue_release(void *queue);
static void
fm10k_mbx_initlock(struct fm10k_hw *hw)
{
rte_spinlock_init(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back));
}
static void
fm10k_mbx_lock(struct fm10k_hw *hw)
{
while (!rte_spinlock_trylock(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back)))
rte_delay_us(FM10K_MBXLOCK_DELAY_US);
}
static void
fm10k_mbx_unlock(struct fm10k_hw *hw)
{
rte_spinlock_unlock(FM10K_DEV_PRIVATE_TO_MBXLOCK(hw->back));
}
/*
* reset queue to initial state, allocate software buffers used when starting
* device.
* return 0 on success
* return -ENOMEM if buffers cannot be allocated
* return -EINVAL if buffers do not satisfy alignment condition
*/
static inline int
rx_queue_reset(struct fm10k_rx_queue *q)
{
uint64_t dma_addr;
int i, diag;
PMD_INIT_FUNC_TRACE();
diag = rte_mempool_get_bulk(q->mp, (void **)q->sw_ring, q->nb_desc);
if (diag != 0)
return -ENOMEM;
for (i = 0; i < q->nb_desc; ++i) {
fm10k_pktmbuf_reset(q->sw_ring[i], q->port_id);
if (!fm10k_addr_alignment_valid(q->sw_ring[i])) {
rte_mempool_put_bulk(q->mp, (void **)q->sw_ring,
q->nb_desc);
return -EINVAL;
}
dma_addr = MBUF_DMA_ADDR_DEFAULT(q->sw_ring[i]);
q->hw_ring[i].q.pkt_addr = dma_addr;
q->hw_ring[i].q.hdr_addr = dma_addr;
}
q->next_dd = 0;
q->next_alloc = 0;
q->next_trigger = q->alloc_thresh - 1;
FM10K_PCI_REG_WRITE(q->tail_ptr, q->nb_desc - 1);
return 0;
}
/*
* clean queue, descriptor rings, free software buffers used when stopping
* device.
*/
static inline void
rx_queue_clean(struct fm10k_rx_queue *q)
{
union fm10k_rx_desc zero = {.q = {0, 0, 0, 0} };
uint32_t i;
PMD_INIT_FUNC_TRACE();
/* zero descriptor rings */
for (i = 0; i < q->nb_desc; ++i)
q->hw_ring[i] = zero;
/* free software buffers */
for (i = 0; i < q->nb_desc; ++i) {
if (q->sw_ring[i]) {
rte_pktmbuf_free_seg(q->sw_ring[i]);
q->sw_ring[i] = NULL;
}
}
}
/*
* free all queue memory used when releasing the queue (i.e. configure)
*/
static inline void
rx_queue_free(struct fm10k_rx_queue *q)
{
PMD_INIT_FUNC_TRACE();
if (q) {
PMD_INIT_LOG(DEBUG, "Freeing rx queue %p", q);
rx_queue_clean(q);
if (q->sw_ring) {
rte_free(q->sw_ring);
q->sw_ring = NULL;
}
rte_free(q);
q = NULL;
}
}
/*
* disable RX queue, wait unitl HW finished necessary flush operation
*/
static inline int
rx_queue_disable(struct fm10k_hw *hw, uint16_t qnum)
{
uint32_t reg, i;
reg = FM10K_READ_REG(hw, FM10K_RXQCTL(qnum));
FM10K_WRITE_REG(hw, FM10K_RXQCTL(qnum),
reg & ~FM10K_RXQCTL_ENABLE);
/* Wait 100us at most */
for (i = 0; i < FM10K_QUEUE_DISABLE_TIMEOUT; i++) {
rte_delay_us(1);
reg = FM10K_READ_REG(hw, FM10K_RXQCTL(qnum));
if (!(reg & FM10K_RXQCTL_ENABLE))
break;
}
if (i == FM10K_QUEUE_DISABLE_TIMEOUT)
return -1;
return 0;
}
/*
* reset queue to initial state, allocate software buffers used when starting
* device
*/
static inline void
tx_queue_reset(struct fm10k_tx_queue *q)
{
PMD_INIT_FUNC_TRACE();
q->last_free = 0;
q->next_free = 0;
q->nb_used = 0;
q->nb_free = q->nb_desc - 1;
fifo_reset(&q->rs_tracker, (q->nb_desc + 1) / q->rs_thresh);
FM10K_PCI_REG_WRITE(q->tail_ptr, 0);
}
/*
* clean queue, descriptor rings, free software buffers used when stopping
* device
*/
static inline void
tx_queue_clean(struct fm10k_tx_queue *q)
{
struct fm10k_tx_desc zero = {0, 0, 0, 0, 0, 0};
uint32_t i;
PMD_INIT_FUNC_TRACE();
/* zero descriptor rings */
for (i = 0; i < q->nb_desc; ++i)
q->hw_ring[i] = zero;
/* free software buffers */
for (i = 0; i < q->nb_desc; ++i) {
if (q->sw_ring[i]) {
rte_pktmbuf_free_seg(q->sw_ring[i]);
q->sw_ring[i] = NULL;
}
}
}
/*
* free all queue memory used when releasing the queue (i.e. configure)
*/
static inline void
tx_queue_free(struct fm10k_tx_queue *q)
{
PMD_INIT_FUNC_TRACE();
if (q) {
PMD_INIT_LOG(DEBUG, "Freeing tx queue %p", q);
tx_queue_clean(q);
if (q->rs_tracker.list) {
rte_free(q->rs_tracker.list);
q->rs_tracker.list = NULL;
}
if (q->sw_ring) {
rte_free(q->sw_ring);
q->sw_ring = NULL;
}
rte_free(q);
q = NULL;
}
}
/*
* disable TX queue, wait unitl HW finished necessary flush operation
*/
static inline int
tx_queue_disable(struct fm10k_hw *hw, uint16_t qnum)
{
uint32_t reg, i;
reg = FM10K_READ_REG(hw, FM10K_TXDCTL(qnum));
FM10K_WRITE_REG(hw, FM10K_TXDCTL(qnum),
reg & ~FM10K_TXDCTL_ENABLE);
/* Wait 100us at most */
for (i = 0; i < FM10K_QUEUE_DISABLE_TIMEOUT; i++) {
rte_delay_us(1);
reg = FM10K_READ_REG(hw, FM10K_TXDCTL(qnum));
if (!(reg & FM10K_TXDCTL_ENABLE))
break;
}
if (i == FM10K_QUEUE_DISABLE_TIMEOUT)
return -1;
return 0;
}
static int
fm10k_dev_configure(struct rte_eth_dev *dev)
{
PMD_INIT_FUNC_TRACE();
if (dev->data->dev_conf.rxmode.hw_strip_crc == 0)
PMD_INIT_LOG(WARNING, "fm10k always strip CRC");
return 0;
}
static void
fm10k_dev_mq_rx_configure(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
uint32_t mrqc, *key, i, reta, j;
uint64_t hf;
#define RSS_KEY_SIZE 40
static uint8_t rss_intel_key[RSS_KEY_SIZE] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
};
if (dev->data->nb_rx_queues == 1 ||
dev_conf->rxmode.mq_mode != ETH_MQ_RX_RSS ||
dev_conf->rx_adv_conf.rss_conf.rss_hf == 0)
return;
/* random key is rss_intel_key (default) or user provided (rss_key) */
if (dev_conf->rx_adv_conf.rss_conf.rss_key == NULL)
key = (uint32_t *)rss_intel_key;
else
key = (uint32_t *)dev_conf->rx_adv_conf.rss_conf.rss_key;
/* Now fill our hash function seeds, 4 bytes at a time */
for (i = 0; i < RSS_KEY_SIZE / sizeof(*key); ++i)
FM10K_WRITE_REG(hw, FM10K_RSSRK(0, i), key[i]);
/*
* Fill in redirection table
* The byte-swap is needed because NIC registers are in
* little-endian order.
