numam-dpdk/drivers/bus/fslmc/portal/dpaa2_hw_pvt.h
Hemant Agrawal f4435e380d bus/fslmc: fix build with 0 headroom
When using RTE_PKTMBUF_HEADROOM as 0, dpaa driver throws compilation error
error "Annotation requirement is more than RTE_PKTMBUF_HEADROOM"

This patch change it into run-time check.

Bugzilla ID: 335
Fixes: beb2a7865d ("bus/fslmc: define hardware annotation area size")
Cc: stable@dpdk.org

Signed-off-by: Hemant Agrawal <hemant.agrawal@nxp.com>
2019-08-05 19:24:27 +02:00

421 lines
13 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2016 Freescale Semiconductor, Inc. All rights reserved.
* Copyright 2016-2018 NXP
*
*/
#ifndef _DPAA2_HW_PVT_H_
#define _DPAA2_HW_PVT_H_
#include <rte_eventdev.h>
#include <dpaax_iova_table.h>
#include <mc/fsl_mc_sys.h>
#include <fsl_qbman_portal.h>
#ifndef false
#define false 0
#endif
#ifndef true
#define true 1
#endif
#define lower_32_bits(x) ((uint32_t)(x))
#define upper_32_bits(x) ((uint32_t)(((x) >> 16) >> 16))
#ifndef VLAN_TAG_SIZE
#define VLAN_TAG_SIZE 4 /** < Vlan Header Length */
#endif
/* Maximum number of slots available in TX ring */
#define MAX_TX_RING_SLOTS 32
#define MAX_EQ_RESP_ENTRIES (MAX_TX_RING_SLOTS + 1)
/* Maximum number of slots available in RX ring */
#define DPAA2_EQCR_RING_SIZE 8
/* Maximum number of slots available in RX ring on LX2 */
#define DPAA2_LX2_EQCR_RING_SIZE 32
/* Maximum number of slots available in RX ring */
#define DPAA2_DQRR_RING_SIZE 16
/* Maximum number of slots available in RX ring on LX2 */
#define DPAA2_LX2_DQRR_RING_SIZE 32
/* EQCR shift to get EQCR size (2 >> 3) = 8 for LS2/LS2 */
#define DPAA2_EQCR_SHIFT 3
/* EQCR shift to get EQCR size for LX2 (2 >> 5) = 32 for LX2 */
#define DPAA2_LX2_EQCR_SHIFT 5
/* Flag to determine an ordered queue mbuf */
#define DPAA2_ENQUEUE_FLAG_ORP (1ULL << 30)
/* ORP ID shift and mask */
#define DPAA2_EQCR_OPRID_SHIFT 16
#define DPAA2_EQCR_OPRID_MASK 0x3FFF0000
/* Sequence number shift and mask */
#define DPAA2_EQCR_SEQNUM_SHIFT 0
#define DPAA2_EQCR_SEQNUM_MASK 0x0000FFFF
#define DPAA2_SWP_CENA_REGION 0
#define DPAA2_SWP_CINH_REGION 1
#define DPAA2_SWP_CENA_MEM_REGION 2
#define MC_PORTAL_INDEX 0
#define NUM_DPIO_REGIONS 2
#define NUM_DQS_PER_QUEUE 2
/* Maximum release/acquire from QBMAN */
#define DPAA2_MBUF_MAX_ACQ_REL 7
#define DPAA2_MEMPOOL_OPS_NAME "dpaa2"
#define MAX_BPID 256
#define DPAA2_MBUF_HW_ANNOTATION 64
#define DPAA2_FD_PTA_SIZE 0
/* we will re-use the HEADROOM for annotation in RX */
#define DPAA2_HW_BUF_RESERVE 0
#define DPAA2_PACKET_LAYOUT_ALIGN 64 /*changing from 256 */
#define DPAA2_DPCI_MAX_QUEUES 2
struct dpaa2_queue;
struct eqresp_metadata {
