numam-dpdk/app/test-pmd/testpmd.c
2013-07-25 15:54:18 +02:00

1109 lines
32 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <time.h>
#include <fcntl.h>
#include <sys/types.h>
#include <errno.h>
#include <sys/queue.h>
#include <sys/stat.h>
#include <stdint.h>
#include <unistd.h>
#include <inttypes.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_string_fns.h>
#include "testpmd.h"
uint16_t verbose_level = 0; /**< Silent by default. */
/* use master core for command line ? */
uint8_t interactive = 0;
/*
* NUMA support configuration.
* When set, the NUMA support attempts to dispatch the allocation of the
* RX and TX memory rings, and of the DMA memory buffers (mbufs) for the
* probed ports among the CPU sockets 0 and 1.
* Otherwise, all memory is allocated from CPU socket 0.
*/
uint8_t numa_support = 0; /**< No numa support by default */
/*
* Record the Ethernet address of peer target ports to which packets are
* forwarded.
* Must be instanciated with the ethernet addresses of peer traffic generator
* ports.
*/
struct ether_addr peer_eth_addrs[RTE_MAX_ETHPORTS];
portid_t nb_peer_eth_addrs = 0;
/*
* Probed Target Environment.
*/
struct rte_port *ports; /**< For all probed ethernet ports. */
portid_t nb_ports; /**< Number of probed ethernet ports. */
struct fwd_lcore **fwd_lcores; /**< For all probed logical cores. */
lcoreid_t nb_lcores; /**< Number of probed logical cores. */
/*
* Test Forwarding Configuration.
* nb_fwd_lcores <= nb_cfg_lcores <= nb_lcores
* nb_fwd_ports <= nb_cfg_ports <= nb_ports
*/
lcoreid_t nb_cfg_lcores; /**< Number of configured logical cores. */
lcoreid_t nb_fwd_lcores; /**< Number of forwarding logical cores. */
portid_t nb_cfg_ports; /**< Number of configured ports. */
portid_t nb_fwd_ports; /**< Number of forwarding ports. */
unsigned int fwd_lcores_cpuids[RTE_MAX_LCORE]; /**< CPU ids configuration. */
portid_t fwd_ports_ids[RTE_MAX_ETHPORTS]; /**< Port ids configuration. */
struct fwd_stream **fwd_streams; /**< For each RX queue of each port. */
streamid_t nb_fwd_streams; /**< Is equal to (nb_ports * nb_rxq). */
/*
* Forwarding engines.
*/
struct fwd_engine * fwd_engines[] = {
&io_fwd_engine,
&mac_fwd_engine,
&rx_only_engine,
&tx_only_engine,
&csum_fwd_engine,
#ifdef RTE_LIBRTE_IEEE1588
&ieee1588_fwd_engine,
#endif
NULL,
};
struct fwd_config cur_fwd_config;
struct fwd_engine *cur_fwd_eng = &io_fwd_engine; /**< IO mode by default. */
uint16_t mbuf_data_size = DEFAULT_MBUF_DATA_SIZE; /**< Mbuf data space size. */
/*
* Configuration of packet segments used by the "txonly" processing engine.
*/
uint16_t tx_pkt_length = TXONLY_DEF_PACKET_LEN; /**< TXONLY packet length. */
uint16_t tx_pkt_seg_lengths[RTE_MAX_SEGS_PER_PKT] = {
TXONLY_DEF_PACKET_LEN,
};
uint8_t tx_pkt_nb_segs = 1; /**< Number of segments in TXONLY packets */
uint16_t nb_pkt_per_burst = DEF_PKT_BURST; /**< Number of packets per burst. */
uint16_t mb_mempool_cache = DEF_PKT_BURST; /**< Size of mbuf mempool cache. */
/*
* Ethernet Ports Configuration.
*/
int promiscuous_on = 1; /**< Ports set in promiscuous mode by default. */
/*
* Configurable number of RX/TX queues.
*/
queueid_t nb_rxq = 1; /**< Number of RX queues per port. */
queueid_t nb_txq = 1; /**< Number of TX queues per port. */
/*
* Configurable number of RX/TX ring descriptors.
*/
#define RTE_TEST_RX_DESC_DEFAULT 128
#define RTE_TEST_TX_DESC_DEFAULT 512
uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; /**< Number of RX descriptors. */
uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /**< Number of TX descriptors. */
/*
* Configurable values of RX and TX ring threshold registers.
