d6956e9239
Use rte_cio_wmb instead of rte_wmb when writing TX descriptor since it's
CIO memory.
Replace rte_io_wmb and E1000_PCI_REG_WRITE_RELAXED with
E1000_PCI_REG_WRITE since it has rte_io_wmb inside, which will be more
clear.
Fixes: 1fc9701238
("net/e1000: fix i219 hang on reset/close")
Cc: stable@dpdk.org
Signed-off-by: Xiao Zhang <xiao.zhang@intel.com>
Reviewed-by: Gavin Hu <gavin.hu@arm.com>
Reviewed-by: Xiaolong Ye <xiaolong.ye@intel.com>
2141 lines
58 KiB
C
2141 lines
58 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2016 Intel Corporation
|
|
*/
|
|
|
|
#include <sys/queue.h>
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <stdint.h>
|
|
#include <stdarg.h>
|
|
#include <inttypes.h>
|
|
|
|
#include <rte_interrupts.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_common.h>
|
|
#include <rte_log.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_bus_pci.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev_driver.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_sctp.h>
|
|
#include <rte_net.h>
|
|
#include <rte_string_fns.h>
|
|
|
|
#include "e1000_logs.h"
|
|
#include "base/e1000_api.h"
|
|
#include "e1000_ethdev.h"
|
|
#include "base/e1000_osdep.h"
|
|
|
|
#define E1000_TXD_VLAN_SHIFT 16
|
|
|
|
#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */
|
|
|
|
#define E1000_TX_OFFLOAD_MASK ( \
|
|
PKT_TX_IPV6 | \
|
|
PKT_TX_IPV4 | \
|
|
PKT_TX_IP_CKSUM | \
|
|
PKT_TX_L4_MASK | \
|
|
PKT_TX_VLAN_PKT)
|
|
|
|
#define E1000_TX_OFFLOAD_NOTSUP_MASK \
|
|
(PKT_TX_OFFLOAD_MASK ^ E1000_TX_OFFLOAD_MASK)
|
|
|
|
/* PCI offset for querying configuration status register */
|
|
#define PCI_CFG_STATUS_REG 0x06
|
|
#define FLUSH_DESC_REQUIRED 0x100
|
|
|
|
|
|
/**
|
|
* Structure associated with each descriptor of the RX ring of a RX queue.
|
|
*/
|
|
struct em_rx_entry {
|
|
struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
|
|
};
|
|
|
|
/**
|
|
* Structure associated with each descriptor of the TX ring of a TX queue.
|
|
*/
|
|
struct em_tx_entry {
|
|
struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
|
|
uint16_t next_id; /**< Index of next descriptor in ring. */
|
|
uint16_t last_id; /**< Index of last scattered descriptor. */
|
|
};
|
|
|
|
/**
|
|
* Structure associated with each RX queue.
|
|
*/
|
|
struct em_rx_queue {
|
|
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
|
|
volatile struct e1000_rx_desc *rx_ring; /**< RX ring virtual address. */
|
|
uint64_t rx_ring_phys_addr; /**< RX ring DMA address. */
|
|
volatile uint32_t *rdt_reg_addr; /**< RDT register address. */
|
|
volatile uint32_t *rdh_reg_addr; /**< RDH register address. */
|
|
struct em_rx_entry *sw_ring; /**< address of RX software ring. */
|
|
struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
|
|
struct rte_mbuf *pkt_last_seg; /**< Last segment of current packet. */
|
|
uint64_t offloads; /**< Offloads of DEV_RX_OFFLOAD_* */
|
|
uint16_t nb_rx_desc; /**< number of RX descriptors. */
|
|
uint16_t rx_tail; /**< current value of RDT register. */
|
|
uint16_t nb_rx_hold; /**< number of held free RX desc. */
|
|
uint16_t rx_free_thresh; /**< max free RX desc to hold. */
|
|
uint16_t queue_id; /**< RX queue index. */
|
|
uint16_t port_id; /**< Device port identifier. */
|
|
uint8_t pthresh; /**< Prefetch threshold register. */
|
|
uint8_t hthresh; /**< Host threshold register. */
|
|
uint8_t wthresh; /**< Write-back threshold register. */
|
|
uint8_t crc_len; /**< 0 if CRC stripped, 4 otherwise. */
|
|
};
|
|
|
|
/**
|
|
* Hardware context number
|
|
*/
|
|
enum {
|
|
EM_CTX_0 = 0, /**< CTX0 */
|
|
EM_CTX_NUM = 1, /**< CTX NUM */
|
|
};
|
|
|
|
/** Offload features */
|
|
union em_vlan_macip {
|
|
uint32_t data;
|
|
struct {
|
|
uint16_t l3_len:9; /**< L3 (IP) Header Length. */
|
|
uint16_t l2_len:7; /**< L2 (MAC) Header Length. */
|
|
uint16_t vlan_tci;
|
|
/**< VLAN Tag Control Identifier (CPU order). */
|
|
} f;
|
|
};
|
|
|
|
/*
|
|
* Compare mask for vlan_macip_len.data,
|
|
* should be in sync with em_vlan_macip.f layout.
|
|
* */
|
|
#define TX_VLAN_CMP_MASK 0xFFFF0000 /**< VLAN length - 16-bits. */
|
|
#define TX_MAC_LEN_CMP_MASK 0x0000FE00 /**< MAC length - 7-bits. */
|
|
#define TX_IP_LEN_CMP_MASK 0x000001FF /**< IP length - 9-bits. */
|
|
/** MAC+IP length. */
|
|
#define TX_MACIP_LEN_CMP_MASK (TX_MAC_LEN_CMP_MASK | TX_IP_LEN_CMP_MASK)
|
|
|
|
/**
|
|
* Structure to check if new context need be built
|
|
*/
|
|
struct em_ctx_info {
|
|
uint64_t flags; /**< ol_flags related to context build. */
|
|
uint32_t cmp_mask; /**< compare mask */
|
|
union em_vlan_macip hdrlen; /**< L2 and L3 header lenghts */
|
|
};
|
|
|
|
/**
|
|
* Structure associated with each TX queue.
|
|
*/
|
|
struct em_tx_queue {
|
|
volatile struct e1000_data_desc *tx_ring; /**< TX ring address */
|
|
uint64_t tx_ring_phys_addr; /**< TX ring DMA address. */
|
|
struct em_tx_entry *sw_ring; /**< virtual address of SW ring. */
|
|
volatile uint32_t *tdt_reg_addr; /**< Address of TDT register. */
|
|
uint16_t nb_tx_desc; /**< number of TX descriptors. */
|
|
uint16_t tx_tail; /**< Current value of TDT register. */
|
|
/**< Start freeing TX buffers if there are less free descriptors than
|
|
this value. */
|
|
uint16_t tx_free_thresh;
|
|
/**< Number of TX descriptors to use before RS bit is set. */
|
|
uint16_t tx_rs_thresh;
|
|
/** Number of TX descriptors used since RS bit was set. */
|
|
uint16_t nb_tx_used;
|
|
/** Index to last TX descriptor to have been cleaned. */
|
|
uint16_t last_desc_cleaned;
|
|
/** Total number of TX descriptors ready to be allocated. */
|
|
uint16_t nb_tx_free;
|
|
uint16_t queue_id; /**< TX queue index. */
|
|
uint16_t port_id; /**< Device port identifier. */
|
|
uint8_t pthresh; /**< Prefetch threshold register. */
|
|
uint8_t hthresh; /**< Host threshold register. */
|
|
uint8_t wthresh; /**< Write-back threshold register. */
|
|
struct em_ctx_info ctx_cache;
|
|
/**< Hardware context history.*/
|
|
uint64_t offloads; /**< offloads of DEV_TX_OFFLOAD_* */
|
|
};
|
|
|
|
#if 1
|
|
#define RTE_PMD_USE_PREFETCH
|
|
#endif
|
|
|
|
#ifdef RTE_PMD_USE_PREFETCH
|
|
#define rte_em_prefetch(p) rte_prefetch0(p)
|
|
#else
|
|
#define rte_em_prefetch(p) do {} while(0)
|
|
#endif
|
|
|
|
#ifdef RTE_PMD_PACKET_PREFETCH
|
|
#define rte_packet_prefetch(p) rte_prefetch1(p)
|
|
#else
|
|
#define rte_packet_prefetch(p) do {} while(0)
|
|
#endif
|
|
|
|
#ifndef DEFAULT_TX_FREE_THRESH
|
|
#define DEFAULT_TX_FREE_THRESH 32
|
|
#endif /* DEFAULT_TX_FREE_THRESH */
|
|
|
|
#ifndef DEFAULT_TX_RS_THRESH
|
|
#define DEFAULT_TX_RS_THRESH 32
|
|
#endif /* DEFAULT_TX_RS_THRESH */
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* TX function
|
|
*
|
|
**********************************************************************/
|
|
|
|
/*
|
|
* Populates TX context descriptor.