*/
reta = 0;
for (i = 0, j = 0; i < FM10K_MAX_RSS_INDICES; i++, j++) {
if (j == dev->data->nb_rx_queues)
j = 0;
reta = (reta << CHAR_BIT) | j;
if ((i & 3) == 3)
FM10K_WRITE_REG(hw, FM10K_RETA(0, i >> 2),
rte_bswap32(reta));
}
/*
* Generate RSS hash based on packet types, TCP/UDP
* port numbers and/or IPv4/v6 src and dst addresses
*/
hf = dev_conf->rx_adv_conf.rss_conf.rss_hf;
mrqc = 0;
mrqc |= (hf & ETH_RSS_IPV4) ? FM10K_MRQC_IPV4 : 0;
mrqc |= (hf & ETH_RSS_IPV6) ? FM10K_MRQC_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_EX) ? FM10K_MRQC_IPV6 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_TCP) ? FM10K_MRQC_TCP_IPV4 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_TCP) ? FM10K_MRQC_TCP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_TCP_EX) ? FM10K_MRQC_TCP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_UDP) ? FM10K_MRQC_UDP_IPV4 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_UDP) ? FM10K_MRQC_UDP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_UDP_EX) ? FM10K_MRQC_UDP_IPV6 : 0;
if (mrqc == 0) {
PMD_INIT_LOG(ERR, "Specified RSS mode 0x%"PRIx64"is not"
"supported", hf);
return;
}
FM10K_WRITE_REG(hw, FM10K_MRQC(0), mrqc);
}
static int
fm10k_dev_tx_init(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int i, ret;
struct fm10k_tx_queue *txq;
uint64_t base_addr;
uint32_t size;
/* Disable TXINT to avoid possible interrupt */
for (i = 0; i < hw->mac.max_queues; i++)
FM10K_WRITE_REG(hw, FM10K_TXINT(i),
3 << FM10K_TXINT_TIMER_SHIFT);
/* Setup TX queue */
for (i = 0; i < dev->data->nb_tx_queues; ++i) {
txq = dev->data->tx_queues[i];
base_addr = txq->hw_ring_phys_addr;
size = txq->nb_desc * sizeof(struct fm10k_tx_desc);
/* disable queue to avoid issues while updating state */
ret = tx_queue_disable(hw, i);
if (ret) {
PMD_INIT_LOG(ERR, "failed to disable queue %d", i);
return -1;
}
/* set location and size for descriptor ring */
FM10K_WRITE_REG(hw, FM10K_TDBAL(i),
base_addr & UINT64_LOWER_32BITS_MASK);
FM10K_WRITE_REG(hw, FM10K_TDBAH(i),
base_addr >> (CHAR_BIT * sizeof(uint32_t)));
FM10K_WRITE_REG(hw, FM10K_TDLEN(i), size);
}
return 0;
}
static int
fm10k_dev_rx_init(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int i, ret;
struct fm10k_rx_queue *rxq;
uint64_t base_addr;
uint32_t size;
uint32_t rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
uint16_t buf_size;
/* Disable RXINT to avoid possible interrupt */
for (i = 0; i < hw->mac.max_queues; i++)
FM10K_WRITE_REG(hw, FM10K_RXINT(i),
3 << FM10K_RXINT_TIMER_SHIFT);
/* Setup RX queues */
for (i = 0; i < dev->data->nb_rx_queues; ++i) {
rxq = dev->data->rx_queues[i];
base_addr = rxq->hw_ring_phys_addr;
size = rxq->nb_desc * sizeof(union fm10k_rx_desc);
/* disable queue to avoid issues while updating state */
ret = rx_queue_disable(hw, i);
if (ret) {
PMD_INIT_LOG(ERR, "failed to disable queue %d", i);
return -1;
}
/* Setup the Base and Length of the Rx Descriptor Ring */
FM10K_WRITE_REG(hw, FM10K_RDBAL(i),
base_addr & UINT64_LOWER_32BITS_MASK);
FM10K_WRITE_REG(hw, FM10K_RDBAH(i),
base_addr >> (CHAR_BIT * sizeof(uint32_t)));
FM10K_WRITE_REG(hw, FM10K_RDLEN(i), size);
/* Configure the Rx buffer size for one buff without split */
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
RTE_PKTMBUF_HEADROOM);
/* As RX buffer is aligned to 512B within mbuf, some bytes are
* reserved for this purpose, and the worst case could be 511B.
* But SRR reg assumes all buffers have the same size. In order
* to fill the gap, we'll have to consider the worst case and
* assume 512B is reserved. If we don't do so, it's possible
* for HW to overwrite data to next mbuf.
*/
buf_size -= FM10K_RX_DATABUF_ALIGN;
FM10K_WRITE_REG(hw, FM10K_SRRCTL(i),
buf_size >> FM10K_SRRCTL_BSIZEPKT_SHIFT);
/* It adds dual VLAN length for supporting dual VLAN */
if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2 * FM10K_VLAN_TAG_SIZE) > buf_size ||
dev->data->dev_conf.rxmode.enable_scatter) {
uint32_t reg;
dev->data->scattered_rx = 1;
dev->rx_pkt_burst = fm10k_recv_scattered_pkts;
reg = FM10K_READ_REG(hw, FM10K_SRRCTL(i));
reg |= FM10K_SRRCTL_BUFFER_CHAINING_EN;
FM10K_WRITE_REG(hw, FM10K_SRRCTL(i), reg);
}
/* Enable drop on empty, it's RO for VF */
if (hw->mac.type == fm10k_mac_pf && rxq->drop_en)
rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
FM10K_WRITE_REG(hw, FM10K_RXDCTL(i), rxdctl);
FM10K_WRITE_FLUSH(hw);
}
/* Configure RSS if applicable */
fm10k_dev_mq_rx_configure(dev);
return 0;
}
static int
fm10k_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int err = -1;
uint32_t reg;
struct fm10k_rx_queue *rxq;
PMD_INIT_FUNC_TRACE();
if (rx_queue_id < dev->data->nb_rx_queues) {
rxq = dev->data->rx_queues[rx_queue_id];
err = rx_queue_reset(rxq);
if (err == -ENOMEM) {
PMD_INIT_LOG(ERR, "Failed to alloc memory : %d", err);
return err;
} else if (err == -EINVAL) {
PMD_INIT_LOG(ERR, "Invalid buffer address alignment :"
" %d", err);
return err;
}
/* Setup the HW Rx Head and Tail Descriptor Pointers
* Note: this must be done AFTER the queue is enabled on real
* hardware, but BEFORE the queue is enabled when using the
* emulation platform. Do it in both places for now and remove
* this comment and the following two register writes when the
* emulation platform is no longer being used.
*/
FM10K_WRITE_REG(hw, FM10K_RDH(rx_queue_id), 0);
FM10K_WRITE_REG(hw, FM10K_RDT(rx_queue_id), rxq->nb_desc - 1);
/* Set PF ownership flag for PF devices */
reg = FM10K_READ_REG(hw, FM10K_RXQCTL(rx_queue_id));
if (hw->mac.type == fm10k_mac_pf)
reg |= FM10K_RXQCTL_PF;
reg |= FM10K_RXQCTL_ENABLE;
/* enable RX queue */
FM10K_WRITE_REG(hw, FM10K_RXQCTL(rx_queue_id), reg);
FM10K_WRITE_FLUSH(hw);
/* Setup the HW Rx Head and Tail Descriptor Pointers
* Note: this must be done AFTER the queue is enabled
*/
FM10K_WRITE_REG(hw, FM10K_RDH(rx_queue_id), 0);
FM10K_WRITE_REG(hw, FM10K_RDT(rx_queue_id), rxq->nb_desc - 1);
}
return err;
}
static int
fm10k_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (rx_queue_id < dev->data->nb_rx_queues) {
/* Disable RX queue */
rx_queue_disable(hw, rx_queue_id);
/* Free mbuf and clean HW ring */
rx_queue_clean(dev->data->rx_queues[rx_queue_id]);
}
return 0;
}
static int
fm10k_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/** @todo - this should be defined in the shared code */
#define FM10K_TXDCTL_WRITE_BACK_MIN_DELAY 0x00010000
uint32_t txdctl = FM10K_TXDCTL_WRITE_BACK_MIN_DELAY;
int err = 0;
PMD_INIT_FUNC_TRACE();
if (tx_queue_id < dev->data->nb_tx_queues) {
tx_queue_reset(dev->data->tx_queues[tx_queue_id]);
/* reset head and tail pointers */
FM10K_WRITE_REG(hw, FM10K_TDH(tx_queue_id), 0);
FM10K_WRITE_REG(hw, FM10K_TDT(tx_queue_id), 0);
/* enable TX queue */
FM10K_WRITE_REG(hw, FM10K_TXDCTL(tx_queue_id),
FM10K_TXDCTL_ENABLE | txdctl);
FM10K_WRITE_FLUSH(hw);
} else
err = -1;
return err;
}
static int
fm10k_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (tx_queue_id < dev->data->nb_tx_queues) {
tx_queue_disable(hw, tx_queue_id);
tx_queue_clean(dev->data->tx_queues[tx_queue_id]);
}
return 0;
}
static inline int fm10k_glort_valid(struct fm10k_hw *hw)
{
return ((hw->mac.dglort_map & FM10K_DGLORTMAP_NONE)
!= FM10K_DGLORTMAP_NONE);
}
static void
fm10k_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int status;
PMD_INIT_FUNC_TRACE();
/* Return if it didn't acquire valid glort range */
if (!fm10k_glort_valid(hw))
return;
fm10k_mbx_lock(hw);
status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
FM10K_XCAST_MODE_PROMISC);
fm10k_mbx_unlock(hw);
if (status != FM10K_SUCCESS)
PMD_INIT_LOG(ERR, "Failed to enable promiscuous mode");
}
static void
fm10k_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint8_t mode;
int status;
PMD_INIT_FUNC_TRACE();
/* Return if it didn't acquire valid glort range */
if (!fm10k_glort_valid(hw))
return;
if (dev->data->all_multicast == 1)
mode = FM10K_XCAST_MODE_ALLMULTI;
else
mode = FM10K_XCAST_MODE_NONE;
fm10k_mbx_lock(hw);
status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
mode);
fm10k_mbx_unlock(hw);
if (status != FM10K_SUCCESS)
PMD_INIT_LOG(ERR, "Failed to disable promiscuous mode");
}
static void
fm10k_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int status;
PMD_INIT_FUNC_TRACE();
/* Return if it didn't acquire valid glort range */
if (!fm10k_glort_valid(hw))
return;
/* If promiscuous mode is enabled, it doesn't make sense to enable
* allmulticast and disable promiscuous since fm10k only can select
* one of the modes.