*/
#define RX_PTHRESH 8 /**< Default value of RX prefetch threshold register. */
#define RX_HTHRESH 8 /**< Default value of RX host threshold register. */
#define RX_WTHRESH 4 /**< Default value of RX write-back threshold register. */
#define TX_PTHRESH 36 /**< Default value of TX prefetch threshold register. */
#define TX_HTHRESH 0 /**< Default value of TX host threshold register. */
#define TX_WTHRESH 0 /**< Default value of TX write-back threshold register. */
struct rte_eth_thresh rx_thresh = {
.pthresh = RX_PTHRESH,
.hthresh = RX_HTHRESH,
.wthresh = RX_WTHRESH,
};
struct rte_eth_thresh tx_thresh = {
.pthresh = TX_PTHRESH,
.hthresh = TX_HTHRESH,
.wthresh = TX_WTHRESH,
};
/*
* Configurable value of RX free threshold.
*/
uint16_t rx_free_thresh = 0; /* Immediately free RX descriptors by default. */
/*
* Configurable value of TX free threshold.
*/
uint16_t tx_free_thresh = 0; /* Use default values. */
/*
* Configurable value of TX RS bit threshold.
*/
uint16_t tx_rs_thresh = 0; /* Use default values. */
/*
* Receive Side Scaling (RSS) configuration.
*/
uint16_t rss_hf = ETH_RSS_IPV4 | ETH_RSS_IPV6; /* RSS IP by default. */
/*
* Port topology configuration
*/
uint16_t port_topology = PORT_TOPOLOGY_PAIRED; /* Ports are paired by default */
/*
* Ethernet device configuration.
*/
struct rte_eth_rxmode rx_mode = {
.max_rx_pkt_len = ETHER_MAX_LEN, /**< Default maximum frame length. */
.split_hdr_size = 0,
.header_split = 0, /**< Header Split disabled. */
.hw_ip_checksum = 0, /**< IP checksum offload disabled. */
.hw_vlan_filter = 1, /**< VLAN filtering enabled. */
.hw_vlan_strip = 1, /**< VLAN strip enabled. */
.hw_vlan_extend = 0, /**< Extended VLAN disabled. */
.jumbo_frame = 0, /**< Jumbo Frame Support disabled. */
.hw_strip_crc = 0, /**< CRC stripping by hardware disabled. */
};
struct rte_fdir_conf fdir_conf = {
.mode = RTE_FDIR_MODE_NONE,
.pballoc = RTE_FDIR_PBALLOC_64K,
.status = RTE_FDIR_REPORT_STATUS,
.flexbytes_offset = 0x6,
.drop_queue = 127,
};
static volatile int test_done = 1; /* stop packet forwarding when set to 1. */
struct queue_stats_mappings tx_queue_stats_mappings_array[MAX_TX_QUEUE_STATS_MAPPINGS];
struct queue_stats_mappings rx_queue_stats_mappings_array[MAX_RX_QUEUE_STATS_MAPPINGS];
struct queue_stats_mappings *tx_queue_stats_mappings = tx_queue_stats_mappings_array;
struct queue_stats_mappings *rx_queue_stats_mappings = rx_queue_stats_mappings_array;
uint16_t nb_tx_queue_stats_mappings = 0;
uint16_t nb_rx_queue_stats_mappings = 0;
/* Forward function declarations */
static void map_port_queue_stats_mapping_registers(uint8_t pi, struct rte_port *port);
/*
* Setup default configuration.
*/
static void
set_default_fwd_lcores_config(void)
{
unsigned int i;
unsigned int nb_lc;
nb_lc = 0;
for (i = 0; i < RTE_MAX_LCORE; i++) {
if (! rte_lcore_is_enabled(i))
continue;
if (i == rte_get_master_lcore())
continue;
fwd_lcores_cpuids[nb_lc++] = i;
}
nb_lcores = (lcoreid_t) nb_lc;
nb_cfg_lcores = nb_lcores;
nb_fwd_lcores = 1;
}
static void
set_def_peer_eth_addrs(void)
{
portid_t i;
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
peer_eth_addrs[i].addr_bytes[0] = ETHER_LOCAL_ADMIN_ADDR;
peer_eth_addrs[i].addr_bytes[5] = i;
}
}
static void
set_default_fwd_ports_config(void)
{
portid_t pt_id;
for (pt_id = 0; pt_id < nb_ports; pt_id++)
fwd_ports_ids[pt_id] = pt_id;
nb_cfg_ports = nb_ports;
nb_fwd_ports = nb_ports;
}
void
set_def_fwd_config(void)
{
set_default_fwd_lcores_config();
set_def_peer_eth_addrs();
set_default_fwd_ports_config();
}
/*
* Configuration initialisation done once at init time.