|
|
*/
|
|
static inline void
|
|
em_set_xmit_ctx(struct em_tx_queue* txq,
|
|
volatile struct e1000_context_desc *ctx_txd,
|
|
uint64_t flags,
|
|
union em_vlan_macip hdrlen)
|
|
{
|
|
uint32_t cmp_mask, cmd_len;
|
|
uint16_t ipcse, l2len;
|
|
struct e1000_context_desc ctx;
|
|
|
|
cmp_mask = 0;
|
|
cmd_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_C;
|
|
|
|
l2len = hdrlen.f.l2_len;
|
|
ipcse = (uint16_t)(l2len + hdrlen.f.l3_len);
|
|
|
|
/* setup IPCS* fields */
|
|
ctx.lower_setup.ip_fields.ipcss = (uint8_t)l2len;
|
|
ctx.lower_setup.ip_fields.ipcso = (uint8_t)(l2len +
|
|
offsetof(struct rte_ipv4_hdr, hdr_checksum));
|
|
|
|
/*
|
|
* When doing checksum or TCP segmentation with IPv6 headers,
|
|
* IPCSE field should be set t0 0.
|
|
*/
|
|
if (flags & PKT_TX_IP_CKSUM) {
|
|
ctx.lower_setup.ip_fields.ipcse =
|
|
(uint16_t)rte_cpu_to_le_16(ipcse - 1);
|
|
cmd_len |= E1000_TXD_CMD_IP;
|
|
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
|
|
} else {
|
|
ctx.lower_setup.ip_fields.ipcse = 0;
|
|
}
|
|
|
|
/* setup TUCS* fields */
|
|
ctx.upper_setup.tcp_fields.tucss = (uint8_t)ipcse;
|
|
ctx.upper_setup.tcp_fields.tucse = 0;
|
|
|
|
switch (flags & PKT_TX_L4_MASK) {
|
|
case PKT_TX_UDP_CKSUM:
|
|
ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
|
|
offsetof(struct rte_udp_hdr, dgram_cksum));
|
|
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
|
|
break;
|
|
case PKT_TX_TCP_CKSUM:
|
|
ctx.upper_setup.tcp_fields.tucso = (uint8_t)(ipcse +
|
|
offsetof(struct rte_tcp_hdr, cksum));
|
|
cmd_len |= E1000_TXD_CMD_TCP;
|
|
cmp_mask |= TX_MACIP_LEN_CMP_MASK;
|
|
break;
|
|
default:
|
|
ctx.upper_setup.tcp_fields.tucso = 0;
|
|
}
|
|
|
|
ctx.cmd_and_length = rte_cpu_to_le_32(cmd_len);
|
|
ctx.tcp_seg_setup.data = 0;
|
|
|
|
*ctx_txd = ctx;
|
|
|
|
txq->ctx_cache.flags = flags;
|
|
txq->ctx_cache.cmp_mask = cmp_mask;
|
|
txq->ctx_cache.hdrlen = hdrlen;
|
|
}
|
|
|
|
/*
|
|
* Check which hardware context can be used. Use the existing match
|
|
* or create a new context descriptor.
|
|
*/
|
|
static inline uint32_t
|
|
what_ctx_update(struct em_tx_queue *txq, uint64_t flags,
|
|
union em_vlan_macip hdrlen)
|
|
{
|
|
/* If match with the current context */
|
|
if (likely (txq->ctx_cache.flags == flags &&
|
|
((txq->ctx_cache.hdrlen.data ^ hdrlen.data) &
|
|
txq->ctx_cache.cmp_mask) == 0))
|
|
return EM_CTX_0;
|
|
|
|
/* Mismatch */
|
|
return EM_CTX_NUM;
|
|
}
|
|
|
|
/* Reset transmit descriptors after they have been used */
|
|
static inline int
|
|
em_xmit_cleanup(struct em_tx_queue *txq)
|
|
{
|
|
struct em_tx_entry *sw_ring = txq->sw_ring;
|
|
volatile struct e1000_data_desc *txr = txq->tx_ring;
|
|
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
|
|
uint16_t nb_tx_desc = txq->nb_tx_desc;
|
|
uint16_t desc_to_clean_to;
|
|
uint16_t nb_tx_to_clean;
|
|
|
|
/* Determine the last descriptor needing to be cleaned */
|
|
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
|
|
if (desc_to_clean_to >= nb_tx_desc)
|
|
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
|
|
|
|
/* Check to make sure the last descriptor to clean is done */
|
|
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
|
|
if (! (txr[desc_to_clean_to].upper.fields.status & E1000_TXD_STAT_DD))
|
|
{
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"TX descriptor %4u is not done"
|
|
"(port=%d queue=%d)", desc_to_clean_to,
|
|
txq->port_id, txq->queue_id);
|
|
/* Failed to clean any descriptors, better luck next time */
|
|
return -(1);
|
|
}
|
|
|
|
/* Figure out how many descriptors will be cleaned */
|
|
if (last_desc_cleaned > desc_to_clean_to)
|
|
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
|
|
desc_to_clean_to);
|
|
else
|
|
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
|
|
last_desc_cleaned);
|
|
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"Cleaning %4u TX descriptors: %4u to %4u "
|
|
"(port=%d queue=%d)", nb_tx_to_clean,
|
|
last_desc_cleaned, desc_to_clean_to, txq->port_id,
|
|
txq->queue_id);
|
|
|
|
/*
|
|
* The last descriptor to clean is done, so that means all the
|
|
* descriptors from the last descriptor that was cleaned
|
|
* up to the last descriptor with the RS bit set
|
|
* are done. Only reset the threshold descriptor.
|
|
*/
|
|
txr[desc_to_clean_to].upper.fields.status = 0;
|
|
|
|
/* Update the txq to reflect the last descriptor that was cleaned */
|
|
txq->last_desc_cleaned = desc_to_clean_to;
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
|
|
|
|
/* No Error */
|
|
return 0;
|
|
}
|
|
|
|
static inline uint32_t
|
|
tx_desc_cksum_flags_to_upper(uint64_t ol_flags)
|
|
{
|
|
static const uint32_t l4_olinfo[2] = {0, E1000_TXD_POPTS_TXSM << 8};
|
|
static const uint32_t l3_olinfo[2] = {0, E1000_TXD_POPTS_IXSM << 8};
|
|
uint32_t tmp;
|
|
|
|
tmp = l4_olinfo[(ol_flags & PKT_TX_L4_MASK) != PKT_TX_L4_NO_CKSUM];
|
|
tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
|
|
return tmp;
|
|
}
|
|
|
|
uint16_t
|
|
eth_em_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct em_tx_queue *txq;
|
|
struct em_tx_entry *sw_ring;
|
|
struct em_tx_entry *txe, *txn;
|
|
volatile struct e1000_data_desc *txr;
|
|
volatile struct e1000_data_desc *txd;
|
|
struct rte_mbuf *tx_pkt;
|
|
struct rte_mbuf *m_seg;
|
|
uint64_t buf_dma_addr;
|
|
uint32_t popts_spec;
|
|
uint32_t cmd_type_len;
|
|
uint16_t slen;
|
|
uint64_t ol_flags;
|
|
uint16_t tx_id;
|
|
uint16_t tx_last;
|
|
uint16_t nb_tx;
|
|
uint16_t nb_used;
|
|
uint64_t tx_ol_req;
|
|
uint32_t ctx;
|
|
uint32_t new_ctx;
|
|
union em_vlan_macip hdrlen;
|
|
|
|
txq = tx_queue;
|
|
sw_ring = txq->sw_ring;
|
|
txr = txq->tx_ring;
|
|
tx_id = txq->tx_tail;
|
|
txe = &sw_ring[tx_id];
|
|
|
|
/* Determine if the descriptor ring needs to be cleaned. */
|
|
if (txq->nb_tx_free < txq->tx_free_thresh)
|
|
em_xmit_cleanup(txq);
|
|
|
|
/* TX loop */
|
|
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
|
|
new_ctx = 0;
|
|
tx_pkt = *tx_pkts++;
|
|
|
|
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
|
|
|
|
/*
|
|
* Determine how many (if any) context descriptors
|
|
* are needed for offload functionality.
