numam-dpdk/lib/librte_cryptodev/rte_cryptodev.h
Thomas Monjalon d0228ccbe2 mbuf_offload: mark experimental state
Cryptodev was marked experimental and mbuf_offload depends on it.
The mbuf_offload library is one of the crypto area which requires
some discussions before having a stable API.

The experimental mark is also added to rte_cryptodev_configure()
to be sure one cannot miss it.

Fixes: 66874e55f550 ("cryptodev: mark experimental state")

Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2015-12-12 00:34:57 +01:00

657 lines
20 KiB
C

/*-
*
* Copyright(c) 2015 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _RTE_CRYPTODEV_H_
#define _RTE_CRYPTODEV_H_
/**
* @file rte_cryptodev.h
*
* RTE Cryptographic Device APIs
*
* Defines RTE Crypto Device APIs for the provisioning of cipher and
* authentication operations.
*
* @warning
* @b EXPERIMENTAL: this API may change without prior notice
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "stddef.h"
#include "rte_crypto.h"
#include "rte_dev.h"
#define CRYPTODEV_NAME_NULL_PMD ("cryptodev_null_pmd")
/**< Null crypto PMD device name */
#define CRYPTODEV_NAME_AESNI_MB_PMD ("cryptodev_aesni_mb_pmd")
/**< AES-NI Multi buffer PMD device name */
#define CRYPTODEV_NAME_QAT_PMD ("cryptodev_qat_pmd")
/**< Intel QAT PMD device name */
/** Crypto device type */
enum rte_cryptodev_type {
RTE_CRYPTODEV_NULL_PMD = 1, /**< Null crypto PMD */
RTE_CRYPTODEV_AESNI_MB_PMD, /**< AES-NI multi buffer PMD */
RTE_CRYPTODEV_QAT_PMD, /**< QAT PMD */
};
/* Logging Macros */
#define CDEV_LOG_ERR(fmt, args...) \
RTE_LOG(ERR, CRYPTODEV, "%s() line %u: " fmt "\n", \
__func__, __LINE__, ## args)
#define CDEV_PMD_LOG_ERR(dev, fmt, args...) \
RTE_LOG(ERR, CRYPTODEV, "[%s] %s() line %u: " fmt "\n", \
dev, __func__, __LINE__, ## args)
#ifdef RTE_LIBRTE_CRYPTODEV_DEBUG
#define CDEV_LOG_DEBUG(fmt, args...) \
RTE_LOG(DEBUG, CRYPTODEV, "%s() line %u: " fmt "\n", \
__func__, __LINE__, ## args) \
#define CDEV_PMD_TRACE(fmt, args...) \
RTE_LOG(DEBUG, CRYPTODEV, "[%s] %s: " fmt "\n", \
dev, __func__, ## args)
#else
#define CDEV_LOG_DEBUG(fmt, args...)
#define CDEV_PMD_TRACE(fmt, args...)
#endif
/** Crypto device information */
struct rte_cryptodev_info {
const char *driver_name; /**< Driver name. */
enum rte_cryptodev_type dev_type; /**< Device type */
struct rte_pci_device *pci_dev; /**< PCI information. */
unsigned max_nb_queue_pairs;
/**< Maximum number of queues pairs supported by device. */
unsigned max_nb_sessions;
/**< Maximum number of sessions supported by device. */
};
#define RTE_CRYPTODEV_DETACHED (0)
#define RTE_CRYPTODEV_ATTACHED (1)
/** Definitions of Crypto device event types */
enum rte_cryptodev_event_type {
RTE_CRYPTODEV_EVENT_UNKNOWN, /**< unknown event type */
RTE_CRYPTODEV_EVENT_ERROR, /**< error interrupt event */
RTE_CRYPTODEV_EVENT_MAX /**< max value of this enum */
};
/** Crypto device queue pair configuration structure. */
struct rte_cryptodev_qp_conf {
uint32_t nb_descriptors; /**< Number of descriptors per queue pair */
};
/**
* Typedef for application callback function to be registered by application
* software for notification of device events
*
* @param dev_id Crypto device identifier
* @param event Crypto device event to register for notification of.