*/
struct mbuf_ctor_arg {
uint16_t seg_buf_offset; /**< offset of data in data segment of mbuf. */
uint16_t seg_buf_size; /**< size of data segment in mbuf. */
};
struct mbuf_pool_ctor_arg {
uint16_t seg_buf_size; /**< size of data segment in mbuf. */
};
static void
testpmd_mbuf_ctor(struct rte_mempool *mp,
void *opaque_arg,
void *raw_mbuf,
__attribute__((unused)) unsigned i)
{
struct mbuf_ctor_arg *mb_ctor_arg;
struct rte_mbuf *mb;
mb_ctor_arg = (struct mbuf_ctor_arg *) opaque_arg;
mb = (struct rte_mbuf *) raw_mbuf;
mb->pool = mp;
mb->buf_addr = (void *) ((char *)mb + mb_ctor_arg->seg_buf_offset);
mb->buf_physaddr = (uint64_t) (rte_mempool_virt2phy(mp, mb) +
mb_ctor_arg->seg_buf_offset);
mb->buf_len = mb_ctor_arg->seg_buf_size;
mb->type = RTE_MBUF_PKT;
mb->ol_flags = 0;
mb->pkt.data = (char *) mb->buf_addr + RTE_PKTMBUF_HEADROOM;
mb->pkt.nb_segs = 1;
mb->pkt.vlan_macip.data = 0;
mb->pkt.hash.rss = 0;
}
static void
testpmd_mbuf_pool_ctor(struct rte_mempool *mp,
void *opaque_arg)
{
struct mbuf_pool_ctor_arg *mbp_ctor_arg;
struct rte_pktmbuf_pool_private *mbp_priv;
if (mp->private_data_size < sizeof(struct rte_pktmbuf_pool_private)) {
printf("%s(%s) private_data_size %d < %d\n",
__func__, mp->name, (int) mp->private_data_size,
(int) sizeof(struct rte_pktmbuf_pool_private));
return;
}
mbp_ctor_arg = (struct mbuf_pool_ctor_arg *) opaque_arg;
mbp_priv = (struct rte_pktmbuf_pool_private *)
((char *)mp + sizeof(struct rte_mempool));
mbp_priv->mbuf_data_room_size = mbp_ctor_arg->seg_buf_size;
}
static void
mbuf_pool_create(uint16_t mbuf_seg_size, unsigned nb_mbuf,
unsigned int socket_id)
{
char pool_name[RTE_MEMPOOL_NAMESIZE];
struct rte_mempool *rte_mp;
struct mbuf_pool_ctor_arg mbp_ctor_arg;
struct mbuf_ctor_arg mb_ctor_arg;
uint32_t mb_size;
mbp_ctor_arg.seg_buf_size = (uint16_t) (RTE_PKTMBUF_HEADROOM +
mbuf_seg_size);
mb_ctor_arg.seg_buf_offset =
(uint16_t) CACHE_LINE_ROUNDUP(sizeof(struct rte_mbuf));
mb_ctor_arg.seg_buf_size = mbp_ctor_arg.seg_buf_size;
mb_size = mb_ctor_arg.seg_buf_offset + mb_ctor_arg.seg_buf_size;
mbuf_poolname_build(socket_id, pool_name, sizeof(pool_name));
rte_mp = rte_mempool_create(pool_name, nb_mbuf, (unsigned) mb_size,
(unsigned) mb_mempool_cache,
sizeof(struct rte_pktmbuf_pool_private),
testpmd_mbuf_pool_ctor, &mbp_ctor_arg,
testpmd_mbuf_ctor, &mb_ctor_arg,
socket_id, 0);
if (rte_mp == NULL) {
rte_exit(EXIT_FAILURE, "Creation of mbuf pool for socket %u failed\n",
socket_id);
}
}
static void
init_config(void)
{
struct rte_port *port;
struct rte_mempool *mbp;
unsigned int nb_mbuf_per_pool;
streamid_t sm_id;
lcoreid_t lc_id;
portid_t pt_id;
/* Configuration of logical cores. */
fwd_lcores = rte_zmalloc("testpmd: fwd_lcores",
sizeof(struct fwd_lcore *) * nb_lcores,
CACHE_LINE_SIZE);
if (fwd_lcores == NULL) {
rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_lcore *)) failed\n",
nb_lcores);
}
for (lc_id = 0; lc_id < nb_lcores; lc_id++) {
fwd_lcores[lc_id] = rte_zmalloc("testpmd: struct fwd_lcore",
sizeof(struct fwd_lcore),
CACHE_LINE_SIZE);
if (fwd_lcores[lc_id] == NULL) {
rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_lcore) failed\n");
}
fwd_lcores[lc_id]->cpuid_idx = lc_id;
}
/*
* Create pools of mbuf.
* If NUMA support is disabled, create a single pool of mbuf in
* socket 0 memory.
* Otherwise, create a pool of mbuf in the memory of sockets 0 and 1.