|
|
*/
|
|
ol_flags = tx_pkt->ol_flags;
|
|
|
|
/* If hardware offload required */
|
|
tx_ol_req = (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK));
|
|
if (tx_ol_req) {
|
|
hdrlen.f.vlan_tci = tx_pkt->vlan_tci;
|
|
hdrlen.f.l2_len = tx_pkt->l2_len;
|
|
hdrlen.f.l3_len = tx_pkt->l3_len;
|
|
/* If new context to be built or reuse the exist ctx. */
|
|
ctx = what_ctx_update(txq, tx_ol_req, hdrlen);
|
|
|
|
/* Only allocate context descriptor if required*/
|
|
new_ctx = (ctx == EM_CTX_NUM);
|
|
}
|
|
|
|
/*
|
|
* Keep track of how many descriptors are used this loop
|
|
* This will always be the number of segments + the number of
|
|
* Context descriptors required to transmit the packet
|
|
*/
|
|
nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx);
|
|
|
|
/*
|
|
* The number of descriptors that must be allocated for a
|
|
* packet is the number of segments of that packet, plus 1
|
|
* Context Descriptor for the hardware offload, if any.
|
|
* Determine the last TX descriptor to allocate in the TX ring
|
|
* for the packet, starting from the current position (tx_id)
|
|
* in the ring.
|
|
*/
|
|
tx_last = (uint16_t) (tx_id + nb_used - 1);
|
|
|
|
/* Circular ring */
|
|
if (tx_last >= txq->nb_tx_desc)
|
|
tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
|
|
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
|
|
" tx_first=%u tx_last=%u",
|
|
(unsigned) txq->port_id,
|
|
(unsigned) txq->queue_id,
|
|
(unsigned) tx_pkt->pkt_len,
|
|
(unsigned) tx_id,
|
|
(unsigned) tx_last);
|
|
|
|
/*
|
|
* Make sure there are enough TX descriptors available to
|
|
* transmit the entire packet.
|
|
* nb_used better be less than or equal to txq->tx_rs_thresh
|
|
*/
|
|
while (unlikely (nb_used > txq->nb_tx_free)) {
|
|
PMD_TX_FREE_LOG(DEBUG, "Not enough free TX descriptors "
|
|
"nb_used=%4u nb_free=%4u "
|
|
"(port=%d queue=%d)",
|
|
nb_used, txq->nb_tx_free,
|
|
txq->port_id, txq->queue_id);
|
|
|
|
if (em_xmit_cleanup(txq) != 0) {
|
|
/* Could not clean any descriptors */
|
|
if (nb_tx == 0)
|
|
return 0;
|
|
goto end_of_tx;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* By now there are enough free TX descriptors to transmit
|
|
* the packet.
|
|
*/
|
|
|
|
/*
|
|
* Set common flags of all TX Data Descriptors.
|
|
*
|
|
* The following bits must be set in all Data Descriptors:
|
|
* - E1000_TXD_DTYP_DATA
|
|
* - E1000_TXD_DTYP_DEXT
|
|
*
|
|
* The following bits must be set in the first Data Descriptor
|
|
* and are ignored in the other ones:
|
|
* - E1000_TXD_POPTS_IXSM
|
|
* - E1000_TXD_POPTS_TXSM
|
|
*
|
|
* The following bits must be set in the last Data Descriptor
|
|
* and are ignored in the other ones:
|
|
* - E1000_TXD_CMD_VLE
|
|
* - E1000_TXD_CMD_IFCS
|
|
*
|
|
* The following bits must only be set in the last Data
|
|
* Descriptor:
|
|
* - E1000_TXD_CMD_EOP
|
|
*
|
|
* The following bits can be set in any Data Descriptor, but
|
|
* are only set in the last Data Descriptor:
|
|
* - E1000_TXD_CMD_RS
|
|
*/
|
|
cmd_type_len = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
|
|
E1000_TXD_CMD_IFCS;
|
|
popts_spec = 0;
|
|
|
|
/* Set VLAN Tag offload fields. */
|
|
if (ol_flags & PKT_TX_VLAN_PKT) {
|
|
cmd_type_len |= E1000_TXD_CMD_VLE;
|
|
popts_spec = tx_pkt->vlan_tci << E1000_TXD_VLAN_SHIFT;
|
|
}
|
|
|
|
if (tx_ol_req) {
|
|
/*
|
|
* Setup the TX Context Descriptor if required
|
|
*/
|
|
if (new_ctx) {
|
|
volatile struct e1000_context_desc *ctx_txd;
|
|
|
|
ctx_txd = (volatile struct e1000_context_desc *)
|
|
&txr[tx_id];
|
|
|
|
txn = &sw_ring[txe->next_id];
|
|
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
|
|
|
|
if (txe->mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = NULL;
|
|
}
|
|
|
|
em_set_xmit_ctx(txq, ctx_txd, tx_ol_req,
|
|
hdrlen);
|
|
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
}
|
|
|
|
/*
|
|
* Setup the TX Data Descriptor,
|
|
* This path will go through
|
|
* whatever new/reuse the context descriptor
|
|
*/
|
|
popts_spec |= tx_desc_cksum_flags_to_upper(ol_flags);
|
|
}
|
|
|
|
m_seg = tx_pkt;
|
|
do {
|
|
txd = &txr[tx_id];
|
|
txn = &sw_ring[txe->next_id];
|
|
|
|
if (txe->mbuf != NULL)
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
txe->mbuf = m_seg;
|
|
|
|
/*
|
|
* Set up Transmit Data Descriptor.
|
|
*/
|
|
slen = m_seg->data_len;
|
|
buf_dma_addr = rte_mbuf_data_iova(m_seg);
|
|
|
|
txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
|
|
txd->lower.data = rte_cpu_to_le_32(cmd_type_len | slen);
|
|
txd->upper.data = rte_cpu_to_le_32(popts_spec);
|
|
|
|
txe->last_id = tx_last;
|
|
tx_id = txe->next_id;
|
|
txe = txn;
|
|
m_seg = m_seg->next;
|
|
} while (m_seg != NULL);
|
|
|
|
/*
|
|
* The last packet data descriptor needs End Of Packet (EOP)
|
|
*/
|
|
cmd_type_len |= E1000_TXD_CMD_EOP;
|
|
txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
|
|
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
|
|
|
|
/* Set RS bit only on threshold packets' last descriptor */
|
|
if (txq->nb_tx_used >= txq->tx_rs_thresh) {
|
|
PMD_TX_FREE_LOG(DEBUG,
|
|
"Setting RS bit on TXD id=%4u "
|
|
"(port=%d queue=%d)",
|
|
tx_last, txq->port_id, txq->queue_id);
|
|
|
|
cmd_type_len |= E1000_TXD_CMD_RS;
|
|
|
|
/* Update txq RS bit counters */
|
|
txq->nb_tx_used = 0;
|
|
}
|
|
txd->lower.data |= rte_cpu_to_le_32(cmd_type_len);
|
|
}
|
|
end_of_tx:
|
|
rte_wmb();
|
|
|
|
/*
|
|
* Set the Transmit Descriptor Tail (TDT)
|
|
*/
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
|
|
(unsigned) txq->port_id, (unsigned) txq->queue_id,
|
|
(unsigned) tx_id, (unsigned) nb_tx);
|
|
E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
|
|
txq->tx_tail = tx_id;
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* TX prep functions
|
|
*
|
|
**********************************************************************/
|
|
uint16_t
|
|
eth_em_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
int i, ret;
|
|
struct rte_mbuf *m;
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
m = tx_pkts[i];
|
|
|
|
if (m->ol_flags & E1000_TX_OFFLOAD_NOTSUP_MASK) {
|
|
rte_errno = ENOTSUP;
|
|
return i;
|
|
}
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
ret = rte_validate_tx_offload(m);
|
|
if (ret != 0) {
|
|
rte_errno = -ret;
|
|
return i;
|
|
}
|
|
#endif
|
|
ret = rte_net_intel_cksum_prepare(m);
|
|
if (ret != 0) {
|
|
rte_errno = -ret;
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* RX functions
|
|
*
|
|
**********************************************************************/
|
|
|
|
static inline uint64_t
|
|
rx_desc_status_to_pkt_flags(uint32_t rx_status)
|
|
{
|
|
uint64_t pkt_flags;
|
|
|
|
/* Check if VLAN present */
|
|
pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
|
|
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
|
|
|
|
return pkt_flags;
|
|
}
|
|
|
|
static inline uint64_t
|
|
rx_desc_error_to_pkt_flags(uint32_t rx_error)
|
|
{
|
|
uint64_t pkt_flags = 0;
|
|
|
|
if (rx_error & E1000_RXD_ERR_IPE)
|
|
pkt_flags |= PKT_RX_IP_CKSUM_BAD;
|
|
if (rx_error & E1000_RXD_ERR_TCPE)
|
|
pkt_flags |= PKT_RX_L4_CKSUM_BAD;
|
|
return pkt_flags;
|
|
}
|
|
|
|
uint16_t
|
|
eth_em_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
volatile struct e1000_rx_desc *rx_ring;
|
|
volatile struct e1000_rx_desc *rxdp;
|
|
struct em_rx_queue *rxq;
|
|
struct em_rx_entry *sw_ring;
|
|
struct em_rx_entry *rxe;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb;
|
|
struct e1000_rx_desc rxd;
|
|
uint64_t dma_addr;
|
|
uint16_t pkt_len;
|
|
uint16_t rx_id;
|
|
uint16_t nb_rx;
|
|
uint16_t nb_hold;
|
|
uint8_t status;
|
|
|
|
rxq = rx_queue;
|
|
|
|
nb_rx = 0;
|
|
nb_hold = 0;
|
|
rx_id = rxq->rx_tail;
|
|
rx_ring = rxq->rx_ring;
|
|
sw_ring = rxq->sw_ring;
|
|
while (nb_rx < nb_pkts) {
|
|
/*
|
|
* The order of operations here is important as the DD status
|
|
* bit must not be read after any other descriptor fields.