*/
if (dev->data->promiscuous) {
PMD_INIT_LOG(INFO, "Promiscuous mode is enabled, "\
"needn't enable allmulticast");
return;
}
fm10k_mbx_lock(hw);
status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
FM10K_XCAST_MODE_ALLMULTI);
fm10k_mbx_unlock(hw);
if (status != FM10K_SUCCESS)
PMD_INIT_LOG(ERR, "Failed to enable allmulticast mode");
}
static void
fm10k_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int status;
PMD_INIT_FUNC_TRACE();
/* Return if it didn't acquire valid glort range */
if (!fm10k_glort_valid(hw))
return;
if (dev->data->promiscuous) {
PMD_INIT_LOG(ERR, "Failed to disable allmulticast mode "\
"since promisc mode is enabled");
return;
}
fm10k_mbx_lock(hw);
/* Change mode to unicast mode */
status = hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
FM10K_XCAST_MODE_NONE);
fm10k_mbx_unlock(hw);
if (status != FM10K_SUCCESS)
PMD_INIT_LOG(ERR, "Failed to disable allmulticast mode");
}
/* fls = find last set bit = 32 minus the number of leading zeros */
#ifndef fls
#define fls(x) (((x) == 0) ? 0 : (32 - __builtin_clz((x))))
#endif
#define BSIZEPKT_ROUNDUP ((1 << FM10K_SRRCTL_BSIZEPKT_SHIFT) - 1)
static int
fm10k_dev_start(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int i, diag;
PMD_INIT_FUNC_TRACE();
/* stop, init, then start the hw */
diag = fm10k_stop_hw(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Hardware stop failed: %d", diag);
return -EIO;
}
diag = fm10k_init_hw(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Hardware init failed: %d", diag);
return -EIO;
}
diag = fm10k_start_hw(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Hardware start failed: %d", diag);
return -EIO;
}
diag = fm10k_dev_tx_init(dev);
if (diag) {
PMD_INIT_LOG(ERR, "TX init failed: %d", diag);
return diag;
}
diag = fm10k_dev_rx_init(dev);
if (diag) {
PMD_INIT_LOG(ERR, "RX init failed: %d", diag);
return diag;
}
if (hw->mac.type == fm10k_mac_pf) {
/* Establish only VSI 0 as valid */
FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(0), FM10K_DGLORTMAP_ANY);
/* Configure RSS bits used in RETA table */
FM10K_WRITE_REG(hw, FM10K_DGLORTDEC(0),
fls(dev->data->nb_rx_queues - 1) <<
FM10K_DGLORTDEC_RSSLENGTH_SHIFT);
/* Invalidate all other GLORT entries */
for (i = 1; i < FM10K_DGLORT_COUNT; i++)
FM10K_WRITE_REG(hw, FM10K_DGLORTMAP(i),
FM10K_DGLORTMAP_NONE);
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct fm10k_rx_queue *rxq;
rxq = dev->data->rx_queues[i];
if (rxq->rx_deferred_start)
continue;
diag = fm10k_dev_rx_queue_start(dev, i);
if (diag != 0) {
int j;
for (j = 0; j < i; ++j)
rx_queue_clean(dev->data->rx_queues[j]);
return diag;
}
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct fm10k_tx_queue *txq;
txq = dev->data->tx_queues[i];
if (txq->tx_deferred_start)
continue;
diag = fm10k_dev_tx_queue_start(dev, i);
if (diag != 0) {
int j;
for (j = 0; j < i; ++j)
tx_queue_clean(dev->data->tx_queues[j]);
for (j = 0; j < dev->data->nb_rx_queues; ++j)
rx_queue_clean(dev->data->rx_queues[j]);
return diag;
}
}
/* Update default vlan */
if (hw->mac.default_vid && hw->mac.default_vid <= ETHER_MAX_VLAN_ID)
fm10k_vlan_filter_set(dev, hw->mac.default_vid, true);
return 0;
}
static void
fm10k_dev_stop(struct rte_eth_dev *dev)
{
int i;
PMD_INIT_FUNC_TRACE();
if (dev->data->tx_queues)
for (i = 0; i < dev->data->nb_tx_queues; i++)
fm10k_dev_tx_queue_stop(dev, i);
if (dev->data->rx_queues)
for (i = 0; i < dev->data->nb_rx_queues; i++)
fm10k_dev_rx_queue_stop(dev, i);
}
static void
fm10k_dev_queue_release(struct rte_eth_dev *dev)
{
int i;
PMD_INIT_FUNC_TRACE();
if (dev->data->tx_queues) {
for (i = 0; i < dev->data->nb_tx_queues; i++)
fm10k_tx_queue_release(dev->data->tx_queues[i]);
}
if (dev->data->rx_queues) {
for (i = 0; i < dev->data->nb_rx_queues; i++)
fm10k_rx_queue_release(dev->data->rx_queues[i]);
}
}
static void
fm10k_dev_close(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
fm10k_MACVLAN_remove_all(dev);
/* Stop mailbox service first */
fm10k_close_mbx_service(hw);
fm10k_dev_stop(dev);
fm10k_dev_queue_release(dev);
fm10k_stop_hw(hw);
}
static int
fm10k_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
PMD_INIT_FUNC_TRACE();
/* The host-interface link is always up. The speed is ~50Gbps per Gen3
* x8 PCIe interface. For now, we leave the speed undefined since there
* is no 50Gbps Ethernet. */
dev->data->dev_link.link_speed = 0;
dev->data->dev_link.link_duplex = ETH_LINK_FULL_DUPLEX;
dev->data->dev_link.link_status = 1;
return 0;
}
static void
fm10k_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
uint64_t ipackets, opackets, ibytes, obytes;
struct fm10k_hw *hw =
FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_hw_stats *hw_stats =
FM10K_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
int i;
PMD_INIT_FUNC_TRACE();
fm10k_update_hw_stats(hw, hw_stats);
ipackets = opackets = ibytes = obytes = 0;
for (i = 0; (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) &&
(i < hw->mac.max_queues); ++i) {
stats->q_ipackets[i] = hw_stats->q[i].rx_packets.count;
stats->q_opackets[i] = hw_stats->q[i].tx_packets.count;
stats->q_ibytes[i] = hw_stats->q[i].rx_bytes.count;
stats->q_obytes[i] = hw_stats->q[i].tx_bytes.count;
ipackets += stats->q_ipackets[i];
opackets += stats->q_opackets[i];
ibytes += stats->q_ibytes[i];
obytes += stats->q_obytes[i];
}
stats->ipackets = ipackets;
stats->opackets = opackets;
stats->ibytes = ibytes;
stats->obytes = obytes;
}
static void
fm10k_stats_reset(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_hw_stats *hw_stats =
FM10K_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
memset(hw_stats, 0, sizeof(*hw_stats));
fm10k_rebind_hw_stats(hw, hw_stats);
}
static void
fm10k_dev_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
dev_info->min_rx_bufsize = FM10K_MIN_RX_BUF_SIZE;
dev_info->max_rx_pktlen = FM10K_MAX_PKT_SIZE;
dev_info->max_rx_queues = hw->mac.max_queues;
dev_info->max_tx_queues = hw->mac.max_queues;
dev_info->max_mac_addrs = FM10K_MAX_MACADDR_NUM;
dev_info->max_hash_mac_addrs = 0;
dev_info->max_vfs = dev->pci_dev->max_vfs;
dev_info->max_vmdq_pools = ETH_64_POOLS;
dev_info->rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM;
dev_info->tx_offload_capa =
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO;
dev_info->hash_key_size = FM10K_RSSRK_SIZE * sizeof(uint32_t);
dev_info->reta_size = FM10K_MAX_RSS_INDICES;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = FM10K_DEFAULT_RX_PTHRESH,
.hthresh = FM10K_DEFAULT_RX_HTHRESH,
.wthresh = FM10K_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = FM10K_RX_FREE_THRESH_DEFAULT(0),
.rx_drop_en = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = FM10K_DEFAULT_TX_PTHRESH,