*/
nb_mbuf_per_pool = nb_rxd + (nb_lcores * mb_mempool_cache) +
nb_txd + MAX_PKT_BURST;
if (numa_support) {
nb_mbuf_per_pool = nb_mbuf_per_pool * (nb_ports >> 1);
mbuf_pool_create(mbuf_data_size, nb_mbuf_per_pool, 0);
mbuf_pool_create(mbuf_data_size, nb_mbuf_per_pool, 1);
} else {
nb_mbuf_per_pool = (nb_mbuf_per_pool * nb_ports);
mbuf_pool_create(mbuf_data_size, nb_mbuf_per_pool, 0);
}
/*
* Records which Mbuf pool to use by each logical core, if needed.
*/
for (lc_id = 0; lc_id < nb_lcores; lc_id++) {
mbp = mbuf_pool_find(rte_lcore_to_socket_id(lc_id));
if (mbp == NULL)
mbp = mbuf_pool_find(0);
fwd_lcores[lc_id]->mbp = mbp;
}
/* Configuration of Ethernet ports. */
ports = rte_zmalloc("testpmd: ports",
sizeof(struct rte_port) * nb_ports,
CACHE_LINE_SIZE);
if (ports == NULL) {
rte_exit(EXIT_FAILURE, "rte_zmalloc(%d struct rte_port) failed\n",
nb_ports);
}
port = ports;
for (pt_id = 0; pt_id < nb_ports; pt_id++, port++) {
rte_eth_dev_info_get(pt_id, &port->dev_info);
if (nb_rxq > port->dev_info.max_rx_queues) {
rte_exit(EXIT_FAILURE, "Port %d: max RX queues %d < nb_rxq %d\n",
(int) pt_id,
(int) port->dev_info.max_rx_queues,
(int) nb_rxq);
}
if (nb_txq > port->dev_info.max_tx_queues) {
rte_exit(EXIT_FAILURE, "Port %d: max TX queues %d < nb_txq %d\n",
(int) pt_id,
(int) port->dev_info.max_tx_queues,
(int) nb_txq);
}
if (numa_support)
port->socket_id = (pt_id < (nb_ports >> 1)) ? 0 : 1;
else
port->socket_id = 0;
}
/* Configuration of packet forwarding streams. */
nb_fwd_streams = (streamid_t) (nb_ports * nb_rxq);
fwd_streams = rte_zmalloc("testpmd: fwd_streams",
sizeof(struct fwd_stream *) * nb_fwd_streams,
CACHE_LINE_SIZE);
if (fwd_streams == NULL) {
rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_stream *)) failed\n",
nb_fwd_streams);
}
for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) {
fwd_streams[sm_id] = rte_zmalloc("testpmd: struct fwd_stream",
sizeof(struct fwd_stream),
CACHE_LINE_SIZE);
if (fwd_streams[sm_id] == NULL) {
rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_stream) failed\n");
}
}
}
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
static void
pkt_burst_stats_display(const char *rx_tx, struct pkt_burst_stats *pbs)
{
unsigned int total_burst;
unsigned int nb_burst;
unsigned int burst_stats[3];
uint16_t pktnb_stats[3];
uint16_t nb_pkt;
int burst_percent[3];
/*
* First compute the total number of packet bursts and the
* two highest numbers of bursts of the same number of packets.
*/
total_burst = 0;
burst_stats[0] = burst_stats[1] = burst_stats[2] = 0;
pktnb_stats[0] = pktnb_stats[1] = pktnb_stats[2] = 0;
for (nb_pkt = 0; nb_pkt < MAX_PKT_BURST; nb_pkt++) {
nb_burst = pbs->pkt_burst_spread[nb_pkt];
if (nb_burst == 0)
continue;
total_burst += nb_burst;
if (nb_burst > burst_stats[0]) {
burst_stats[1] = burst_stats[0];
pktnb_stats[1] = pktnb_stats[0];
burst_stats[0] = nb_burst;
pktnb_stats[0] = nb_pkt;
}
}
if (total_burst == 0)
return;
burst_percent[0] = (burst_stats[0] * 100) / total_burst;
printf(" %s-bursts : %u [%d%% of %d pkts", rx_tx, total_burst,
burst_percent[0], (int) pktnb_stats[0]);
if (burst_stats[0] == total_burst) {
printf("]\n");
return;
}
if (burst_stats[0] + burst_stats[1] == total_burst) {
printf(" + %d%% of %d pkts]\n",
100 - burst_percent[0], pktnb_stats[1]);
return;
}
burst_percent[1] = (burst_stats[1] * 100) / total_burst;
burst_percent[2] = 100 - (burst_percent[0] + burst_percent[1]);
if ((burst_percent[1] == 0) || (burst_percent[2] == 0)) {
printf(" + %d%% of others]\n", 100 - burst_percent[0]);