* @param cb_arg User specified parameter to be passed as to passed to
* users callback function.
*/
typedef void (*rte_cryptodev_cb_fn)(uint8_t dev_id,
enum rte_cryptodev_event_type event, void *cb_arg);
#ifdef RTE_CRYPTODEV_PERF
/**
* Crypto Device performance counter statistics structure. This structure is
* used for RDTSC counters for measuring crypto operations.
*/
struct rte_cryptodev_perf_stats {
uint64_t t_accumlated; /**< Accumulated time processing operation */
uint64_t t_min; /**< Max time */
uint64_t t_max; /**< Min time */
};
#endif
/** Crypto Device statistics */
struct rte_cryptodev_stats {
uint64_t enqueued_count;
/**< Count of all operations enqueued */
uint64_t dequeued_count;
/**< Count of all operations dequeued */
uint64_t enqueue_err_count;
/**< Total error count on operations enqueued */
uint64_t dequeue_err_count;
/**< Total error count on operations dequeued */
#ifdef RTE_CRYPTODEV_DETAILED_STATS
struct {
uint64_t encrypt_ops; /**< Count of encrypt operations */
uint64_t encrypt_bytes; /**< Number of bytes encrypted */
uint64_t decrypt_ops; /**< Count of decrypt operations */
uint64_t decrypt_bytes; /**< Number of bytes decrypted */
} cipher; /**< Cipher operations stats */
struct {
uint64_t generate_ops; /**< Count of generate operations */
uint64_t bytes_hashed; /**< Number of bytes hashed */
uint64_t verify_ops; /**< Count of verify operations */
uint64_t bytes_verified;/**< Number of bytes verified */
} hash; /**< Hash operations stats */
#endif
#ifdef RTE_CRYPTODEV_PERF
struct rte_cryptodev_perf_stats op_perf; /**< Operations stats */
#endif
} __rte_cache_aligned;
/**
* Create a virtual crypto device
*
* @param name Cryptodev PMD name of device to be created.
* @param args Options arguments for device.
*
* @return
* - On successful creation of the cryptodev the device index is returned,
* which will be between 0 and rte_cryptodev_count().
* - In the case of a failure, returns -1.
*/
extern int
rte_cryptodev_create_vdev(const char *name, const char *args);
/**
* Get the device identifier for the named crypto device.
*
* @param name device name to select the device structure.
*
* @return
* - Returns crypto device identifier on success.
* - Return -1 on failure to find named crypto device.
*/
extern int
rte_cryptodev_get_dev_id(const char *name);
/**
* Get the total number of crypto devices that have been successfully
* initialised.
*
* @return
* - The total number of usable crypto devices.
*/
extern uint8_t
rte_cryptodev_count(void);
extern uint8_t
rte_cryptodev_count_devtype(enum rte_cryptodev_type type);
/*
* Return the NUMA socket to which a device is connected
*
* @param dev_id
* The identifier of the device
* @return
* The NUMA socket id to which the device is connected or
* a default of zero if the socket could not be determined.
* -1 if returned is the dev_id value is out of range.
*/
extern int
rte_cryptodev_socket_id(uint8_t dev_id);
/** Crypto device configuration structure */
struct rte_cryptodev_config {
int socket_id; /**< Socket to allocate resources on */
uint16_t nb_queue_pairs;
/**< Number of queue pairs to configure on device */
struct {
uint32_t nb_objs; /**< Number of objects in mempool */
uint32_t cache_size; /**< l-core object cache size */
} session_mp; /**< Session mempool configuration */
};
/**
* Configure a device.
*
* EXPERIMENTAL: this API file may change without prior notice
*
* This function must be invoked first before any other function in the
* API. This function can also be re-invoked when a device is in the
* stopped state.
*
* @param dev_id The identifier of the device to configure.
* @param config The crypto device configuration structure.
*
* @return
* - 0: Success, device configured.
* - <0: Error code returned by the driver configuration function.
*/
extern int
rte_cryptodev_configure(uint8_t dev_id, struct rte_cryptodev_config *config);
/**
* Start an device.