.hthresh = FM10K_DEFAULT_TX_HTHRESH,
.wthresh = FM10K_DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = FM10K_TX_FREE_THRESH_DEFAULT(0),
.tx_rs_thresh = FM10K_TX_RS_THRESH_DEFAULT(0),
.txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
ETH_TXQ_FLAGS_NOOFFLOADS,
};
}
static int
fm10k_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
s32 result;
uint16_t mac_num = 0;
uint32_t vid_idx, vid_bit, mac_index;
struct fm10k_hw *hw;
struct fm10k_macvlan_filter_info *macvlan;
struct rte_eth_dev_data *data = dev->data;
hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
if (vlan_id > ETH_VLAN_ID_MAX) {
PMD_INIT_LOG(ERR, "Invalid vlan_id: must be < 4096");
return (-EINVAL);
}
vid_idx = FM10K_VFTA_IDX(vlan_id);
vid_bit = FM10K_VFTA_BIT(vlan_id);
/* this VLAN ID is already in the VLAN filter table, return SUCCESS */
if (on && (macvlan->vfta[vid_idx] & vid_bit))
return 0;
/* this VLAN ID is NOT in the VLAN filter table, cannot remove */
if (!on && !(macvlan->vfta[vid_idx] & vid_bit)) {
PMD_INIT_LOG(ERR, "Invalid vlan_id: not existing "
"in the VLAN filter table");
return (-EINVAL);
}
fm10k_mbx_lock(hw);
result = fm10k_update_vlan(hw, vlan_id, 0, on);
fm10k_mbx_unlock(hw);
if (result != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "VLAN update failed: %d", result);
return (-EIO);
}
for (mac_index = 0; (mac_index < FM10K_MAX_MACADDR_NUM) &&
(result == FM10K_SUCCESS); mac_index++) {
if (is_zero_ether_addr(&data->mac_addrs[mac_index]))
continue;
if (mac_num > macvlan->mac_num - 1) {
PMD_INIT_LOG(ERR, "MAC address number "
"not match");
break;
}
fm10k_mbx_lock(hw);
result = fm10k_update_uc_addr(hw, hw->mac.dglort_map,
data->mac_addrs[mac_index].addr_bytes,
vlan_id, on, 0);
fm10k_mbx_unlock(hw);
mac_num++;
}
if (result != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "MAC address update failed: %d", result);
return (-EIO);
}
if (on) {
macvlan->vlan_num++;
macvlan->vfta[vid_idx] |= vid_bit;
} else {
macvlan->vlan_num--;
macvlan->vfta[vid_idx] &= ~vid_bit;
}
return 0;
}
static void
fm10k_vlan_offload_set(__rte_unused struct rte_eth_dev *dev, int mask)
{
if (mask & ETH_VLAN_STRIP_MASK) {
if (!dev->data->dev_conf.rxmode.hw_vlan_strip)
PMD_INIT_LOG(ERR, "VLAN stripping is "
"always on in fm10k");
}
if (mask & ETH_VLAN_EXTEND_MASK) {
if (dev->data->dev_conf.rxmode.hw_vlan_extend)
PMD_INIT_LOG(ERR, "VLAN QinQ is not "
"supported in fm10k");
}
if (mask & ETH_VLAN_FILTER_MASK) {
if (!dev->data->dev_conf.rxmode.hw_vlan_filter)
PMD_INIT_LOG(ERR, "VLAN filter is always on in fm10k");
}
}
/* Add/Remove a MAC address, and update filters */
static void
fm10k_MAC_filter_set(struct rte_eth_dev *dev, const u8 *mac, bool add)
{
uint32_t i, j, k;
struct fm10k_hw *hw;
struct fm10k_macvlan_filter_info *macvlan;
hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
i = 0;
for (j = 0; j < FM10K_VFTA_SIZE; j++) {
if (macvlan->vfta[j]) {
for (k = 0; k < FM10K_UINT32_BIT_SIZE; k++) {
if (macvlan->vfta[j] & (1 << k)) {
if (i + 1 > macvlan->vlan_num) {
PMD_INIT_LOG(ERR, "vlan number "
"not match");
return;
}
fm10k_mbx_lock(hw);
fm10k_update_uc_addr(hw,
hw->mac.dglort_map, mac,
j * FM10K_UINT32_BIT_SIZE + k,
add, 0);
fm10k_mbx_unlock(hw);
i++;
}
}
}
}
if (add)
macvlan->mac_num++;
else
macvlan->mac_num--;
}
/* Add a MAC address, and update filters */
static void
fm10k_macaddr_add(struct rte_eth_dev *dev,
struct ether_addr *mac_addr,
__rte_unused uint32_t index,
__rte_unused uint32_t pool)
{
fm10k_MAC_filter_set(dev, mac_addr->addr_bytes, TRUE);
}
/* Remove a MAC address, and update filters */
static void
fm10k_macaddr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct rte_eth_dev_data *data = dev->data;
if (index < FM10K_MAX_MACADDR_NUM)
fm10k_MAC_filter_set(dev, data->mac_addrs[index].addr_bytes,
FALSE);
}
/* Remove all VLAN and MAC address table entries */
static void
fm10k_MACVLAN_remove_all(struct rte_eth_dev *dev)
{
uint32_t j, k;
struct fm10k_macvlan_filter_info *macvlan;
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
for (j = 0; j < FM10K_VFTA_SIZE; j++) {
if (macvlan->vfta[j]) {
for (k = 0; k < FM10K_UINT32_BIT_SIZE; k++) {
if (macvlan->vfta[j] & (1 << k))
fm10k_vlan_filter_set(dev,
j * FM10K_UINT32_BIT_SIZE + k, false);
}
}
}
}
static inline int
check_nb_desc(uint16_t min, uint16_t max, uint16_t mult, uint16_t request)
{
if ((request < min) || (request > max) || ((request % mult) != 0))
return -1;
else
return 0;
}
/*
* Create a memzone for hardware descriptor rings. Malloc cannot be used since
* the physical address is required. If the memzone is already created, then
* this function returns a pointer to the existing memzone.
*/
static inline const struct rte_memzone *
allocate_hw_ring(const char *driver_name, const char *ring_name,
uint8_t port_id, uint16_t queue_id, int socket_id,
uint32_t size, uint32_t align)
{
char name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
snprintf(name, sizeof(name), "%s_%s_%d_%d_%d",
driver_name, ring_name, port_id, queue_id, socket_id);
/* return the memzone if it already exists */
mz = rte_memzone_lookup(name);
if (mz)
return mz;
#ifdef RTE_LIBRTE_XEN_DOM0
return rte_memzone_reserve_bounded(name, size, socket_id, 0, align,
RTE_PGSIZE_2M);
#else
return rte_memzone_reserve_aligned(name, size, socket_id, 0, align);
#endif
}
static inline int
check_thresh(uint16_t min, uint16_t max, uint16_t div, uint16_t request)
{
if ((request < min) || (request > max) || ((div % request) != 0))
return -1;
else
return 0;
}
static inline int
handle_rxconf(struct fm10k_rx_queue *q, const struct rte_eth_rxconf *conf)
{
uint16_t rx_free_thresh;
if (conf->rx_free_thresh == 0)
rx_free_thresh = FM10K_RX_FREE_THRESH_DEFAULT(q);
else
rx_free_thresh = conf->rx_free_thresh;
/* make sure the requested threshold satisfies the constraints */
if (check_thresh(FM10K_RX_FREE_THRESH_MIN(q),
FM10K_RX_FREE_THRESH_MAX(q),
FM10K_RX_FREE_THRESH_DIV(q),
rx_free_thresh)) {
PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be "
"less than or equal to %u, "
"greater than or equal to %u, "
"and a divisor of %u",
rx_free_thresh, FM10K_RX_FREE_THRESH_MAX(q),
FM10K_RX_FREE_THRESH_MIN(q),
FM10K_RX_FREE_THRESH_DIV(q));
return (-EINVAL);
}
q->alloc_thresh = rx_free_thresh;
q->drop_en = conf->rx_drop_en;
q->rx_deferred_start = conf->rx_deferred_start;
return 0;
}
/*
* Hardware requires specific alignment for Rx packet buffers. At
* least one of the following two conditions must be satisfied.
* 1. Address is 512B aligned
* 2. Address is 8B aligned and buffer does not cross 4K boundary.
*
* As such, the driver may need to adjust the DMA address within the
* buffer by up to 512B.
*
* return 1 if the element size is valid, otherwise return 0.