|
|
* rx_ring and rxdp are pointing to volatile data so the order
|
|
* of accesses cannot be reordered by the compiler. If they were
|
|
* not volatile, they could be reordered which could lead to
|
|
* using invalid descriptor fields when read from rxd.
|
|
*/
|
|
rxdp = &rx_ring[rx_id];
|
|
status = rxdp->status;
|
|
if (! (status & E1000_RXD_STAT_DD))
|
|
break;
|
|
rxd = *rxdp;
|
|
|
|
/*
|
|
* End of packet.
|
|
*
|
|
* If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
|
|
* likely to be invalid and to be dropped by the various
|
|
* validation checks performed by the network stack.
|
|
*
|
|
* Allocate a new mbuf to replenish the RX ring descriptor.
|
|
* If the allocation fails:
|
|
* - arrange for that RX descriptor to be the first one
|
|
* being parsed the next time the receive function is
|
|
* invoked [on the same queue].
|
|
*
|
|
* - Stop parsing the RX ring and return immediately.
|
|
*
|
|
* This policy do not drop the packet received in the RX
|
|
* descriptor for which the allocation of a new mbuf failed.
|
|
* Thus, it allows that packet to be later retrieved if
|
|
* mbuf have been freed in the mean time.
|
|
* As a side effect, holding RX descriptors instead of
|
|
* systematically giving them back to the NIC may lead to
|
|
* RX ring exhaustion situations.
|
|
* However, the NIC can gracefully prevent such situations
|
|
* to happen by sending specific "back-pressure" flow control
|
|
* frames to its peer(s).
|
|
*/
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
|
|
"status=0x%x pkt_len=%u",
|
|
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
|
|
(unsigned) rx_id, (unsigned) status,
|
|
(unsigned) rte_le_to_cpu_16(rxd.length));
|
|
|
|
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
if (nmb == NULL) {
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u",
|
|
(unsigned) rxq->port_id,
|
|
(unsigned) rxq->queue_id);
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
rx_id++;
|
|
if (rx_id == rxq->nb_rx_desc)
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_em_prefetch(sw_ring[rx_id].mbuf);
|
|
|
|
/*
|
|
* When next RX descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 RX descriptors and the next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_em_prefetch(&rx_ring[rx_id]);
|
|
rte_em_prefetch(&sw_ring[rx_id]);
|
|
}
|
|
|
|
/* Rearm RXD: attach new mbuf and reset status to zero. */
|
|
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
rxdp->buffer_addr = dma_addr;
|
|
rxdp->status = 0;
|
|
|
|
/*
|
|
* Initialize the returned mbuf.
|
|
* 1) setup generic mbuf fields:
|
|
* - number of segments,
|
|
* - next segment,
|
|
* - packet length,
|
|
* - RX port identifier.
|
|
* 2) integrate hardware offload data, if any:
|
|
* - RSS flag & hash,
|
|
* - IP checksum flag,
|
|
* - VLAN TCI, if any,
|
|
* - error flags.
|
|
*/
|
|
pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.length) -
|
|
rxq->crc_len);
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
|
|
rxm->nb_segs = 1;
|
|
rxm->next = NULL;
|
|
rxm->pkt_len = pkt_len;
|
|
rxm->data_len = pkt_len;
|
|
rxm->port = rxq->port_id;
|
|
|
|
rxm->ol_flags = rx_desc_status_to_pkt_flags(status);
|
|
rxm->ol_flags = rxm->ol_flags |
|
|
rx_desc_error_to_pkt_flags(rxd.errors);
|
|
|
|
/* Only valid if PKT_RX_VLAN set in pkt_flags */
|
|
rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
|
|
|
|
/*
|
|
* Store the mbuf address into the next entry of the array
|
|
* of returned packets.
|
|
*/
|
|
rx_pkts[nb_rx++] = rxm;
|
|
}
|
|
rxq->rx_tail = rx_id;
|
|
|
|
/*
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register.
|
|
* Update the RDT with the value of the last processed RX descriptor
|
|
* minus 1, to guarantee that the RDT register is never equal to the
|
|
* RDH register, which creates a "full" ring situtation from the
|
|
* hardware point of view...
|
|
*/
|
|
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
|
|
"nb_hold=%u nb_rx=%u",
|
|
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
|
|
(unsigned) rx_id, (unsigned) nb_hold,
|
|
(unsigned) nb_rx);
|
|
rx_id = (uint16_t) ((rx_id == 0) ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
return nb_rx;
|
|
}
|
|
|
|
uint16_t
|
|
eth_em_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
uint16_t nb_pkts)
|
|
{
|
|
struct em_rx_queue *rxq;
|
|
volatile struct e1000_rx_desc *rx_ring;
|
|
volatile struct e1000_rx_desc *rxdp;
|
|
struct em_rx_entry *sw_ring;
|
|
struct em_rx_entry *rxe;
|
|
struct rte_mbuf *first_seg;
|
|
struct rte_mbuf *last_seg;
|
|
struct rte_mbuf *rxm;
|
|
struct rte_mbuf *nmb;
|
|
struct e1000_rx_desc rxd;
|
|
uint64_t dma; /* Physical address of mbuf data buffer */
|
|
uint16_t rx_id;
|
|
uint16_t nb_rx;
|
|
uint16_t nb_hold;
|
|
uint16_t data_len;
|
|
uint8_t status;
|
|
|
|
rxq = rx_queue;
|
|
|
|
nb_rx = 0;
|
|
nb_hold = 0;
|
|
rx_id = rxq->rx_tail;
|
|
rx_ring = rxq->rx_ring;
|
|
sw_ring = rxq->sw_ring;
|
|
|
|
/*
|
|
* Retrieve RX context of current packet, if any.
|
|
*/
|
|
first_seg = rxq->pkt_first_seg;
|
|
last_seg = rxq->pkt_last_seg;
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
next_desc:
|
|
/*
|
|
* The order of operations here is important as the DD status
|
|
* bit must not be read after any other descriptor fields.
|
|
* rx_ring and rxdp are pointing to volatile data so the order
|
|
* of accesses cannot be reordered by the compiler. If they were
|
|
* not volatile, they could be reordered which could lead to
|
|
* using invalid descriptor fields when read from rxd.
|
|
*/
|
|
rxdp = &rx_ring[rx_id];
|
|
status = rxdp->status;
|
|
if (! (status & E1000_RXD_STAT_DD))
|
|
break;
|
|
rxd = *rxdp;
|
|
|
|
/*
|
|
* Descriptor done.
|
|
*
|
|
* Allocate a new mbuf to replenish the RX ring descriptor.
|
|
* If the allocation fails:
|
|
* - arrange for that RX descriptor to be the first one
|
|
* being parsed the next time the receive function is
|
|
* invoked [on the same queue].
|
|
*
|
|
* - Stop parsing the RX ring and return immediately.
|
|
*
|
|
* This policy does not drop the packet received in the RX
|
|
* descriptor for which the allocation of a new mbuf failed.
|
|
* Thus, it allows that packet to be later retrieved if
|
|
* mbuf have been freed in the mean time.
|
|
* As a side effect, holding RX descriptors instead of
|
|
* systematically giving them back to the NIC may lead to
|
|
* RX ring exhaustion situations.