return;
}
printf(" + %d%% of %d pkts + %d%% of others]\n",
burst_percent[1], (int) pktnb_stats[1], burst_percent[2]);
}
#endif /* RTE_TEST_PMD_RECORD_BURST_STATS */
static void
fwd_port_stats_display(portid_t port_id, struct rte_eth_stats *stats)
{
struct rte_port *port;
static const char *fwd_stats_border = "----------------------";
port = &ports[port_id];
printf("\n %s Forward statistics for port %-2d %s\n",
fwd_stats_border, port_id, fwd_stats_border);
printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: "
"%-"PRIu64"\n",
stats->ipackets, stats->ierrors,
(uint64_t) (stats->ipackets + stats->ierrors));
if (cur_fwd_eng == &csum_fwd_engine)
printf(" Bad-ipcsum: %-14"PRIu64" Bad-l4csum: %-14"PRIu64" \n",
port->rx_bad_ip_csum, port->rx_bad_l4_csum);
printf(" TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: "
"%-"PRIu64"\n",
stats->opackets, port->tx_dropped,
(uint64_t) (stats->opackets + port->tx_dropped));
if (stats->rx_nombuf > 0)
printf(" RX-nombufs: %-14"PRIu64"\n", stats->rx_nombuf);
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
if (port->rx_stream)
pkt_burst_stats_display("RX", &port->rx_stream->rx_burst_stats);
if (port->tx_stream)
pkt_burst_stats_display("TX", &port->tx_stream->tx_burst_stats);
#endif
/* stats fdir */
if (fdir_conf.mode != RTE_FDIR_MODE_NONE)
printf(" Fdirmiss: %-14"PRIu64" Fdirmatch: %-14"PRIu64"\n",
stats->fdirmiss,
stats->fdirmatch);
printf(" %s--------------------------------%s\n",
fwd_stats_border, fwd_stats_border);
}
static void
fwd_stream_stats_display(streamid_t stream_id)
{
struct fwd_stream *fs;
static const char *fwd_top_stats_border = "-------";
fs = fwd_streams[stream_id];
if ((fs->rx_packets == 0) && (fs->tx_packets == 0) &&
(fs->fwd_dropped == 0))
return;
printf("\n %s Forward Stats for RX Port=%2d/Queue=%2d -> "
"TX Port=%2d/Queue=%2d %s\n",
fwd_top_stats_border, fs->rx_port, fs->rx_queue,
fs->tx_port, fs->tx_queue, fwd_top_stats_border);
printf(" RX-packets: %-14u TX-packets: %-14u TX-dropped: %-14u",
fs->rx_packets, fs->tx_packets, fs->fwd_dropped);
/* if checksum mode */
if (cur_fwd_eng == &csum_fwd_engine) {
printf(" RX- bad IP checksum: %-14u Rx- bad L4 checksum: %-14u\n",
fs->rx_bad_ip_csum, fs->rx_bad_l4_csum);
}
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
pkt_burst_stats_display("RX", &fs->rx_burst_stats);
pkt_burst_stats_display("TX", &fs->tx_burst_stats);
#endif
}
static void
flush_all_rx_queues(void)
{
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
portid_t rxp;
queueid_t rxq;
uint16_t nb_rx;
uint16_t i;
uint8_t j;
for (j = 0; j < 2; j++) {
for (rxp = 0; rxp < nb_ports; rxp++) {
for (rxq = 0; rxq < nb_rxq; rxq++) {
do {
nb_rx = rte_eth_rx_burst(rxp, rxq,
pkts_burst,
MAX_PKT_BURST);
for (i = 0; i < nb_rx; i++)
rte_pktmbuf_free(pkts_burst[i]);
} while (nb_rx > 0);
}
}
rte_delay_ms(10); /* wait 10 milli-seconds before retrying */
}
}
static void
run_pkt_fwd_on_lcore(struct fwd_lcore *fc, packet_fwd_t pkt_fwd)
{
struct fwd_stream **fsm;
streamid_t nb_fs;
streamid_t sm_id;
fsm = &fwd_streams[fc->stream_idx];
nb_fs = fc->stream_nb;
do {
for (sm_id = 0; sm_id < nb_fs; sm_id++)
(*pkt_fwd)(fsm[sm_id]);
} while (! fc->stopped);
}
static int
start_pkt_forward_on_core(void *fwd_arg)
{
run_pkt_fwd_on_lcore((struct fwd_lcore *) fwd_arg,
cur_fwd_config.fwd_eng->packet_fwd);
return 0;
}
/*
* Run the TXONLY packet forwarding engine to send a single burst of packets.
* Used to start communication flows in network loopback test configurations.