*/
static int
mempool_element_size_valid(struct rte_mempool *mp)
{
uint32_t min_size;
/* elt_size includes mbuf header and headroom */
min_size = mp->elt_size - sizeof(struct rte_mbuf) -
RTE_PKTMBUF_HEADROOM;
/* account for up to 512B of alignment */
min_size -= FM10K_RX_DATABUF_ALIGN;
/* sanity check for overflow */
if (min_size > mp->elt_size)
return 0;
/* size is valid */
return 1;
}
static int
fm10k_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_id,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *conf, struct rte_mempool *mp)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_rx_queue *q;
const struct rte_memzone *mz;
PMD_INIT_FUNC_TRACE();
/* make sure the mempool element size can account for alignment. */
if (!mempool_element_size_valid(mp)) {
PMD_INIT_LOG(ERR, "Error : Mempool element size is too small");
return (-EINVAL);
}
/* make sure a valid number of descriptors have been requested */
if (check_nb_desc(FM10K_MIN_RX_DESC, FM10K_MAX_RX_DESC,
FM10K_MULT_RX_DESC, nb_desc)) {
PMD_INIT_LOG(ERR, "Number of Rx descriptors (%u) must be "
"less than or equal to %"PRIu32", "
"greater than or equal to %u, "
"and a multiple of %u",
nb_desc, (uint32_t)FM10K_MAX_RX_DESC, FM10K_MIN_RX_DESC,
FM10K_MULT_RX_DESC);
return (-EINVAL);
}
/*
* if this queue existed already, free the associated memory. The
* queue cannot be reused in case we need to allocate memory on
* different socket than was previously used.
*/
if (dev->data->rx_queues[queue_id] != NULL) {
rx_queue_free(dev->data->rx_queues[queue_id]);
dev->data->rx_queues[queue_id] = NULL;
}
/* allocate memory for the queue structure */
q = rte_zmalloc_socket("fm10k", sizeof(*q), RTE_CACHE_LINE_SIZE,
socket_id);
if (q == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate queue structure");
return (-ENOMEM);
}
/* setup queue */
q->mp = mp;
q->nb_desc = nb_desc;
q->port_id = dev->data->port_id;
q->queue_id = queue_id;
q->tail_ptr = (volatile uint32_t *)
&((uint32_t *)hw->hw_addr)[FM10K_RDT(queue_id)];
if (handle_rxconf(q, conf))
return (-EINVAL);
/* allocate memory for the software ring */
q->sw_ring = rte_zmalloc_socket("fm10k sw ring",
nb_desc * sizeof(struct rte_mbuf *),
RTE_CACHE_LINE_SIZE, socket_id);
if (q->sw_ring == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate software ring");
rte_free(q);
return (-ENOMEM);
}
/*
* allocate memory for the hardware descriptor ring. A memzone large
* enough to hold the maximum ring size is requested to allow for
* resizing in later calls to the queue setup function.
*/
mz = allocate_hw_ring(dev->driver->pci_drv.name, "rx_ring",
dev->data->port_id, queue_id, socket_id,
FM10K_MAX_RX_RING_SZ, FM10K_ALIGN_RX_DESC);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate hardware ring");
rte_free(q->sw_ring);
rte_free(q);
return (-ENOMEM);
}
q->hw_ring = mz->addr;
#ifdef RTE_LIBRTE_XEN_DOM0
q->hw_ring_phys_addr = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr);
#else
q->hw_ring_phys_addr = mz->phys_addr;
#endif
dev->data->rx_queues[queue_id] = q;
return 0;
}
static void
fm10k_rx_queue_release(void *queue)
{
PMD_INIT_FUNC_TRACE();
rx_queue_free(queue);
}
static inline int
handle_txconf(struct fm10k_tx_queue *q, const struct rte_eth_txconf *conf)
{
uint16_t tx_free_thresh;
uint16_t tx_rs_thresh;
/* constraint MACROs require that tx_free_thresh is configured
* before tx_rs_thresh */
if (conf->tx_free_thresh == 0)
tx_free_thresh = FM10K_TX_FREE_THRESH_DEFAULT(q);
else
tx_free_thresh = conf->tx_free_thresh;
/* make sure the requested threshold satisfies the constraints */
if (check_thresh(FM10K_TX_FREE_THRESH_MIN(q),
FM10K_TX_FREE_THRESH_MAX(q),
FM10K_TX_FREE_THRESH_DIV(q),
tx_free_thresh)) {
PMD_INIT_LOG(ERR, "tx_free_thresh (%u) must be "
"less than or equal to %u, "
"greater than or equal to %u, "
"and a divisor of %u",
tx_free_thresh, FM10K_TX_FREE_THRESH_MAX(q),
FM10K_TX_FREE_THRESH_MIN(q),
FM10K_TX_FREE_THRESH_DIV(q));
return (-EINVAL);
}
q->free_thresh = tx_free_thresh;
if (conf->tx_rs_thresh == 0)
tx_rs_thresh = FM10K_TX_RS_THRESH_DEFAULT(q);
else
tx_rs_thresh = conf->tx_rs_thresh;
q->tx_deferred_start = conf->tx_deferred_start;
/* make sure the requested threshold satisfies the constraints */
if (check_thresh(FM10K_TX_RS_THRESH_MIN(q),
FM10K_TX_RS_THRESH_MAX(q),
FM10K_TX_RS_THRESH_DIV(q),
tx_rs_thresh)) {
PMD_INIT_LOG(ERR, "tx_rs_thresh (%u) must be "
"less than or equal to %u, "
"greater than or equal to %u, "
"and a divisor of %u",
tx_rs_thresh, FM10K_TX_RS_THRESH_MAX(q),
FM10K_TX_RS_THRESH_MIN(q),
FM10K_TX_RS_THRESH_DIV(q));
return (-EINVAL);
}
q->rs_thresh = tx_rs_thresh;
return 0;
}
static int
fm10k_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_id,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *conf)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct fm10k_tx_queue *q;
const struct rte_memzone *mz;
PMD_INIT_FUNC_TRACE();
/* make sure a valid number of descriptors have been requested */
if (check_nb_desc(FM10K_MIN_TX_DESC, FM10K_MAX_TX_DESC,
FM10K_MULT_TX_DESC, nb_desc)) {
PMD_INIT_LOG(ERR, "Number of Tx descriptors (%u) must be "
"less than or equal to %"PRIu32", "
"greater than or equal to %u, "
"and a multiple of %u",
nb_desc, (uint32_t)FM10K_MAX_TX_DESC, FM10K_MIN_TX_DESC,
FM10K_MULT_TX_DESC);
return (-EINVAL);
}
/*
* if this queue existed already, free the associated memory. The
* queue cannot be reused in case we need to allocate memory on
* different socket than was previously used.
*/
if (dev->data->tx_queues[queue_id] != NULL) {
tx_queue_free(dev->data->tx_queues[queue_id]);
dev->data->tx_queues[queue_id] = NULL;
}
/* allocate memory for the queue structure */
q = rte_zmalloc_socket("fm10k", sizeof(*q), RTE_CACHE_LINE_SIZE,
socket_id);
if (q == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate queue structure");
return (-ENOMEM);
}
/* setup queue */
q->nb_desc = nb_desc;
q->port_id = dev->data->port_id;
q->queue_id = queue_id;
q->tail_ptr = (volatile uint32_t *)
&((uint32_t *)hw->hw_addr)[FM10K_TDT(queue_id)];
if (handle_txconf(q, conf))
return (-EINVAL);
/* allocate memory for the software ring */
q->sw_ring = rte_zmalloc_socket("fm10k sw ring",
nb_desc * sizeof(struct rte_mbuf *),
RTE_CACHE_LINE_SIZE, socket_id);
if (q->sw_ring == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate software ring");
rte_free(q);
return (-ENOMEM);
}
/*
* allocate memory for the hardware descriptor ring. A memzone large
* enough to hold the maximum ring size is requested to allow for
* resizing in later calls to the queue setup function.
*/
mz = allocate_hw_ring(dev->driver->pci_drv.name, "tx_ring",
dev->data->port_id, queue_id, socket_id,
FM10K_MAX_TX_RING_SZ, FM10K_ALIGN_TX_DESC);
if (mz == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate hardware ring");
rte_free(q->sw_ring);
rte_free(q);
return (-ENOMEM);
}
q->hw_ring = mz->addr;
#ifdef RTE_LIBRTE_XEN_DOM0
q->hw_ring_phys_addr = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr);
#else
q->hw_ring_phys_addr = mz->phys_addr;
#endif
/*
* allocate memory for the RS bit tracker. Enough slots to hold the
* descriptor index for each RS bit needing to be set are required.