|
|
* However, the NIC can gracefully prevent such situations
|
|
* to happen by sending specific "back-pressure" flow control
|
|
* frames to its peer(s).
|
|
*/
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
|
|
"status=0x%x data_len=%u",
|
|
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
|
|
(unsigned) rx_id, (unsigned) status,
|
|
(unsigned) rte_le_to_cpu_16(rxd.length));
|
|
|
|
nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
if (nmb == NULL) {
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
"queue_id=%u", (unsigned) rxq->port_id,
|
|
(unsigned) rxq->queue_id);
|
|
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
|
|
break;
|
|
}
|
|
|
|
nb_hold++;
|
|
rxe = &sw_ring[rx_id];
|
|
rx_id++;
|
|
if (rx_id == rxq->nb_rx_desc)
|
|
rx_id = 0;
|
|
|
|
/* Prefetch next mbuf while processing current one. */
|
|
rte_em_prefetch(sw_ring[rx_id].mbuf);
|
|
|
|
/*
|
|
* When next RX descriptor is on a cache-line boundary,
|
|
* prefetch the next 4 RX descriptors and the next 8 pointers
|
|
* to mbufs.
|
|
*/
|
|
if ((rx_id & 0x3) == 0) {
|
|
rte_em_prefetch(&rx_ring[rx_id]);
|
|
rte_em_prefetch(&sw_ring[rx_id]);
|
|
}
|
|
|
|
/*
|
|
* Update RX descriptor with the physical address of the new
|
|
* data buffer of the new allocated mbuf.
|
|
*/
|
|
rxm = rxe->mbuf;
|
|
rxe->mbuf = nmb;
|
|
dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
rxdp->buffer_addr = dma;
|
|
rxdp->status = 0;
|
|
|
|
/*
|
|
* Set data length & data buffer address of mbuf.
|
|
*/
|
|
data_len = rte_le_to_cpu_16(rxd.length);
|
|
rxm->data_len = data_len;
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
/*
|
|
* If this is the first buffer of the received packet,
|
|
* set the pointer to the first mbuf of the packet and
|
|
* initialize its context.
|
|
* Otherwise, update the total length and the number of segments
|
|
* of the current scattered packet, and update the pointer to
|
|
* the last mbuf of the current packet.
|
|
*/
|
|
if (first_seg == NULL) {
|
|
first_seg = rxm;
|
|
first_seg->pkt_len = data_len;
|
|
first_seg->nb_segs = 1;
|
|
} else {
|
|
first_seg->pkt_len += data_len;
|
|
first_seg->nb_segs++;
|
|
last_seg->next = rxm;
|
|
}
|
|
|
|
/*
|
|
* If this is not the last buffer of the received packet,
|
|
* update the pointer to the last mbuf of the current scattered
|
|
* packet and continue to parse the RX ring.
|
|
*/
|
|
if (! (status & E1000_RXD_STAT_EOP)) {
|
|
last_seg = rxm;
|
|
goto next_desc;
|
|
}
|
|
|
|
/*
|
|
* This is the last buffer of the received packet.
|
|
* If the CRC is not stripped by the hardware:
|
|
* - Subtract the CRC length from the total packet length.
|
|
* - If the last buffer only contains the whole CRC or a part
|
|
* of it, free the mbuf associated to the last buffer.
|
|
* If part of the CRC is also contained in the previous
|
|
* mbuf, subtract the length of that CRC part from the
|
|
* data length of the previous mbuf.
|
|
*/
|
|
rxm->next = NULL;
|
|
if (unlikely(rxq->crc_len > 0)) {
|
|
first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
|
|
if (data_len <= RTE_ETHER_CRC_LEN) {
|
|
rte_pktmbuf_free_seg(rxm);
|
|
first_seg->nb_segs--;
|
|
last_seg->data_len = (uint16_t)
|
|
(last_seg->data_len -
|
|
(RTE_ETHER_CRC_LEN - data_len));
|
|
last_seg->next = NULL;
|
|
} else
|
|
rxm->data_len = (uint16_t)
|
|
(data_len - RTE_ETHER_CRC_LEN);
|
|
}
|
|
|
|
/*
|
|
* Initialize the first mbuf of the returned packet:
|
|
* - RX port identifier,
|
|
* - hardware offload data, if any:
|
|
* - IP checksum flag,
|
|
* - error flags.
|
|
*/
|
|
first_seg->port = rxq->port_id;
|
|
|
|
first_seg->ol_flags = rx_desc_status_to_pkt_flags(status);
|
|
first_seg->ol_flags = first_seg->ol_flags |
|
|
rx_desc_error_to_pkt_flags(rxd.errors);
|
|
|
|
/* Only valid if PKT_RX_VLAN set in pkt_flags */
|
|
rxm->vlan_tci = rte_le_to_cpu_16(rxd.special);
|
|
|
|
/* Prefetch data of first segment, if configured to do so. */
|
|
rte_packet_prefetch((char *)first_seg->buf_addr +
|
|
first_seg->data_off);
|
|
|
|
/*
|
|
* Store the mbuf address into the next entry of the array
|
|
* of returned packets.
|
|
*/
|
|
rx_pkts[nb_rx++] = first_seg;
|
|
|
|
/*
|
|
* Setup receipt context for a new packet.
|
|
*/
|
|
first_seg = NULL;
|
|
}
|
|
|
|
/*
|
|
* Record index of the next RX descriptor to probe.
|
|
*/
|
|
rxq->rx_tail = rx_id;
|
|
|
|
/*
|
|
* Save receive context.
|
|
*/
|
|
rxq->pkt_first_seg = first_seg;
|
|
rxq->pkt_last_seg = last_seg;
|
|
|
|
/*
|
|
* If the number of free RX descriptors is greater than the RX free
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
* register.
|
|
* Update the RDT with the value of the last processed RX descriptor
|
|
* minus 1, to guarantee that the RDT register is never equal to the
|
|
* RDH register, which creates a "full" ring situtation from the
|
|
* hardware point of view...
|
|
*/
|
|
nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
|
|
"nb_hold=%u nb_rx=%u",
|
|
(unsigned) rxq->port_id, (unsigned) rxq->queue_id,
|
|
(unsigned) rx_id, (unsigned) nb_hold,
|
|
(unsigned) nb_rx);
|
|
rx_id = (uint16_t) ((rx_id == 0) ?
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
|
|
nb_hold = 0;
|
|
}
|
|
rxq->nb_rx_hold = nb_hold;
|
|
return nb_rx;
|
|
}
|
|
|
|
#define EM_MAX_BUF_SIZE 16384
|
|
#define EM_RCTL_FLXBUF_STEP 1024
|
|
|
|
static void
|
|
em_tx_queue_release_mbufs(struct em_tx_queue *txq)
|
|
{
|
|
unsigned i;
|
|
|
|
if (txq->sw_ring != NULL) {
|
|
for (i = 0; i != txq->nb_tx_desc; i++) {
|
|
if (txq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
|
|
txq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
em_tx_queue_release(struct em_tx_queue *txq)
|
|
{
|
|
if (txq != NULL) {
|
|
em_tx_queue_release_mbufs(txq);
|
|
rte_free(txq->sw_ring);
|
|
rte_free(txq);
|
|
}
|
|
}
|
|
|
|
void
|
|
eth_em_tx_queue_release(void *txq)
|
|
{
|
|
em_tx_queue_release(txq);
|
|
}
|
|
|
|
/* (Re)set dynamic em_tx_queue fields to defaults */
|
|
static void
|
|
em_reset_tx_queue(struct em_tx_queue *txq)
|
|
{
|
|
uint16_t i, nb_desc, prev;
|
|
static const struct e1000_data_desc txd_init = {
|
|
.upper.fields = {.status = E1000_TXD_STAT_DD},
|
|
};
|
|
|
|
nb_desc = txq->nb_tx_desc;
|
|
|
|
/* Initialize ring entries */
|
|
|
|
prev = (uint16_t) (nb_desc - 1);
|
|
|
|
for (i = 0; i < nb_desc; i++) {
|
|
txq->tx_ring[i] = txd_init;
|
|
txq->sw_ring[i].mbuf = NULL;
|
|
txq->sw_ring[i].last_id = i;
|
|
txq->sw_ring[prev].next_id = i;
|
|
prev = i;
|
|
}
|
|
|
|
/*
|
|
* Always allow 1 descriptor to be un-allocated to avoid
|
|
* a H/W race condition
|
|
*/
|
|
txq->nb_tx_free = (uint16_t)(nb_desc - 1);
|
|
txq->last_desc_cleaned = (uint16_t)(nb_desc - 1);
|
|
txq->nb_tx_used = 0;
|
|
txq->tx_tail = 0;
|
|
|
|
memset((void*)&txq->ctx_cache, 0, sizeof (txq->ctx_cache));
|
|
}
|
|
|
|
uint64_t
|
|
em_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
|
|
{
|
|
uint64_t tx_offload_capa;
|
|
|
|
RTE_SET_USED(dev);
|
|
tx_offload_capa =
|
|
DEV_TX_OFFLOAD_MULTI_SEGS |
|
|
DEV_TX_OFFLOAD_VLAN_INSERT |
|
|
DEV_TX_OFFLOAD_IPV4_CKSUM |
|
|
DEV_TX_OFFLOAD_UDP_CKSUM |
|
|
DEV_TX_OFFLOAD_TCP_CKSUM;
|
|
|
|
return tx_offload_capa;
|
|
}
|
|
|
|
uint64_t
|
|
em_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
|
|
{
|
|
uint64_t tx_queue_offload_capa;
|
|
|
|
/*
|
|
* As only one Tx queue can be used, let per queue offloading
|
|
* capability be same to per port queue offloading capability
|
|
* for better convenience.