*/
static int
run_one_txonly_burst_on_core(void *fwd_arg)
{
struct fwd_lcore *fwd_lc;
struct fwd_lcore tmp_lcore;
fwd_lc = (struct fwd_lcore *) fwd_arg;
tmp_lcore = *fwd_lc;
tmp_lcore.stopped = 1;
run_pkt_fwd_on_lcore(&tmp_lcore, tx_only_engine.packet_fwd);
return 0;
}
/*
* Launch packet forwarding:
* - Setup per-port forwarding context.
* - launch logical cores with their forwarding configuration.
*/
static void
launch_packet_forwarding(lcore_function_t *pkt_fwd_on_lcore)
{
port_fwd_begin_t port_fwd_begin;
unsigned int i;
unsigned int lc_id;
int diag;
port_fwd_begin = cur_fwd_config.fwd_eng->port_fwd_begin;
if (port_fwd_begin != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++)
(*port_fwd_begin)(fwd_ports_ids[i]);
}
for (i = 0; i < cur_fwd_config.nb_fwd_lcores; i++) {
lc_id = fwd_lcores_cpuids[i];
if ((interactive == 0) || (lc_id != rte_lcore_id())) {
fwd_lcores[i]->stopped = 0;
diag = rte_eal_remote_launch(pkt_fwd_on_lcore,
fwd_lcores[i], lc_id);
if (diag != 0)
printf("launch lcore %u failed - diag=%d\n",
lc_id, diag);
}
}
}
/*
* Launch packet forwarding configuration.
*/
void
start_packet_forwarding(int with_tx_first)
{
port_fwd_begin_t port_fwd_begin;
port_fwd_end_t port_fwd_end;
struct rte_port *port;
unsigned int i;
portid_t pt_id;
streamid_t sm_id;
if (test_done == 0) {
printf("Packet forwarding already started\n");
return;
}
test_done = 0;
flush_all_rx_queues();
fwd_config_setup();
rxtx_config_display();
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
pt_id = fwd_ports_ids[i];
port = &ports[pt_id];
rte_eth_stats_get(pt_id, &port->stats);
port->tx_dropped = 0;
}
for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
fwd_streams[sm_id]->rx_packets = 0;
fwd_streams[sm_id]->tx_packets = 0;
fwd_streams[sm_id]->fwd_dropped = 0;
fwd_streams[sm_id]->rx_bad_ip_csum = 0;
fwd_streams[sm_id]->rx_bad_l4_csum = 0;
#ifdef RTE_TEST_PMD_RECORD_BURST_STATS
memset(&fwd_streams[sm_id]->rx_burst_stats, 0,
sizeof(fwd_streams[sm_id]->rx_burst_stats));
memset(&fwd_streams[sm_id]->tx_burst_stats, 0,
sizeof(fwd_streams[sm_id]->tx_burst_stats));
#endif
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
fwd_streams[sm_id]->core_cycles = 0;
#endif
}
if (with_tx_first) {
port_fwd_begin = tx_only_engine.port_fwd_begin;
if (port_fwd_begin != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++)
(*port_fwd_begin)(fwd_ports_ids[i]);
}
launch_packet_forwarding(run_one_txonly_burst_on_core);
rte_eal_mp_wait_lcore();
port_fwd_end = tx_only_engine.port_fwd_end;
if (port_fwd_end != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++)
(*port_fwd_end)(fwd_ports_ids[i]);
}
}
launch_packet_forwarding(start_pkt_forward_on_core);
}
void
stop_packet_forwarding(void)
{
struct rte_eth_stats stats;
struct rte_port *port;
port_fwd_end_t port_fwd_end;
int i;
portid_t pt_id;
streamid_t sm_id;
lcoreid_t lc_id;
uint64_t total_recv;
uint64_t total_xmit;
uint64_t total_rx_dropped;
uint64_t total_tx_dropped;
uint64_t total_rx_nombuf;
uint64_t tx_dropped;
uint64_t rx_bad_ip_csum;
uint64_t rx_bad_l4_csum;
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
uint64_t fwd_cycles;
#endif
static const char *acc_stats_border = "+++++++++++++++";
if (test_done) {
printf("Packet forwarding not started\n");
return;
}
printf("Telling cores to stop...");
for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++)
fwd_lcores[lc_id]->stopped = 1;
printf("\nWaiting for lcores to finish...\n");
rte_eal_mp_wait_lcore();
port_fwd_end = cur_fwd_config.fwd_eng->port_fwd_end;
if (port_fwd_end != NULL) {
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