*
* The device start step is the last one and consists of setting the configured
* offload features and in starting the transmit and the receive units of the
* device.
* On success, all basic functions exported by the API (link status,
* receive/transmit, and so on) can be invoked.
*
* @param dev_id
* The identifier of the device.
* @return
* - 0: Success, device started.
* - <0: Error code of the driver device start function.
*/
extern int
rte_cryptodev_start(uint8_t dev_id);
/**
* Stop an device. The device can be restarted with a call to
* rte_cryptodev_start()
*
* @param dev_id The identifier of the device.
*/
extern void
rte_cryptodev_stop(uint8_t dev_id);
/**
* Close an device. The device cannot be restarted!
*
* @param dev_id The identifier of the device.
*
* @return
* - 0 on successfully closing device
* - <0 on failure to close device
*/
extern int
rte_cryptodev_close(uint8_t dev_id);
/**
* Allocate and set up a receive queue pair for a device.
*
*
* @param dev_id The identifier of the device.
* @param queue_pair_id The index of the queue pairs to set up. The
* value must be in the range [0, nb_queue_pair
* - 1] previously supplied to
* rte_cryptodev_configure().
* @param qp_conf The pointer to the configuration data to be
* used for the queue pair. NULL value is
* allowed, in which case default configuration
* will be used.
* @param socket_id The *socket_id* argument is the socket
* identifier in case of NUMA. The value can be
* *SOCKET_ID_ANY* if there is no NUMA constraint
* for the DMA memory allocated for the receive
* queue pair.
*
* @return
* - 0: Success, queue pair correctly set up.
* - <0: Queue pair configuration failed
*/
extern int
rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
const struct rte_cryptodev_qp_conf *qp_conf, int socket_id);
/**
* Start a specified queue pair of a device. It is used
* when deferred_start flag of the specified queue is true.
*
* @param dev_id The identifier of the device
* @param queue_pair_id The index of the queue pair to start. The value
* must be in the range [0, nb_queue_pair - 1]
* previously supplied to
* rte_crypto_dev_configure().
* @return
* - 0: Success, the transmit queue is correctly set up.
* - -EINVAL: The dev_id or the queue_id out of range.
* - -ENOTSUP: The function not supported in PMD driver.
*/
extern int
rte_cryptodev_queue_pair_start(uint8_t dev_id, uint16_t queue_pair_id);
/**
* Stop specified queue pair of a device
*
* @param dev_id The identifier of the device
* @param queue_pair_id The index of the queue pair to stop. The value
* must be in the range [0, nb_queue_pair - 1]
* previously supplied to
* rte_cryptodev_configure().
* @return
* - 0: Success, the transmit queue is correctly set up.
* - -EINVAL: The dev_id or the queue_id out of range.
* - -ENOTSUP: The function not supported in PMD driver.
*/
extern int
rte_cryptodev_queue_pair_stop(uint8_t dev_id, uint16_t queue_pair_id);
/**
* Get the number of queue pairs on a specific crypto device
*
* @param dev_id Crypto device identifier.
* @return
* - The number of configured queue pairs.
*/
extern uint16_t
rte_cryptodev_queue_pair_count(uint8_t dev_id);
/**
* Retrieve the general I/O statistics of a device.
*
* @param dev_id The identifier of the device.
* @param stats A pointer to a structure of type
* *rte_cryptodev_stats* to be filled with the
* values of device counters.
* @return
* - Zero if successful.
* - Non-zero otherwise.
*/
extern int
rte_cryptodev_stats_get(uint8_t dev_id, struct rte_cryptodev_stats *stats);
/**
* Reset the general I/O statistics of a device.
*
* @param dev_id The identifier of the device.
*/
extern void
rte_cryptodev_stats_reset(uint8_t dev_id);
/**
* Retrieve the contextual information of a device.
*
* @param dev_id The identifier of the device.
* @param dev_info A pointer to a structure of type
* *rte_cryptodev_info* to be filled with the
* contextual information of the device.