|
|
*/
|
|
tx_queue_offload_capa = em_get_tx_port_offloads_capa(dev);
|
|
|
|
return tx_queue_offload_capa;
|
|
}
|
|
|
|
int
|
|
eth_em_tx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf)
|
|
{
|
|
const struct rte_memzone *tz;
|
|
struct em_tx_queue *txq;
|
|
struct e1000_hw *hw;
|
|
uint32_t tsize;
|
|
uint16_t tx_rs_thresh, tx_free_thresh;
|
|
uint64_t offloads;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
|
|
|
|
/*
|
|
* Validate number of transmit descriptors.
|
|
* It must not exceed hardware maximum, and must be multiple
|
|
* of E1000_ALIGN.
|
|
*/
|
|
if (nb_desc % EM_TXD_ALIGN != 0 ||
|
|
(nb_desc > E1000_MAX_RING_DESC) ||
|
|
(nb_desc < E1000_MIN_RING_DESC)) {
|
|
return -(EINVAL);
|
|
}
|
|
|
|
tx_free_thresh = tx_conf->tx_free_thresh;
|
|
if (tx_free_thresh == 0)
|
|
tx_free_thresh = (uint16_t)RTE_MIN(nb_desc / 4,
|
|
DEFAULT_TX_FREE_THRESH);
|
|
|
|
tx_rs_thresh = tx_conf->tx_rs_thresh;
|
|
if (tx_rs_thresh == 0)
|
|
tx_rs_thresh = (uint16_t)RTE_MIN(tx_free_thresh,
|
|
DEFAULT_TX_RS_THRESH);
|
|
|
|
if (tx_free_thresh >= (nb_desc - 3)) {
|
|
PMD_INIT_LOG(ERR, "tx_free_thresh must be less than the "
|
|
"number of TX descriptors minus 3. "
|
|
"(tx_free_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_free_thresh,
|
|
(int)dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
if (tx_rs_thresh > tx_free_thresh) {
|
|
PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or equal to "
|
|
"tx_free_thresh. (tx_free_thresh=%u "
|
|
"tx_rs_thresh=%u port=%d queue=%d)",
|
|
(unsigned int)tx_free_thresh,
|
|
(unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id,
|
|
(int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
|
|
/*
|
|
* If rs_bit_thresh is greater than 1, then TX WTHRESH should be
|
|
* set to 0. If WTHRESH is greater than zero, the RS bit is ignored
|
|
* by the NIC and all descriptors are written back after the NIC
|
|
* accumulates WTHRESH descriptors.
|
|
*/
|
|
if (tx_conf->tx_thresh.wthresh != 0 && tx_rs_thresh != 1) {
|
|
PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
|
|
"tx_rs_thresh is greater than 1. (tx_rs_thresh=%u "
|
|
"port=%d queue=%d)", (unsigned int)tx_rs_thresh,
|
|
(int)dev->data->port_id, (int)queue_idx);
|
|
return -(EINVAL);
|
|
}
|
|
|
|
/* Free memory prior to re-allocation if needed... */
|
|
if (dev->data->tx_queues[queue_idx] != NULL) {
|
|
em_tx_queue_release(dev->data->tx_queues[queue_idx]);
|
|
dev->data->tx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/*
|
|
* Allocate TX ring hardware descriptors. A memzone large enough to
|
|
* handle the maximum ring size is allocated in order to allow for
|
|
* resizing in later calls to the queue setup function.
|
|
*/
|
|
tsize = sizeof(txq->tx_ring[0]) * E1000_MAX_RING_DESC;
|
|
tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, tsize,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (tz == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Allocate the tx queue data structure. */
|
|
if ((txq = rte_zmalloc("ethdev TX queue", sizeof(*txq),
|
|
RTE_CACHE_LINE_SIZE)) == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Allocate software ring */
|
|
if ((txq->sw_ring = rte_zmalloc("txq->sw_ring",
|
|
sizeof(txq->sw_ring[0]) * nb_desc,
|
|
RTE_CACHE_LINE_SIZE)) == NULL) {
|
|
em_tx_queue_release(txq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
txq->nb_tx_desc = nb_desc;
|
|
txq->tx_free_thresh = tx_free_thresh;
|
|
txq->tx_rs_thresh = tx_rs_thresh;
|
|
txq->pthresh = tx_conf->tx_thresh.pthresh;
|
|
txq->hthresh = tx_conf->tx_thresh.hthresh;
|
|
txq->wthresh = tx_conf->tx_thresh.wthresh;
|
|
txq->queue_id = queue_idx;
|
|
txq->port_id = dev->data->port_id;
|
|
|
|
txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(queue_idx));
|
|
txq->tx_ring_phys_addr = tz->iova;
|
|
txq->tx_ring = (struct e1000_data_desc *) tz->addr;
|
|
|
|
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
|
|
txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
|
|
|
|
em_reset_tx_queue(txq);
|
|
|
|
dev->data->tx_queues[queue_idx] = txq;
|
|
txq->offloads = offloads;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
em_rx_queue_release_mbufs(struct em_rx_queue *rxq)
|
|
{
|
|
unsigned i;
|
|
|
|
if (rxq->sw_ring != NULL) {
|
|
for (i = 0; i != rxq->nb_rx_desc; i++) {
|
|
if (rxq->sw_ring[i].mbuf != NULL) {
|
|
rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
|
|
rxq->sw_ring[i].mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
em_rx_queue_release(struct em_rx_queue *rxq)
|
|
{
|
|
if (rxq != NULL) {
|
|
em_rx_queue_release_mbufs(rxq);
|
|
rte_free(rxq->sw_ring);
|
|
rte_free(rxq);
|
|
}
|
|
}
|
|
|
|
void
|
|
eth_em_rx_queue_release(void *rxq)
|
|
{
|
|
em_rx_queue_release(rxq);
|
|
}
|
|
|
|
/* Reset dynamic em_rx_queue fields back to defaults */
|
|
static void
|
|
em_reset_rx_queue(struct em_rx_queue *rxq)
|
|
{
|
|
rxq->rx_tail = 0;
|
|
rxq->nb_rx_hold = 0;
|
|
rxq->pkt_first_seg = NULL;
|
|
rxq->pkt_last_seg = NULL;
|
|
}
|
|
|
|
uint64_t
|
|
em_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
|
|
{
|
|
uint64_t rx_offload_capa;
|
|
uint32_t max_rx_pktlen;
|
|
|
|
max_rx_pktlen = em_get_max_pktlen(dev);
|
|
|
|
rx_offload_capa =
|
|
DEV_RX_OFFLOAD_VLAN_STRIP |
|
|
DEV_RX_OFFLOAD_VLAN_FILTER |
|
|
DEV_RX_OFFLOAD_IPV4_CKSUM |
|
|
DEV_RX_OFFLOAD_UDP_CKSUM |
|
|
DEV_RX_OFFLOAD_TCP_CKSUM |
|
|
DEV_RX_OFFLOAD_KEEP_CRC |
|
|
DEV_RX_OFFLOAD_SCATTER;
|
|
if (max_rx_pktlen > RTE_ETHER_MAX_LEN)
|
|
rx_offload_capa |= DEV_RX_OFFLOAD_JUMBO_FRAME;
|
|
|
|
return rx_offload_capa;
|
|
}
|
|
|
|
uint64_t
|
|
em_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
|
|
{
|
|
uint64_t rx_queue_offload_capa;
|
|
|
|
/*
|
|
* As only one Rx queue can be used, let per queue offloading
|
|
* capability be same to per port queue offloading capability
|
|
* for better convenience.