pt_id = fwd_ports_ids[i];
(*port_fwd_end)(pt_id);
}
}
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
fwd_cycles = 0;
#endif
for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
if (cur_fwd_config.nb_fwd_streams >
cur_fwd_config.nb_fwd_ports) {
fwd_stream_stats_display(sm_id);
ports[fwd_streams[sm_id]->tx_port].tx_stream = NULL;
ports[fwd_streams[sm_id]->rx_port].rx_stream = NULL;
} else {
ports[fwd_streams[sm_id]->tx_port].tx_stream =
fwd_streams[sm_id];
ports[fwd_streams[sm_id]->rx_port].rx_stream =
fwd_streams[sm_id];
}
tx_dropped = ports[fwd_streams[sm_id]->tx_port].tx_dropped;
tx_dropped = (uint64_t) (tx_dropped +
fwd_streams[sm_id]->fwd_dropped);
ports[fwd_streams[sm_id]->tx_port].tx_dropped = tx_dropped;
rx_bad_ip_csum = ports[fwd_streams[sm_id]->rx_port].rx_bad_ip_csum;
rx_bad_ip_csum = (uint64_t) (rx_bad_ip_csum +
fwd_streams[sm_id]->rx_bad_ip_csum);
ports[fwd_streams[sm_id]->rx_port].rx_bad_ip_csum = rx_bad_ip_csum;
rx_bad_l4_csum = ports[fwd_streams[sm_id]->rx_port].rx_bad_l4_csum;
rx_bad_l4_csum = (uint64_t) (rx_bad_l4_csum +
fwd_streams[sm_id]->rx_bad_l4_csum);
ports[fwd_streams[sm_id]->rx_port].rx_bad_l4_csum = rx_bad_l4_csum;
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
fwd_cycles = (uint64_t) (fwd_cycles +
fwd_streams[sm_id]->core_cycles);
#endif
}
total_recv = 0;
total_xmit = 0;
total_rx_dropped = 0;
total_tx_dropped = 0;
total_rx_nombuf = 0;
for (i = 0; i < ((cur_fwd_config.nb_fwd_ports + 1) & ~0x1); i++) {
pt_id = fwd_ports_ids[i];
port = &ports[pt_id];
rte_eth_stats_get(pt_id, &stats);
stats.ipackets -= port->stats.ipackets;
port->stats.ipackets = 0;
stats.opackets -= port->stats.opackets;
port->stats.opackets = 0;
stats.ibytes -= port->stats.ibytes;
port->stats.ibytes = 0;
stats.obytes -= port->stats.obytes;
port->stats.obytes = 0;
stats.ierrors -= port->stats.ierrors;
port->stats.ierrors = 0;
stats.oerrors -= port->stats.oerrors;
port->stats.oerrors = 0;
stats.rx_nombuf -= port->stats.rx_nombuf;
port->stats.rx_nombuf = 0;
stats.fdirmatch -= port->stats.fdirmatch;
port->stats.rx_nombuf = 0;
stats.fdirmiss -= port->stats.fdirmiss;
port->stats.rx_nombuf = 0;
total_recv += stats.ipackets;
total_xmit += stats.opackets;
total_rx_dropped += stats.ierrors;
total_tx_dropped += port->tx_dropped;
total_rx_nombuf += stats.rx_nombuf;
fwd_port_stats_display(pt_id, &stats);
}
printf("\n %s Accumulated forward statistics for all ports"
"%s\n",
acc_stats_border, acc_stats_border);
printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: "
"%-"PRIu64"\n"
" TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: "
"%-"PRIu64"\n",
total_recv, total_rx_dropped, total_recv + total_rx_dropped,
total_xmit, total_tx_dropped, total_xmit + total_tx_dropped);
if (total_rx_nombuf > 0)
printf(" RX-nombufs: %-14"PRIu64"\n", total_rx_nombuf);
printf(" %s++++++++++++++++++++++++++++++++++++++++++++++"
"%s\n",
acc_stats_border, acc_stats_border);
#ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
if (total_recv > 0)
printf("\n CPU cycles/packet=%u (total cycles="
"%"PRIu64" / total RX packets=%"PRIu64")\n",
(unsigned int)(fwd_cycles / total_recv),
fwd_cycles, total_recv);
#endif
printf("\nDone.\n");
test_done = 1;
}
void
pmd_test_exit(void)
{
portid_t pt_id;
for (pt_id = 0; pt_id < nb_ports; pt_id++) {
printf("Stopping port %d...", pt_id);
fflush(stdout);
rte_eth_dev_close(pt_id);
printf("done\n");
}
printf("bye...\n");
}
typedef void (*cmd_func_t)(void);
struct pmd_test_command {
const char *cmd_name;
cmd_func_t cmd_func;
};