struct dpaa2_queue *dpaa2_q;
struct rte_mempool *mp;
};
struct dpaa2_dpio_dev {
TAILQ_ENTRY(dpaa2_dpio_dev) next;
/**< Pointer to Next device instance */
uint16_t index; /**< Index of a instance in the list */
rte_atomic16_t ref_count;
/**< How many thread contexts are sharing this.*/
uint16_t eqresp_ci;
uint16_t eqresp_pi;
struct qbman_result *eqresp;
struct eqresp_metadata *eqresp_meta;
struct fsl_mc_io *dpio; /** handle to DPIO portal object */
uint16_t token;
struct qbman_swp *sw_portal; /** SW portal object */
const struct qbman_result *dqrr[4];
/**< DQRR Entry for this SW portal */
void *mc_portal; /**< MC Portal for configuring this device */
uintptr_t qbman_portal_ce_paddr;
/**< Physical address of Cache Enabled Area */
uintptr_t ce_size; /**< Size of the CE region */
uintptr_t qbman_portal_ci_paddr;
/**< Physical address of Cache Inhibit Area */
uintptr_t ci_size; /**< Size of the CI region */
struct rte_intr_handle intr_handle; /* Interrupt related info */
int32_t epoll_fd; /**< File descriptor created for interrupt polling */
int32_t hw_id; /**< An unique ID of this DPIO device instance */
};
struct dpaa2_dpbp_dev {
TAILQ_ENTRY(dpaa2_dpbp_dev) next;
/**< Pointer to Next device instance */
struct fsl_mc_io dpbp; /** handle to DPBP portal object */
uint16_t token;
rte_atomic16_t in_use;
uint32_t dpbp_id; /*HW ID for DPBP object */
};
struct queue_storage_info_t {
struct qbman_result *dq_storage[NUM_DQS_PER_QUEUE];
struct qbman_result *active_dqs;
uint8_t active_dpio_id;
uint8_t toggle;
uint8_t last_num_pkts;
};
struct dpaa2_queue;
typedef void (dpaa2_queue_cb_dqrr_t)(struct qbman_swp *swp,
const struct qbman_fd *fd,
const struct qbman_result *dq,
struct dpaa2_queue *rxq,
struct rte_event *ev);
typedef void (dpaa2_queue_cb_eqresp_free_t)(uint16_t eqresp_ci);
struct dpaa2_queue {
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
union {
struct rte_eth_dev_data *eth_data;
struct rte_cryptodev_data *crypto_data;
};
int32_t eventfd; /*!< Event Fd of this queue */
uint32_t fqid; /*!< Unique ID of this queue */
uint8_t tc_index; /*!< traffic class identifier */
uint16_t flow_id; /*!< To be used by DPAA2 frmework */
uint64_t rx_pkts;
uint64_t tx_pkts;
uint64_t err_pkts;
union {
struct queue_storage_info_t *q_storage;
struct qbman_result *cscn;
};
struct rte_event ev;
dpaa2_queue_cb_dqrr_t *cb;
dpaa2_queue_cb_eqresp_free_t *cb_eqresp_free;
struct dpaa2_bp_info *bp_array;
};
struct swp_active_dqs {
struct qbman_result *global_active_dqs;
uint64_t reserved[7];
};
#define NUM_MAX_SWP 64
extern struct swp_active_dqs rte_global_active_dqs_list[NUM_MAX_SWP];
struct dpaa2_dpci_dev {