|
|
*/
|
|
rx_queue_offload_capa = em_get_rx_port_offloads_capa(dev);
|
|
|
|
return rx_queue_offload_capa;
|
|
}
|
|
|
|
int
|
|
eth_em_rx_queue_setup(struct rte_eth_dev *dev,
|
|
uint16_t queue_idx,
|
|
uint16_t nb_desc,
|
|
unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mp)
|
|
{
|
|
const struct rte_memzone *rz;
|
|
struct em_rx_queue *rxq;
|
|
struct e1000_hw *hw;
|
|
uint32_t rsize;
|
|
uint64_t offloads;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
|
|
|
|
/*
|
|
* Validate number of receive descriptors.
|
|
* It must not exceed hardware maximum, and must be multiple
|
|
* of E1000_ALIGN.
|
|
*/
|
|
if (nb_desc % EM_RXD_ALIGN != 0 ||
|
|
(nb_desc > E1000_MAX_RING_DESC) ||
|
|
(nb_desc < E1000_MIN_RING_DESC)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* EM devices don't support drop_en functionality.
|
|
* It's an optimization that does nothing on single-queue devices,
|
|
* so just log the issue and carry on.
|
|
*/
|
|
if (rx_conf->rx_drop_en) {
|
|
PMD_INIT_LOG(NOTICE, "drop_en functionality not supported by "
|
|
"device");
|
|
}
|
|
|
|
/* Free memory prior to re-allocation if needed. */
|
|
if (dev->data->rx_queues[queue_idx] != NULL) {
|
|
em_rx_queue_release(dev->data->rx_queues[queue_idx]);
|
|
dev->data->rx_queues[queue_idx] = NULL;
|
|
}
|
|
|
|
/* Allocate RX ring for max possible mumber of hardware descriptors. */
|
|
rsize = sizeof(rxq->rx_ring[0]) * E1000_MAX_RING_DESC;
|
|
rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, rsize,
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (rz == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Allocate the RX queue data structure. */
|
|
if ((rxq = rte_zmalloc("ethdev RX queue", sizeof(*rxq),
|
|
RTE_CACHE_LINE_SIZE)) == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* Allocate software ring. */
|
|
if ((rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
|
|
sizeof (rxq->sw_ring[0]) * nb_desc,
|
|
RTE_CACHE_LINE_SIZE)) == NULL) {
|
|
em_rx_queue_release(rxq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rxq->mb_pool = mp;
|
|
rxq->nb_rx_desc = nb_desc;
|
|
rxq->pthresh = rx_conf->rx_thresh.pthresh;
|
|
rxq->hthresh = rx_conf->rx_thresh.hthresh;
|
|
rxq->wthresh = rx_conf->rx_thresh.wthresh;
|
|
rxq->rx_free_thresh = rx_conf->rx_free_thresh;
|
|
rxq->queue_id = queue_idx;
|
|
rxq->port_id = dev->data->port_id;
|
|
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
|
|
rxq->crc_len = RTE_ETHER_CRC_LEN;
|
|
else
|
|
rxq->crc_len = 0;
|
|
|
|
rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(queue_idx));
|
|
rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(queue_idx));
|
|
rxq->rx_ring_phys_addr = rz->iova;
|
|
rxq->rx_ring = (struct e1000_rx_desc *) rz->addr;
|
|
|
|
PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
|
|
rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
|
|
|
|
dev->data->rx_queues[queue_idx] = rxq;
|
|
em_reset_rx_queue(rxq);
|
|
rxq->offloads = offloads;
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
eth_em_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
|
|
{
|
|
#define EM_RXQ_SCAN_INTERVAL 4
|
|
volatile struct e1000_rx_desc *rxdp;
|
|
struct em_rx_queue *rxq;
|
|
uint32_t desc = 0;
|
|
|
|
rxq = dev->data->rx_queues[rx_queue_id];
|
|
rxdp = &(rxq->rx_ring[rxq->rx_tail]);
|
|
|
|
while ((desc < rxq->nb_rx_desc) &&
|
|
(rxdp->status & E1000_RXD_STAT_DD)) {
|
|
desc += EM_RXQ_SCAN_INTERVAL;
|
|
rxdp += EM_RXQ_SCAN_INTERVAL;
|
|
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
|
|
rxdp = &(rxq->rx_ring[rxq->rx_tail +
|
|
desc - rxq->nb_rx_desc]);
|
|
}
|
|
|
|
return desc;
|
|
}
|
|
|
|
int
|
|
eth_em_rx_descriptor_done(void *rx_queue, uint16_t offset)
|
|
{
|
|
volatile struct e1000_rx_desc *rxdp;
|
|
struct em_rx_queue *rxq = rx_queue;
|
|
uint32_t desc;
|
|
|
|
if (unlikely(offset >= rxq->nb_rx_desc))
|
|
return 0;
|
|
desc = rxq->rx_tail + offset;
|
|
if (desc >= rxq->nb_rx_desc)
|
|
desc -= rxq->nb_rx_desc;
|
|
|
|
rxdp = &rxq->rx_ring[desc];
|
|
return !!(rxdp->status & E1000_RXD_STAT_DD);
|
|
}
|
|
|
|
int
|
|
eth_em_rx_descriptor_status(void *rx_queue, uint16_t offset)
|
|
{
|
|
struct em_rx_queue *rxq = rx_queue;
|
|
volatile uint8_t *status;
|
|
uint32_t desc;
|
|
|
|
if (unlikely(offset >= rxq->nb_rx_desc))
|
|
return -EINVAL;
|
|
|
|
if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
|
|
return RTE_ETH_RX_DESC_UNAVAIL;
|
|
|
|
desc = rxq->rx_tail + offset;
|
|
if (desc >= rxq->nb_rx_desc)
|
|
desc -= rxq->nb_rx_desc;
|
|
|
|
status = &rxq->rx_ring[desc].status;
|
|
if (*status & E1000_RXD_STAT_DD)
|
|
return RTE_ETH_RX_DESC_DONE;
|
|
|
|
return RTE_ETH_RX_DESC_AVAIL;
|
|
}
|
|
|
|
int
|
|
eth_em_tx_descriptor_status(void *tx_queue, uint16_t offset)
|
|
{
|
|
struct em_tx_queue *txq = tx_queue;
|
|
volatile uint8_t *status;
|
|
uint32_t desc;
|
|
|
|
if (unlikely(offset >= txq->nb_tx_desc))
|
|
return -EINVAL;
|
|
|
|
desc = txq->tx_tail + offset;
|
|
/* go to next desc that has the RS bit */
|
|
desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
|
|
txq->tx_rs_thresh;
|
|
if (desc >= txq->nb_tx_desc) {
|
|
desc -= txq->nb_tx_desc;
|
|
if (desc >= txq->nb_tx_desc)
|
|
desc -= txq->nb_tx_desc;
|
|
}
|
|
|
|
status = &txq->tx_ring[desc].upper.fields.status;
|
|
if (*status & E1000_TXD_STAT_DD)
|
|
return RTE_ETH_TX_DESC_DONE;
|
|
|
|
return RTE_ETH_TX_DESC_FULL;
|
|
}
|
|
|
|
void
|
|
em_dev_clear_queues(struct rte_eth_dev *dev)
|
|
{
|
|
uint16_t i;
|
|
struct em_tx_queue *txq;
|
|
struct em_rx_queue *rxq;
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
if (txq != NULL) {
|
|
em_tx_queue_release_mbufs(txq);
|
|
em_reset_tx_queue(txq);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
rxq = dev->data->rx_queues[i];
|
|
if (rxq != NULL) {
|
|
em_rx_queue_release_mbufs(rxq);
|
|
em_reset_rx_queue(rxq);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
em_dev_free_queues(struct rte_eth_dev *dev)
|
|
{
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
eth_em_rx_queue_release(dev->data->rx_queues[i]);
|
|
dev->data->rx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_rx_queues = 0;
|
|
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
eth_em_tx_queue_release(dev->data->tx_queues[i]);
|
|
dev->data->tx_queues[i] = NULL;
|
|
}
|
|
dev->data->nb_tx_queues = 0;
|
|
}
|
|
|
|
/*
|
|
* Takes as input/output parameter RX buffer size.
|
|
* Returns (BSIZE | BSEX | FLXBUF) fields of RCTL register.