*/
extern void
rte_cryptodev_info_get(uint8_t dev_id, struct rte_cryptodev_info *dev_info);
/**
* Register a callback function for specific device id.
*
* @param dev_id Device id.
* @param event Event interested.
* @param cb_fn User supplied callback function to be called.
* @param cb_arg Pointer to the parameters for the registered
* callback.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
extern int
rte_cryptodev_callback_register(uint8_t dev_id,
enum rte_cryptodev_event_type event,
rte_cryptodev_cb_fn cb_fn, void *cb_arg);
/**
* Unregister a callback function for specific device id.
*
* @param dev_id The device identifier.
* @param event Event interested.
* @param cb_fn User supplied callback function to be called.
* @param cb_arg Pointer to the parameters for the registered
* callback.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
extern int
rte_cryptodev_callback_unregister(uint8_t dev_id,
enum rte_cryptodev_event_type event,
rte_cryptodev_cb_fn cb_fn, void *cb_arg);
typedef uint16_t (*dequeue_pkt_burst_t)(void *qp, struct rte_mbuf **pkts,
uint16_t nb_pkts);
/**< Dequeue processed packets from queue pair of a device. */
typedef uint16_t (*enqueue_pkt_burst_t)(void *qp, struct rte_mbuf **pkts,
uint16_t nb_pkts);
/**< Enqueue packets for processing on queue pair of a device. */
struct rte_cryptodev_callback;
/** Structure to keep track of registered callbacks */
TAILQ_HEAD(rte_cryptodev_cb_list, rte_cryptodev_callback);
/** The data structure associated with each crypto device. */
struct rte_cryptodev {
dequeue_pkt_burst_t dequeue_burst;
/**< Pointer to PMD receive function. */
enqueue_pkt_burst_t enqueue_burst;
/**< Pointer to PMD transmit function. */
const struct rte_cryptodev_driver *driver;
/**< Driver for this device */
struct rte_cryptodev_data *data;
/**< Pointer to device data */
struct rte_cryptodev_ops *dev_ops;
/**< Functions exported by PMD */
struct rte_pci_device *pci_dev;
/**< PCI info. supplied by probing */
enum rte_cryptodev_type dev_type;
/**< Crypto device type */
enum pmd_type pmd_type;
/**< PMD type - PDEV / VDEV */
struct rte_cryptodev_cb_list link_intr_cbs;
/**< User application callback for interrupts if present */
uint8_t attached : 1;
/**< Flag indicating the device is attached */
} __rte_cache_aligned;
#define RTE_CRYPTODEV_NAME_MAX_LEN (64)
/**< Max length of name of crypto PMD */
/**
*
* The data part, with no function pointers, associated with each device.
*
* This structure is safe to place in shared memory to be common among
* different processes in a multi-process configuration.
*/
struct rte_cryptodev_data {
uint8_t dev_id;
/**< Device ID for this instance */
uint8_t socket_id;
/**< Socket ID where memory is allocated */
char name[RTE_CRYPTODEV_NAME_MAX_LEN];
/**< Unique identifier name */
uint8_t dev_started : 1;
/**< Device state: STARTED(1)/STOPPED(0) */
struct rte_mempool *session_pool;
/**< Session memory pool */
void **queue_pairs;
/**< Array of pointers to queue pairs. */
uint16_t nb_queue_pairs;
/**< Number of device queue pairs. */
void *dev_private;
/**< PMD-specific private data */
} __rte_cache_aligned;
extern struct rte_cryptodev *rte_cryptodevs;
/**
*
* Dequeue a burst of processed packets from a queue of the crypto device.
* The dequeued packets are stored in *rte_mbuf* structures whose pointers are
* supplied in the *pkts* array.
*
* The rte_crypto_dequeue_burst() function returns the number of packets
* actually dequeued, which is the number of *rte_mbuf* data structures
* effectively supplied into the *pkts* array.
*
* A return value equal to *nb_pkts* indicates that the queue contained
* at least *rx_pkts* packets, and this is likely to signify that other
* received packets remain in the input queue. Applications implementing
* a "retrieve as much received packets as possible" policy can check this
* specific case and keep invoking the rte_crypto_dequeue_burst() function
* until a value less than *nb_pkts* is returned.