*/
q->rs_tracker.list = rte_zmalloc_socket("fm10k rs tracker",
((nb_desc + 1) / q->rs_thresh) *
sizeof(uint16_t),
RTE_CACHE_LINE_SIZE, socket_id);
if (q->rs_tracker.list == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate RS bit tracker");
rte_free(q->sw_ring);
rte_free(q);
return (-ENOMEM);
}
dev->data->tx_queues[queue_id] = q;
return 0;
}
static void
fm10k_tx_queue_release(void *queue)
{
PMD_INIT_FUNC_TRACE();
tx_queue_free(queue);
}
static int
fm10k_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t i, j, idx, shift;
uint8_t mask;
uint32_t reta;
PMD_INIT_FUNC_TRACE();
if (reta_size > FM10K_MAX_RSS_INDICES) {
PMD_INIT_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)", reta_size, FM10K_MAX_RSS_INDICES);
return -EINVAL;
}
/*
* Update Redirection Table RETA[n], n=0..31. The redirection table has
* 128-entries in 32 registers
*/
for (i = 0; i < FM10K_MAX_RSS_INDICES; i += CHARS_PER_UINT32) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
BIT_MASK_PER_UINT32);
if (mask == 0)
continue;
reta = 0;
if (mask != BIT_MASK_PER_UINT32)
reta = FM10K_READ_REG(hw, FM10K_RETA(0, i >> 2));
for (j = 0; j < CHARS_PER_UINT32; j++) {
if (mask & (0x1 << j)) {
if (mask != 0xF)
reta &= ~(UINT8_MAX << CHAR_BIT * j);
reta |= reta_conf[idx].reta[shift + j] <<
(CHAR_BIT * j);
}
}
FM10K_WRITE_REG(hw, FM10K_RETA(0, i >> 2), reta);
}
return 0;
}
static int
fm10k_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t i, j, idx, shift;
uint8_t mask;
uint32_t reta;
PMD_INIT_FUNC_TRACE();
if (reta_size < FM10K_MAX_RSS_INDICES) {
PMD_INIT_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)", reta_size, FM10K_MAX_RSS_INDICES);
return -EINVAL;
}
/*
* Read Redirection Table RETA[n], n=0..31. The redirection table has
* 128-entries in 32 registers
*/
for (i = 0; i < FM10K_MAX_RSS_INDICES; i += CHARS_PER_UINT32) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
BIT_MASK_PER_UINT32);
if (mask == 0)
continue;
reta = FM10K_READ_REG(hw, FM10K_RETA(0, i >> 2));
for (j = 0; j < CHARS_PER_UINT32; j++) {
if (mask & (0x1 << j))
reta_conf[idx].reta[shift + j] = ((reta >>
CHAR_BIT * j) & UINT8_MAX);
}
}
return 0;
}
static int
fm10k_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t *key = (uint32_t *)rss_conf->rss_key;
uint32_t mrqc;
uint64_t hf = rss_conf->rss_hf;
int i;
PMD_INIT_FUNC_TRACE();
if (rss_conf->rss_key_len < FM10K_RSSRK_SIZE *
FM10K_RSSRK_ENTRIES_PER_REG)
return -EINVAL;
if (hf == 0)
return -EINVAL;
mrqc = 0;
mrqc |= (hf & ETH_RSS_IPV4) ? FM10K_MRQC_IPV4 : 0;
mrqc |= (hf & ETH_RSS_IPV6) ? FM10K_MRQC_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_EX) ? FM10K_MRQC_IPV6 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_TCP) ? FM10K_MRQC_TCP_IPV4 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_TCP) ? FM10K_MRQC_TCP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_TCP_EX) ? FM10K_MRQC_TCP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV4_UDP) ? FM10K_MRQC_UDP_IPV4 : 0;
mrqc |= (hf & ETH_RSS_NONFRAG_IPV6_UDP) ? FM10K_MRQC_UDP_IPV6 : 0;
mrqc |= (hf & ETH_RSS_IPV6_UDP_EX) ? FM10K_MRQC_UDP_IPV6 : 0;
/* If the mapping doesn't fit any supported, return */
if (mrqc == 0)
return -EINVAL;
if (key != NULL)
for (i = 0; i < FM10K_RSSRK_SIZE; ++i)
FM10K_WRITE_REG(hw, FM10K_RSSRK(0, i), key[i]);
FM10K_WRITE_REG(hw, FM10K_MRQC(0), mrqc);
return 0;
}
static int
fm10k_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t *key = (uint32_t *)rss_conf->rss_key;
uint32_t mrqc;
uint64_t hf;
int i;
PMD_INIT_FUNC_TRACE();
if (rss_conf->rss_key_len < FM10K_RSSRK_SIZE *
FM10K_RSSRK_ENTRIES_PER_REG)
return -EINVAL;
if (key != NULL)
for (i = 0; i < FM10K_RSSRK_SIZE; ++i)
key[i] = FM10K_READ_REG(hw, FM10K_RSSRK(0, i));
mrqc = FM10K_READ_REG(hw, FM10K_MRQC(0));
hf = 0;
hf |= (mrqc & FM10K_MRQC_IPV4) ? ETH_RSS_IPV4 : 0;
hf |= (mrqc & FM10K_MRQC_IPV6) ? ETH_RSS_IPV6 : 0;
hf |= (mrqc & FM10K_MRQC_IPV6) ? ETH_RSS_IPV6_EX : 0;
hf |= (mrqc & FM10K_MRQC_TCP_IPV4) ? ETH_RSS_NONFRAG_IPV4_TCP : 0;
hf |= (mrqc & FM10K_MRQC_TCP_IPV6) ? ETH_RSS_NONFRAG_IPV6_TCP : 0;
hf |= (mrqc & FM10K_MRQC_TCP_IPV6) ? ETH_RSS_IPV6_TCP_EX : 0;
hf |= (mrqc & FM10K_MRQC_UDP_IPV4) ? ETH_RSS_NONFRAG_IPV4_UDP : 0;
hf |= (mrqc & FM10K_MRQC_UDP_IPV6) ? ETH_RSS_NONFRAG_IPV6_UDP : 0;
hf |= (mrqc & FM10K_MRQC_UDP_IPV6) ? ETH_RSS_IPV6_UDP_EX : 0;
rss_conf->rss_hf = hf;
return 0;
}
static void
fm10k_dev_enable_intr_pf(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t int_map = FM10K_INT_MAP_IMMEDIATE;
/* Bind all local non-queue interrupt to vector 0 */
int_map |= 0;
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_Mailbox), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_PCIeFault), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SwitchUpDown), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SwitchEvent), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SRAM), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_VFLR), int_map);
/* Enable misc causes */
FM10K_WRITE_REG(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
FM10K_EIMR_ENABLE(THI_FAULT) |
FM10K_EIMR_ENABLE(FUM_FAULT) |
FM10K_EIMR_ENABLE(MAILBOX) |
FM10K_EIMR_ENABLE(SWITCHREADY) |
FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
FM10K_EIMR_ENABLE(SRAMERROR) |
FM10K_EIMR_ENABLE(VFLR));
/* Enable ITR 0 */
FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_AUTOMASK |
FM10K_ITR_MASK_CLEAR);
FM10K_WRITE_FLUSH(hw);
}
static void
fm10k_dev_disable_intr_pf(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t int_map = FM10K_INT_MAP_DISABLE;
int_map |= 0;
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_Mailbox), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_PCIeFault), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SwitchUpDown), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SwitchEvent), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_SRAM), int_map);
FM10K_WRITE_REG(hw, FM10K_INT_MAP(fm10k_int_VFLR), int_map);
/* Disable misc causes */
FM10K_WRITE_REG(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(PCA_FAULT) |
FM10K_EIMR_DISABLE(THI_FAULT) |
FM10K_EIMR_DISABLE(FUM_FAULT) |
FM10K_EIMR_DISABLE(MAILBOX) |
FM10K_EIMR_DISABLE(SWITCHREADY) |
FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
FM10K_EIMR_DISABLE(SRAMERROR) |
FM10K_EIMR_DISABLE(VFLR));
/* Disable ITR 0 */
FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_MASK_SET);
FM10K_WRITE_FLUSH(hw);
}
static void
fm10k_dev_enable_intr_vf(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t int_map = FM10K_INT_MAP_IMMEDIATE;
/* Bind all local non-queue interrupt to vector 0 */
int_map |= 0;
/* Only INT 0 available, other 15 are reserved. */
FM10K_WRITE_REG(hw, FM10K_VFINT_MAP, int_map);
/* Enable ITR 0 */
FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_AUTOMASK |
FM10K_ITR_MASK_CLEAR);
FM10K_WRITE_FLUSH(hw);
}
static void
fm10k_dev_disable_intr_vf(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t int_map = FM10K_INT_MAP_DISABLE;
int_map |= 0;
/* Only INT 0 available, other 15 are reserved. */
FM10K_WRITE_REG(hw, FM10K_VFINT_MAP, int_map);
/* Disable ITR 0 */
FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_MASK_SET);
FM10K_WRITE_FLUSH(hw);
}
static int
fm10k_dev_handle_fault(struct fm10k_hw *hw, uint32_t eicr)
{
struct fm10k_fault fault;
int err;
const char *estr = "Unknown error";
/* Process PCA fault */
if (eicr & FM10K_EICR_PCA_FAULT) {
err = fm10k_get_fault(hw, FM10K_PCA_FAULT, &fault);
if (err)
goto error;