#define PMD_TEST_CMD_NB (sizeof(pmd_test_menu) / sizeof(pmd_test_menu[0]))
static void
fatal_init_error(const char *func_name, uint8_t port_id, int diag)
{
rte_panic("%s(port_id=%d) failed - diag=%d\n",
func_name, port_id, diag);
}
static void
init_ports(void)
{
struct rte_eth_link link;
struct rte_eth_conf port_conf = {
.intr_conf = {
.lsc = 0,
},
};
struct rte_eth_rxconf rx_conf;
struct rte_eth_txconf tx_conf;
struct rte_port *port;
unsigned int sock_id;
portid_t pi;
queueid_t qi;
int diag;
port_conf.rxmode = rx_mode;
port_conf.fdir_conf = fdir_conf;
if (nb_rxq > 0) { /* configure RSS */
port_conf.rx_adv_conf.rss_conf.rss_key = NULL;
/* use default hash key */
port_conf.rx_adv_conf.rss_conf.rss_hf = rss_hf;
} else
port_conf.rx_adv_conf.rss_conf.rss_hf = 0;
rx_conf.rx_thresh = rx_thresh;
rx_conf.rx_free_thresh = rx_free_thresh;
tx_conf.tx_thresh = tx_thresh;
tx_conf.tx_rs_thresh = tx_rs_thresh;
tx_conf.tx_free_thresh = tx_free_thresh;
for (pi = 0; pi < nb_ports; pi++) {
port = &ports[pi];
memcpy(&port->dev_conf, &port_conf, sizeof(port_conf));
sock_id = port->socket_id;
printf("Initializing port %d... ", pi);
fflush(stdout);
diag = rte_eth_dev_configure(pi, nb_rxq, nb_txq, &port_conf);
if (diag != 0) {
fatal_init_error("rte_eth_dev_configure", pi, diag);
/* NOT REACHED */
}
rte_eth_macaddr_get(pi, &port->eth_addr);
for (qi = 0; qi < nb_txq; qi++) {
diag = rte_eth_tx_queue_setup(pi, qi, nb_txd,
sock_id,
&tx_conf);
if (diag != 0) {
fatal_init_error("rte_eth_tx_queue_setup",
pi, diag);
/* NOT REACHED */
}
}
for (qi = 0; qi < nb_rxq; qi++) {
diag = rte_eth_rx_queue_setup(pi, qi, nb_rxd, sock_id,
&rx_conf,
mbuf_pool_find(sock_id));
if (diag != 0) {
fatal_init_error("rte_eth_rx_queue_setup",
pi , diag);
/* NOT REACHED */
}
}
/* Start device */
diag = rte_eth_dev_start(pi);
if (diag != 0) {
fatal_init_error("rte_eth_dev_start", pi, diag);
/* NOT REACHED */
}
printf("done: ");
rte_eth_link_get(pi, &link);
if (link.link_status) {
printf(" Link Up - speed %u Mbps - %s\n",
(unsigned) link.link_speed,
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex\n"));
} else {
printf(" Link Down\n");
}
/*
* If enabled, put device in promiscuous mode.
* This allows the PMD test in IO forwarding mode to forward
* packets to itself through 2 cross-connected ports of the
* target machine.
*/
if (promiscuous_on)
rte_eth_promiscuous_enable(pi);
}
}
#ifdef RTE_EXEC_ENV_BAREMETAL
#define main _main
#endif
int
main(int argc, char** argv)
{
int diag;
diag = rte_eal_init(argc, argv);
if (diag < 0)
rte_panic("Cannot init EAL\n");
if (rte_pmd_init_all())
rte_panic("Cannot init PMD\n");
if (rte_eal_pci_probe())
rte_panic("Cannot probe PCI\n");
nb_ports = (portid_t) rte_eth_dev_count();
if (nb_ports == 0)
rte_exit(EXIT_FAILURE, "No probed ethernet devices - check that "
"CONFIG_RTE_LIBRTE_IGB_PMD=y and that "
"CONFIG_RTE_LIBRTE_EM_PMD=y and that "
"CONFIG_RTE_LIBRTE_IXGBE_PMD=y in your "
"configuration file\n");
set_def_fwd_config();
if (nb_lcores == 0)
rte_panic("Empty set of forwarding logical cores - check the "
"core mask supplied in the command parameters\n");
argc -= diag;
argv += diag;
if (argc > 1)
launch_args_parse(argc, argv);
if (nb_rxq > nb_txq)
printf("Warning: nb_rxq=%d enables RSS configuration, "
"but nb_txq=%d will prevent to fully test it.\n",
nb_rxq, nb_txq);
init_config();
init_ports();
if (interactive == 1)
prompt();
else {
char c;
int rc;
printf("No commandline core given, start packet forwarding\n");
start_packet_forwarding(0);
printf("Press enter to exit\n");
rc = read(0, &c, 1);
if (rc < 0)
return 1;
}
return 0;
}