*
* The rte_crypto_dequeue_burst() function does not provide any error
* notification to avoid the corresponding overhead.
*
* @param dev_id The identifier of the device.
* @param qp_id The index of the queue pair from which to
* retrieve processed packets. The value must be
* in the range [0, nb_queue_pair - 1] previously
* supplied to rte_cryptodev_configure().
* @param pkts The address of an array of pointers to
* *rte_mbuf* structures that must be large enough
* to store *nb_pkts* pointers in it.
* @param nb_pkts The maximum number of packets to dequeue.
*
* @return
* - The number of packets actually dequeued, which is the number
* of pointers to *rte_mbuf* structures effectively supplied to the
* *pkts* array.
*/
static inline uint16_t
rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id,
struct rte_mbuf **pkts, uint16_t nb_pkts)
{
struct rte_cryptodev *dev = &rte_cryptodevs[dev_id];
nb_pkts = (*dev->dequeue_burst)
(dev->data->queue_pairs[qp_id], pkts, nb_pkts);
return nb_pkts;
}
/**
* Enqueue a burst of packets for processing on a crypto device.
*
* The rte_crypto_enqueue_burst() function is invoked to place packets
* on the queue *queue_id* of the device designated by its *dev_id*.
*
* The *nb_pkts* parameter is the number of packets to process which are
* supplied in the *pkts* array of *rte_mbuf* structures.
*
* The rte_crypto_enqueue_burst() function returns the number of packets it
* actually sent. A return value equal to *nb_pkts* means that all packets
* have been sent.
*
* Each mbuf in the *pkts* array must have a valid *rte_mbuf_offload* structure
* attached which contains a valid crypto operation.
*
* @param dev_id The identifier of the device.
* @param qp_id The index of the queue pair which packets are
* to be enqueued for processing. The value
* must be in the range [0, nb_queue_pairs - 1]
* previously supplied to
* *rte_cryptodev_configure*.
* @param pkts The address of an array of *nb_pkts* pointers
* to *rte_mbuf* structures which contain the
* output packets.
* @param nb_pkts The number of packets to transmit.
*
* @return
* The number of packets actually enqueued on the crypto device. The return
* value can be less than the value of the *nb_pkts* parameter when the
* crypto devices queue is full or has been filled up.
* The number of packets is 0 if the device hasn't been started.
*/
static inline uint16_t
rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id,
struct rte_mbuf **pkts, uint16_t nb_pkts)
{
struct rte_cryptodev *dev = &rte_cryptodevs[dev_id];
return (*dev->enqueue_burst)(
dev->data->queue_pairs[qp_id], pkts, nb_pkts);
}
/**
* Initialise a session for symmetric cryptographic operations.
*
* This function is used by the client to initialize immutable
* parameters of symmetric cryptographic operation.
* To perform the operation the rte_cryptodev_enqueue_burst function is
* used. Each mbuf should contain a reference to the session
* pointer returned from this function contained within it's crypto_op if a
* session-based operation is being provisioned. Memory to contain the session
* information is allocated from within mempool managed by the cryptodev.
*
* The rte_cryptodev_session_free must be called to free allocated
* memory when the session is no longer required.
*
* @param dev_id The device identifier.
* @param xform Crypto transform chain.
*
* @return
* Pointer to the created session or NULL
*/
extern struct rte_cryptodev_session *
rte_cryptodev_session_create(uint8_t dev_id,
struct rte_crypto_xform *xform);
/**
* Free the memory associated with a previously allocated session.
*
* @param dev_id The device identifier.
* @param session Session pointer previously allocated by
* *rte_cryptodev_session_create*.
*
* @return
* NULL on successful freeing of session.
* Session pointer on failure to free session.
*/
extern struct rte_cryptodev_session *
rte_cryptodev_session_free(uint8_t dev_id,
struct rte_cryptodev_session *session);
#ifdef __cplusplus
}
#endif
#endif /* _RTE_CRYPTODEV_H_ */