TAILQ_ENTRY(dpaa2_dpci_dev) next;
/**< Pointer to Next device instance */
struct fsl_mc_io dpci; /** handle to DPCI portal object */
uint16_t token;
rte_atomic16_t in_use;
uint32_t dpci_id; /*HW ID for DPCI object */
struct dpaa2_queue rx_queue[DPAA2_DPCI_MAX_QUEUES];
struct dpaa2_queue tx_queue[DPAA2_DPCI_MAX_QUEUES];
};
/*! Global MCP list */
extern void *(*rte_mcp_ptr_list);
/* Refer to Table 7-3 in SEC BG */
struct qbman_fle {
uint32_t addr_lo;
uint32_t addr_hi;
uint32_t length;
/* FMT must be 00, MSB is final bit */
uint32_t fin_bpid_offset;
uint32_t frc;
uint32_t reserved[3]; /* Not used currently */
};
struct qbman_sge {
uint32_t addr_lo;
uint32_t addr_hi;
uint32_t length;
uint32_t fin_bpid_offset;
};
/* There are three types of frames: Single, Scatter Gather and Frame Lists */
enum qbman_fd_format {
qbman_fd_single = 0,
qbman_fd_list,
qbman_fd_sg
};
/*Macros to define operations on FD*/
#define DPAA2_SET_FD_ADDR(fd, addr) do { \
(fd)->simple.addr_lo = lower_32_bits((size_t)(addr)); \
(fd)->simple.addr_hi = upper_32_bits((uint64_t)(addr)); \
} while (0)
#define DPAA2_SET_FD_LEN(fd, length) ((fd)->simple.len = length)
#define DPAA2_SET_FD_BPID(fd, bpid) ((fd)->simple.bpid_offset |= bpid)
#define DPAA2_SET_ONLY_FD_BPID(fd, bpid) \
((fd)->simple.bpid_offset = bpid)
#define DPAA2_SET_FD_IVP(fd) (((fd)->simple.bpid_offset |= 0x00004000))
#define DPAA2_SET_FD_OFFSET(fd, offset) \
(((fd)->simple.bpid_offset |= (uint32_t)(offset) << 16))
#define DPAA2_SET_FD_INTERNAL_JD(fd, len) \
((fd)->simple.frc = (0x80000000 | (len)))
#define DPAA2_GET_FD_FRC_PARSE_SUM(fd) \
((uint16_t)(((fd)->simple.frc & 0xffff0000) >> 16))
#define DPAA2_RESET_FD_FRC(fd) ((fd)->simple.frc = 0)
#define DPAA2_SET_FD_FRC(fd, _frc) ((fd)->simple.frc = _frc)
#define DPAA2_RESET_FD_CTRL(fd) ((fd)->simple.ctrl = 0)
#define DPAA2_SET_FD_ASAL(fd, asal) ((fd)->simple.ctrl |= (asal << 16))
#define DPAA2_RESET_FD_FLC(fd) do { \
(fd)->simple.flc_lo = 0; \
(fd)->simple.flc_hi = 0; \
} while (0)
#define DPAA2_SET_FD_FLC(fd, addr) do { \
(fd)->simple.flc_lo = lower_32_bits((size_t)(addr)); \
(fd)->simple.flc_hi = upper_32_bits((uint64_t)(addr)); \
} while (0)
#define DPAA2_SET_FLE_INTERNAL_JD(fle, len) ((fle)->frc = (0x80000000 | (len)))
#define DPAA2_GET_FLE_ADDR(fle) \
(size_t)((((uint64_t)((fle)->addr_hi)) << 32) + (fle)->addr_lo)
#define DPAA2_SET_FLE_ADDR(fle, addr) do { \
(fle)->addr_lo = lower_32_bits((size_t)addr); \
(fle)->addr_hi = upper_32_bits((uint64_t)addr); \
} while (0)
#define DPAA2_GET_FLE_CTXT(fle) \
((((uint64_t)((fle)->reserved[1])) << 32) + (fle)->reserved[0])
#define DPAA2_FLE_SAVE_CTXT(fle, addr) do { \