switch (fault.type) {
case PCA_NO_FAULT:
estr = "PCA_NO_FAULT"; break;
case PCA_UNMAPPED_ADDR:
estr = "PCA_UNMAPPED_ADDR"; break;
case PCA_BAD_QACCESS_PF:
estr = "PCA_BAD_QACCESS_PF"; break;
case PCA_BAD_QACCESS_VF:
estr = "PCA_BAD_QACCESS_VF"; break;
case PCA_MALICIOUS_REQ:
estr = "PCA_MALICIOUS_REQ"; break;
case PCA_POISONED_TLP:
estr = "PCA_POISONED_TLP"; break;
case PCA_TLP_ABORT:
estr = "PCA_TLP_ABORT"; break;
default:
goto error;
}
PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
estr, fault.func ? "VF" : "PF", fault.func,
fault.address, fault.specinfo);
}
/* Process THI fault */
if (eicr & FM10K_EICR_THI_FAULT) {
err = fm10k_get_fault(hw, FM10K_THI_FAULT, &fault);
if (err)
goto error;
switch (fault.type) {
case THI_NO_FAULT:
estr = "THI_NO_FAULT"; break;
case THI_MAL_DIS_Q_FAULT:
estr = "THI_MAL_DIS_Q_FAULT"; break;
default:
goto error;
}
PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
estr, fault.func ? "VF" : "PF", fault.func,
fault.address, fault.specinfo);
}
/* Process FUM fault */
if (eicr & FM10K_EICR_FUM_FAULT) {
err = fm10k_get_fault(hw, FM10K_FUM_FAULT, &fault);
if (err)
goto error;
switch (fault.type) {
case FUM_NO_FAULT:
estr = "FUM_NO_FAULT"; break;
case FUM_UNMAPPED_ADDR:
estr = "FUM_UNMAPPED_ADDR"; break;
case FUM_POISONED_TLP:
estr = "FUM_POISONED_TLP"; break;
case FUM_BAD_VF_QACCESS:
estr = "FUM_BAD_VF_QACCESS"; break;
case FUM_ADD_DECODE_ERR:
estr = "FUM_ADD_DECODE_ERR"; break;
case FUM_RO_ERROR:
estr = "FUM_RO_ERROR"; break;
case FUM_QPRC_CRC_ERROR:
estr = "FUM_QPRC_CRC_ERROR"; break;
case FUM_CSR_TIMEOUT:
estr = "FUM_CSR_TIMEOUT"; break;
case FUM_INVALID_TYPE:
estr = "FUM_INVALID_TYPE"; break;
case FUM_INVALID_LENGTH:
estr = "FUM_INVALID_LENGTH"; break;
case FUM_INVALID_BE:
estr = "FUM_INVALID_BE"; break;
case FUM_INVALID_ALIGN:
estr = "FUM_INVALID_ALIGN"; break;
default:
goto error;
}
PMD_INIT_LOG(ERR, "%s: %s(%d) Addr:0x%"PRIx64" Spec: 0x%x",
estr, fault.func ? "VF" : "PF", fault.func,
fault.address, fault.specinfo);
}
return 0;
error:
PMD_INIT_LOG(ERR, "Failed to handle fault event.");
return err;
}
/**
* PF interrupt handler triggered by NIC for handling specific interrupt.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
fm10k_dev_interrupt_handler_pf(
__rte_unused struct rte_intr_handle *handle,
void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t cause, status;
if (hw->mac.type != fm10k_mac_pf)
return;
cause = FM10K_READ_REG(hw, FM10K_EICR);
/* Handle PCI fault cases */
if (cause & FM10K_EICR_FAULT_MASK) {
PMD_INIT_LOG(ERR, "INT: find fault!");
fm10k_dev_handle_fault(hw, cause);
}
/* Handle switch up/down */
if (cause & FM10K_EICR_SWITCHNOTREADY)
PMD_INIT_LOG(ERR, "INT: Switch is not ready");
if (cause & FM10K_EICR_SWITCHREADY)
PMD_INIT_LOG(INFO, "INT: Switch is ready");
/* Handle mailbox message */
fm10k_mbx_lock(hw);
hw->mbx.ops.process(hw, &hw->mbx);
fm10k_mbx_unlock(hw);
/* Handle SRAM error */
if (cause & FM10K_EICR_SRAMERROR) {
PMD_INIT_LOG(ERR, "INT: SRAM error on PEP");
status = FM10K_READ_REG(hw, FM10K_SRAM_IP);
/* Write to clear pending bits */
FM10K_WRITE_REG(hw, FM10K_SRAM_IP, status);
/* Todo: print out error message after shared code updates */
}
/* Clear these 3 events if having any */
cause &= FM10K_EICR_SWITCHNOTREADY | FM10K_EICR_MAILBOX |
FM10K_EICR_SWITCHREADY;
if (cause)
FM10K_WRITE_REG(hw, FM10K_EICR, cause);
/* Re-enable interrupt from device side */
FM10K_WRITE_REG(hw, FM10K_ITR(0), FM10K_ITR_AUTOMASK |
FM10K_ITR_MASK_CLEAR);
/* Re-enable interrupt from host side */
rte_intr_enable(&(dev->pci_dev->intr_handle));
}
/**
* VF interrupt handler triggered by NIC for handling specific interrupt.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
fm10k_dev_interrupt_handler_vf(
__rte_unused struct rte_intr_handle *handle,
void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (hw->mac.type != fm10k_mac_vf)
return;
/* Handle mailbox message if lock is acquired */
fm10k_mbx_lock(hw);
hw->mbx.ops.process(hw, &hw->mbx);
fm10k_mbx_unlock(hw);
/* Re-enable interrupt from device side */
FM10K_WRITE_REG(hw, FM10K_VFITR(0), FM10K_ITR_AUTOMASK |
FM10K_ITR_MASK_CLEAR);
/* Re-enable interrupt from host side */
rte_intr_enable(&(dev->pci_dev->intr_handle));
}
/* Mailbox message handler in VF */
static const struct fm10k_msg_data fm10k_msgdata_vf[] = {
FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_msg_mac_vlan_vf),
FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
};
/* Mailbox message handler in PF */
static const struct fm10k_msg_data fm10k_msgdata_pf[] = {
FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
};
static int
fm10k_setup_mbx_service(struct fm10k_hw *hw)
{
int err;
/* Initialize mailbox lock */
fm10k_mbx_initlock(hw);
/* Replace default message handler with new ones */
if (hw->mac.type == fm10k_mac_pf)
err = hw->mbx.ops.register_handlers(&hw->mbx, fm10k_msgdata_pf);
else
err = hw->mbx.ops.register_handlers(&hw->mbx, fm10k_msgdata_vf);
if (err) {
PMD_INIT_LOG(ERR, "Failed to register mailbox handler.err:%d",
err);
return err;
}
/* Connect to SM for PF device or PF for VF device */
return hw->mbx.ops.connect(hw, &hw->mbx);
}
static void
fm10k_close_mbx_service(struct fm10k_hw *hw)
{
/* Disconnect from SM for PF device or PF for VF device */
hw->mbx.ops.disconnect(hw, &hw->mbx);
}
static const struct eth_dev_ops fm10k_eth_dev_ops = {
.dev_configure = fm10k_dev_configure,
.dev_start = fm10k_dev_start,
.dev_stop = fm10k_dev_stop,
.dev_close = fm10k_dev_close,
.promiscuous_enable = fm10k_dev_promiscuous_enable,
.promiscuous_disable = fm10k_dev_promiscuous_disable,
.allmulticast_enable = fm10k_dev_allmulticast_enable,
.allmulticast_disable = fm10k_dev_allmulticast_disable,
.stats_get = fm10k_stats_get,
.stats_reset = fm10k_stats_reset,
.link_update = fm10k_link_update,
.dev_infos_get = fm10k_dev_infos_get,
.vlan_filter_set = fm10k_vlan_filter_set,
.vlan_offload_set = fm10k_vlan_offload_set,
.mac_addr_add = fm10k_macaddr_add,
.mac_addr_remove = fm10k_macaddr_remove,
.rx_queue_start = fm10k_dev_rx_queue_start,
.rx_queue_stop = fm10k_dev_rx_queue_stop,
.tx_queue_start = fm10k_dev_tx_queue_start,
.tx_queue_stop = fm10k_dev_tx_queue_stop,
.rx_queue_setup = fm10k_rx_queue_setup,
.rx_queue_release = fm10k_rx_queue_release,
.tx_queue_setup = fm10k_tx_queue_setup,
.tx_queue_release = fm10k_tx_queue_release,
.reta_update = fm10k_reta_update,
.reta_query = fm10k_reta_query,
.rss_hash_update = fm10k_rss_hash_update,
.rss_hash_conf_get = fm10k_rss_hash_conf_get,
};
static int
eth_fm10k_dev_init(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int diag;
struct fm10k_macvlan_filter_info *macvlan;
PMD_INIT_FUNC_TRACE();
dev->dev_ops = &fm10k_eth_dev_ops;
dev->rx_pkt_burst = &fm10k_recv_pkts;
dev->tx_pkt_burst = &fm10k_xmit_pkts;
if (dev->data->scattered_rx)
dev->rx_pkt_burst = &fm10k_recv_scattered_pkts;
/* only initialize in the primary process */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
macvlan = FM10K_DEV_PRIVATE_TO_MACVLAN(dev->data->dev_private);
memset(macvlan, 0, sizeof(*macvlan));
/* Vendor and Device ID need to be set before init of shared code */
memset(hw, 0, sizeof(*hw));
hw->device_id = dev->pci_dev->id.device_id;
hw->vendor_id = dev->pci_dev->id.vendor_id;
hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
hw->revision_id = 0;
hw->hw_addr = (void *)dev->pci_dev->mem_resource[0].addr;
if (hw->hw_addr == NULL) {
PMD_INIT_LOG(ERR, "Bad mem resource."