(fle)->reserved[0] = lower_32_bits((size_t)addr); \
(fle)->reserved[1] = upper_32_bits((uint64_t)addr); \
} while (0)
#define DPAA2_SET_FLE_OFFSET(fle, offset) \
((fle)->fin_bpid_offset |= (uint32_t)(offset) << 16)
#define DPAA2_SET_FLE_LEN(fle, len) ((fle)->length = len)
#define DPAA2_SET_FLE_BPID(fle, bpid) ((fle)->fin_bpid_offset |= (size_t)bpid)
#define DPAA2_GET_FLE_BPID(fle) ((fle)->fin_bpid_offset & 0x000000ff)
#define DPAA2_SET_FLE_FIN(fle) ((fle)->fin_bpid_offset |= 1 << 31)
#define DPAA2_SET_FLE_IVP(fle) (((fle)->fin_bpid_offset |= 0x00004000))
#define DPAA2_SET_FLE_BMT(fle) (((fle)->fin_bpid_offset |= 0x00008000))
#define DPAA2_SET_FD_COMPOUND_FMT(fd) \
((fd)->simple.bpid_offset |= (uint32_t)1 << 28)
#define DPAA2_GET_FD_ADDR(fd) \
(((((uint64_t)((fd)->simple.addr_hi)) << 32) + (fd)->simple.addr_lo))
#define DPAA2_GET_FD_LEN(fd) ((fd)->simple.len)
#define DPAA2_GET_FD_BPID(fd) (((fd)->simple.bpid_offset & 0x00003FFF))
#define DPAA2_GET_FD_IVP(fd) (((fd)->simple.bpid_offset & 0x00004000) >> 14)
#define DPAA2_GET_FD_OFFSET(fd) (((fd)->simple.bpid_offset & 0x0FFF0000) >> 16)
#define DPAA2_GET_FD_FRC(fd) ((fd)->simple.frc)
#define DPAA2_GET_FD_FLC(fd) \
(((uint64_t)((fd)->simple.flc_hi) << 32) + (fd)->simple.flc_lo)
#define DPAA2_GET_FD_ERR(fd) ((fd)->simple.bpid_offset & 0x000000FF)
#define DPAA2_GET_FLE_OFFSET(fle) (((fle)->fin_bpid_offset & 0x0FFF0000) >> 16)
#define DPAA2_SET_FLE_SG_EXT(fle) ((fle)->fin_bpid_offset |= (uint64_t)1 << 29)
#define DPAA2_IS_SET_FLE_SG_EXT(fle) \
(((fle)->fin_bpid_offset & ((uint64_t)1 << 29)) ? 1 : 0)
#define DPAA2_INLINE_MBUF_FROM_BUF(buf, meta_data_size) \
((struct rte_mbuf *)((size_t)(buf) - (meta_data_size)))
#define DPAA2_ASAL_VAL (DPAA2_MBUF_HW_ANNOTATION / 64)
#define DPAA2_FD_SET_FORMAT(fd, format) do { \
(fd)->simple.bpid_offset &= 0xCFFFFFFF; \
(fd)->simple.bpid_offset |= (uint32_t)format << 28; \
} while (0)
#define DPAA2_FD_GET_FORMAT(fd) (((fd)->simple.bpid_offset >> 28) & 0x3)
#define DPAA2_SG_SET_FINAL(sg, fin) do { \
(sg)->fin_bpid_offset &= 0x7FFFFFFF; \
(sg)->fin_bpid_offset |= (uint32_t)fin << 31; \
} while (0)
#define DPAA2_SG_IS_FINAL(sg) (!!((sg)->fin_bpid_offset >> 31))
/* Only Enqueue Error responses will be
* pushed on FQID_ERR of Enqueue FQ
*/
#define DPAA2_EQ_RESP_ERR_FQ 0
/* All Enqueue responses will be pushed on address
* set with qbman_eq_desc_set_response
*/
#define DPAA2_EQ_RESP_ALWAYS 1
/* Various structures representing contiguous memory maps */
struct dpaa2_memseg {
TAILQ_ENTRY(dpaa2_memseg) next;
char *vaddr;
rte_iova_t iova;
size_t len;
};
TAILQ_HEAD(dpaa2_memseg_list, dpaa2_memseg);
extern struct dpaa2_memseg_list rte_dpaa2_memsegs;
#ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA
extern uint8_t dpaa2_virt_mode;
static void *dpaa2_mem_ptov(phys_addr_t paddr) __attribute__((unused));
static void *dpaa2_mem_ptov(phys_addr_t paddr)
{
void *va;
if (dpaa2_virt_mode)
return (void *)(size_t)paddr;
va = (void *)dpaax_iova_table_get_va(paddr);
if (likely(va != NULL))
return va;
/* If not, Fallback to full memseg list searching */
va = rte_mem_iova2virt(paddr);
return va;
}
static phys_addr_t dpaa2_mem_vtop(uint64_t vaddr) __attribute__((unused));
static phys_addr_t dpaa2_mem_vtop(uint64_t vaddr)
{
const struct rte_memseg *memseg;
if (dpaa2_virt_mode)
return vaddr;
memseg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL);
if (memseg)
return memseg->phys_addr + RTE_PTR_DIFF(vaddr, memseg->addr);
return (size_t)NULL;
}
/**
* When we are using Physical addresses as IO Virtual Addresses,
* Need to call conversion routines dpaa2_mem_vtop & dpaa2_mem_ptov
* wherever required.
* These routines are called with help of below MACRO's
*/
#define DPAA2_MBUF_VADDR_TO_IOVA(mbuf) ((mbuf)->buf_iova)
/**
* macro to convert Virtual address to IOVA
*/
#define DPAA2_VADDR_TO_IOVA(_vaddr) dpaa2_mem_vtop((size_t)(_vaddr))
/**
* macro to convert IOVA to Virtual address
*/
#define DPAA2_IOVA_TO_VADDR(_iova) dpaa2_mem_ptov((size_t)(_iova))
/**
* macro to convert modify the memory containing IOVA to Virtual address
*/
#define DPAA2_MODIFY_IOVA_TO_VADDR(_mem, _type) \
{_mem = (_type)(dpaa2_mem_ptov((size_t)(_mem))); }
#else /* RTE_LIBRTE_DPAA2_USE_PHYS_IOVA */
#define DPAA2_MBUF_VADDR_TO_IOVA(mbuf) ((mbuf)->buf_addr)
#define DPAA2_VADDR_TO_IOVA(_vaddr) (_vaddr)
#define DPAA2_IOVA_TO_VADDR(_iova) (_iova)
#define DPAA2_MODIFY_IOVA_TO_VADDR(_mem, _type)
#endif /* RTE_LIBRTE_DPAA2_USE_PHYS_IOVA */
static inline
int check_swp_active_dqs(uint16_t dpio_index)
{
if (rte_global_active_dqs_list[dpio_index].global_active_dqs != NULL)
return 1;
return 0;
}
static inline
void clear_swp_active_dqs(uint16_t dpio_index)
{
rte_global_active_dqs_list[dpio_index].global_active_dqs = NULL;
}
static inline
struct qbman_result *get_swp_active_dqs(uint16_t dpio_index)
{
return rte_global_active_dqs_list[dpio_index].global_active_dqs;
}
static inline
void set_swp_active_dqs(uint16_t dpio_index, struct qbman_result *dqs)
{
rte_global_active_dqs_list[dpio_index].global_active_dqs = dqs;
}
struct dpaa2_dpbp_dev *dpaa2_alloc_dpbp_dev(void);
void dpaa2_free_dpbp_dev(struct dpaa2_dpbp_dev *dpbp);
int dpaa2_dpbp_supported(void);
struct dpaa2_dpci_dev *rte_dpaa2_alloc_dpci_dev(void);
void rte_dpaa2_free_dpci_dev(struct dpaa2_dpci_dev *dpci);
#endif