" Try to blacklist unused devices.");
return -EIO;
}
/* Store fm10k_adapter pointer */
hw->back = dev->data->dev_private;
/* Initialize the shared code */
diag = fm10k_init_shared_code(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Shared code init failed: %d", diag);
return -EIO;
}
/*
* Inialize bus info. Normally we would call fm10k_get_bus_info(), but
* there is no way to get link status without reading BAR4. Until this
* works, assume we have maximum bandwidth.
* @todo - fix bus info
*/
hw->bus_caps.speed = fm10k_bus_speed_8000;
hw->bus_caps.width = fm10k_bus_width_pcie_x8;
hw->bus_caps.payload = fm10k_bus_payload_512;
hw->bus.speed = fm10k_bus_speed_8000;
hw->bus.width = fm10k_bus_width_pcie_x8;
hw->bus.payload = fm10k_bus_payload_256;
/* Initialize the hw */
diag = fm10k_init_hw(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Hardware init failed: %d", diag);
return -EIO;
}
/* Initialize MAC address(es) */
dev->data->mac_addrs = rte_zmalloc("fm10k",
ETHER_ADDR_LEN * FM10K_MAX_MACADDR_NUM, 0);
if (dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Cannot allocate memory for MAC addresses");
return -ENOMEM;
}
diag = fm10k_read_mac_addr(hw);
ether_addr_copy((const struct ether_addr *)hw->mac.addr,
&dev->data->mac_addrs[0]);
if (diag != FM10K_SUCCESS ||
!is_valid_assigned_ether_addr(dev->data->mac_addrs)) {
/* Generate a random addr */
eth_random_addr(hw->mac.addr);
memcpy(hw->mac.perm_addr, hw->mac.addr, ETH_ALEN);
ether_addr_copy((const struct ether_addr *)hw->mac.addr,
&dev->data->mac_addrs[0]);
}
/* Reset the hw statistics */
fm10k_stats_reset(dev);
/* Reset the hw */
diag = fm10k_reset_hw(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Hardware reset failed: %d", diag);
return -EIO;
}
/* Setup mailbox service */
diag = fm10k_setup_mbx_service(hw);
if (diag != FM10K_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to setup mailbox: %d", diag);
return -EIO;
}
/*PF/VF has different interrupt handling mechanism */
if (hw->mac.type == fm10k_mac_pf) {
/* register callback func to eal lib */
rte_intr_callback_register(&(dev->pci_dev->intr_handle),
fm10k_dev_interrupt_handler_pf, (void *)dev);
/* enable MISC interrupt */
fm10k_dev_enable_intr_pf(dev);
} else { /* VF */
rte_intr_callback_register(&(dev->pci_dev->intr_handle),
fm10k_dev_interrupt_handler_vf, (void *)dev);
fm10k_dev_enable_intr_vf(dev);
}
/* Enable uio intr after callback registered */
rte_intr_enable(&(dev->pci_dev->intr_handle));
hw->mac.ops.update_int_moderator(hw);
/* Make sure Switch Manager is ready before going forward. */
if (hw->mac.type == fm10k_mac_pf) {
int switch_ready = 0;
int i;
for (i = 0; i < MAX_QUERY_SWITCH_STATE_TIMES; i++) {
fm10k_mbx_lock(hw);
hw->mac.ops.get_host_state(hw, &switch_ready);
fm10k_mbx_unlock(hw);
if (switch_ready)
break;
/* Delay some time to acquire async LPORT_MAP info. */
rte_delay_us(WAIT_SWITCH_MSG_US);
}
if (switch_ready == 0) {
PMD_INIT_LOG(ERR, "switch is not ready");
return -1;
}
}
/*
* Below function will trigger operations on mailbox, acquire lock to
* avoid race condition from interrupt handler. Operations on mailbox
* FIFO will trigger interrupt to PF/SM, in which interrupt handler
* will handle and generate an interrupt to our side. Then, FIFO in
* mailbox will be touched.
*/
fm10k_mbx_lock(hw);
/* Enable port first */
hw->mac.ops.update_lport_state(hw, hw->mac.dglort_map, 1, 1);
/* Set unicast mode by default. App can change to other mode in other
* API func.
*/
hw->mac.ops.update_xcast_mode(hw, hw->mac.dglort_map,
FM10K_XCAST_MODE_NONE);
fm10k_mbx_unlock(hw);
/* Add default mac address */
fm10k_MAC_filter_set(dev, hw->mac.addr, true);
return 0;
}
static int
eth_fm10k_dev_uninit(struct rte_eth_dev *dev)
{
struct fm10k_hw *hw = FM10K_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
/* only uninitialize in the primary process */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
/* safe to close dev here */
fm10k_dev_close(dev);
dev->dev_ops = NULL;
dev->rx_pkt_burst = NULL;
dev->tx_pkt_burst = NULL;
/* disable uio/vfio intr */
rte_intr_disable(&(dev->pci_dev->intr_handle));
/*PF/VF has different interrupt handling mechanism */
if (hw->mac.type == fm10k_mac_pf) {
/* disable interrupt */
fm10k_dev_disable_intr_pf(dev);
/* unregister callback func to eal lib */
rte_intr_callback_unregister(&(dev->pci_dev->intr_handle),
fm10k_dev_interrupt_handler_pf, (void *)dev);
} else {
/* disable interrupt */
fm10k_dev_disable_intr_vf(dev);
rte_intr_callback_unregister(&(dev->pci_dev->intr_handle),
fm10k_dev_interrupt_handler_vf, (void *)dev);
}
/* free mac memory */
if (dev->data->mac_addrs) {
rte_free(dev->data->mac_addrs);
dev->data->mac_addrs = NULL;
}
memset(hw, 0, sizeof(*hw));
return 0;
}
/*
* The set of PCI devices this driver supports. This driver will enable both PF
* and SRIOV-VF devices.
*/
static const struct rte_pci_id pci_id_fm10k_map[] = {
#define RTE_PCI_DEV_ID_DECL_FM10K(vend, dev) { RTE_PCI_DEVICE(vend, dev) },
#define RTE_PCI_DEV_ID_DECL_FM10KVF(vend, dev) { RTE_PCI_DEVICE(vend, dev) },
#include "rte_pci_dev_ids.h"
{ .vendor_id = 0, /* sentinel */ },
};
static struct eth_driver rte_pmd_fm10k = {
.pci_drv = {
.name = "rte_pmd_fm10k",
.id_table = pci_id_fm10k_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_DETACHABLE,
},
.eth_dev_init = eth_fm10k_dev_init,
.eth_dev_uninit = eth_fm10k_dev_uninit,
.dev_private_size = sizeof(struct fm10k_adapter),
};
/*
* Driver initialization routine.
* Invoked once at EAL init time.
* Register itself as the [Poll Mode] Driver of PCI FM10K devices.
*/
static int
rte_pmd_fm10k_init(__rte_unused const char *name,
__rte_unused const char *params)
{
PMD_INIT_FUNC_TRACE();
rte_eth_driver_register(&rte_pmd_fm10k);
return 0;
}
static struct rte_driver rte_fm10k_driver = {
.type = PMD_PDEV,
.init = rte_pmd_fm10k_init,
};
PMD_REGISTER_DRIVER(rte_fm10k_driver);