|
|
*/
|
|
static uint32_t
|
|
em_rctl_bsize(__rte_unused enum e1000_mac_type hwtyp, uint32_t *bufsz)
|
|
{
|
|
/*
|
|
* For BSIZE & BSEX all configurable sizes are:
|
|
* 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
|
|
* 8192: rctl |= (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX);
|
|
* 4096: rctl |= (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX);
|
|
* 2048: rctl |= E1000_RCTL_SZ_2048;
|
|
* 1024: rctl |= E1000_RCTL_SZ_1024;
|
|
* 512: rctl |= E1000_RCTL_SZ_512;
|
|
* 256: rctl |= E1000_RCTL_SZ_256;
|
|
*/
|
|
static const struct {
|
|
uint32_t bufsz;
|
|
uint32_t rctl;
|
|
} bufsz_to_rctl[] = {
|
|
{16384, (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX)},
|
|
{8192, (E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX)},
|
|
{4096, (E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX)},
|
|
{2048, E1000_RCTL_SZ_2048},
|
|
{1024, E1000_RCTL_SZ_1024},
|
|
{512, E1000_RCTL_SZ_512},
|
|
{256, E1000_RCTL_SZ_256},
|
|
};
|
|
|
|
int i;
|
|
uint32_t rctl_bsize;
|
|
|
|
rctl_bsize = *bufsz;
|
|
|
|
/*
|
|
* Starting from 82571 it is possible to specify RX buffer size
|
|
* by RCTL.FLXBUF. When this field is different from zero, the
|
|
* RX buffer size = RCTL.FLXBUF * 1K
|
|
* (e.g. t is possible to specify RX buffer size 1,2,...,15KB).
|
|
* It is working ok on real HW, but by some reason doesn't work
|
|
* on VMware emulated 82574L.
|
|
* So for now, always use BSIZE/BSEX to setup RX buffer size.
|
|
* If you don't plan to use it on VMware emulated 82574L and
|
|
* would like to specify RX buffer size in 1K granularity,
|
|
* uncomment the following lines:
|
|
* ***************************************************************
|
|
* if (hwtyp >= e1000_82571 && hwtyp <= e1000_82574 &&
|
|
* rctl_bsize >= EM_RCTL_FLXBUF_STEP) {
|
|
* rctl_bsize /= EM_RCTL_FLXBUF_STEP;
|
|
* *bufsz = rctl_bsize;
|
|
* return (rctl_bsize << E1000_RCTL_FLXBUF_SHIFT &
|
|
* E1000_RCTL_FLXBUF_MASK);
|
|
* }
|
|
* ***************************************************************
|
|
*/
|
|
|
|
for (i = 0; i != sizeof(bufsz_to_rctl) / sizeof(bufsz_to_rctl[0]);
|
|
i++) {
|
|
if (rctl_bsize >= bufsz_to_rctl[i].bufsz) {
|
|
*bufsz = bufsz_to_rctl[i].bufsz;
|
|
return bufsz_to_rctl[i].rctl;
|
|
}
|
|
}
|
|
|
|
/* Should never happen. */
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int
|
|
em_alloc_rx_queue_mbufs(struct em_rx_queue *rxq)
|
|
{
|
|
struct em_rx_entry *rxe = rxq->sw_ring;
|
|
uint64_t dma_addr;
|
|
unsigned i;
|
|
static const struct e1000_rx_desc rxd_init = {
|
|
.buffer_addr = 0,
|
|
};
|
|
|
|
/* Initialize software ring entries */
|
|
for (i = 0; i < rxq->nb_rx_desc; i++) {
|
|
volatile struct e1000_rx_desc *rxd;
|
|
struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
|
|
|
|
if (mbuf == NULL) {
|
|
PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
|
|
"queue_id=%hu", rxq->queue_id);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dma_addr =
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
|
|
|
|
/* Clear HW ring memory */
|
|
rxq->rx_ring[i] = rxd_init;
|
|
|
|
rxd = &rxq->rx_ring[i];
|
|
rxd->buffer_addr = dma_addr;
|
|
rxe[i].mbuf = mbuf;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable receive unit.
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
eth_em_rx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
struct em_rx_queue *rxq;
|
|
struct rte_eth_rxmode *rxmode;
|
|
uint32_t rctl;
|
|
uint32_t rfctl;
|
|
uint32_t rxcsum;
|
|
uint32_t rctl_bsize;
|
|
uint16_t i;
|
|
int ret;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
rxmode = &dev->data->dev_conf.rxmode;
|
|
|
|
/*
|
|
* Make sure receives are disabled while setting
|
|
* up the descriptor ring.
|
|
*/
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
|
|
|
rfctl = E1000_READ_REG(hw, E1000_RFCTL);
|
|
|
|
/* Disable extended descriptor type. */
|
|
rfctl &= ~E1000_RFCTL_EXTEN;
|
|
/* Disable accelerated acknowledge */
|
|
if (hw->mac.type == e1000_82574)
|
|
rfctl |= E1000_RFCTL_ACK_DIS;
|
|
|
|
E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
|
|
|
|
/*
|
|
* XXX TEMPORARY WORKAROUND: on some systems with 82573
|
|
* long latencies are observed, like Lenovo X60. This
|
|
* change eliminates the problem, but since having positive
|
|
* values in RDTR is a known source of problems on other
|
|
* platforms another solution is being sought.
|
|
*/
|
|
if (hw->mac.type == e1000_82573)
|
|
E1000_WRITE_REG(hw, E1000_RDTR, 0x20);
|
|
|
|
dev->rx_pkt_burst = (eth_rx_burst_t)eth_em_recv_pkts;
|
|
|
|
/* Determine RX bufsize. */
|
|
rctl_bsize = EM_MAX_BUF_SIZE;
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
uint32_t buf_size;
|
|
|
|
rxq = dev->data->rx_queues[i];
|
|
buf_size = rte_pktmbuf_data_room_size(rxq->mb_pool) -
|
|
RTE_PKTMBUF_HEADROOM;
|
|
rctl_bsize = RTE_MIN(rctl_bsize, buf_size);
|
|
}
|
|
|
|
rctl |= em_rctl_bsize(hw->mac.type, &rctl_bsize);
|
|
|
|
/* Configure and enable each RX queue. */
|
|
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
|
uint64_t bus_addr;
|
|
uint32_t rxdctl;
|
|
|
|
rxq = dev->data->rx_queues[i];
|
|
|
|
/* Allocate buffers for descriptor rings and setup queue */
|
|
ret = em_alloc_rx_queue_mbufs(rxq);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Reset crc_len in case it was changed after queue setup by a
|
|
* call to configure
|
|
*/
|
|
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
|
|
rxq->crc_len = RTE_ETHER_CRC_LEN;
|
|
else
|
|
rxq->crc_len = 0;
|
|
|
|
bus_addr = rxq->rx_ring_phys_addr;
|
|
E1000_WRITE_REG(hw, E1000_RDLEN(i),
|
|
rxq->nb_rx_desc *
|
|
sizeof(*rxq->rx_ring));
|
|
E1000_WRITE_REG(hw, E1000_RDBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
|
|
|
|
E1000_WRITE_REG(hw, E1000_RDH(i), 0);
|
|
E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
|
|
|
|
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
|
|
rxdctl &= 0xFE000000;
|
|
rxdctl |= rxq->pthresh & 0x3F;
|
|
rxdctl |= (rxq->hthresh & 0x3F) << 8;
|
|
rxdctl |= (rxq->wthresh & 0x3F) << 16;
|
|
rxdctl |= E1000_RXDCTL_GRAN;
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
|
|
|
|
/*
|
|
* Due to EM devices not having any sort of hardware
|
|
* limit for packet length, jumbo frame of any size
|
|
* can be accepted, thus we have to enable scattered
|
|
* rx if jumbo frames are enabled (or if buffer size
|
|
* is too small to accommodate non-jumbo packets)
|
|
* to avoid splitting packets that don't fit into
|
|
* one buffer.
|
|
*/
|
|
if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME ||
|
|
rctl_bsize < RTE_ETHER_MAX_LEN) {
|
|
if (!dev->data->scattered_rx)
|
|
PMD_INIT_LOG(DEBUG, "forcing scatter mode");
|
|
dev->rx_pkt_burst =
|
|
(eth_rx_burst_t)eth_em_recv_scattered_pkts;
|
|
dev->data->scattered_rx = 1;
|
|
}
|
|
}
|
|
|
|
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
|
|
if (!dev->data->scattered_rx)
|
|
PMD_INIT_LOG(DEBUG, "forcing scatter mode");
|
|
dev->rx_pkt_burst = eth_em_recv_scattered_pkts;
|
|
dev->data->scattered_rx = 1;
|
|
}
|
|
|
|
/*
|
|
* Setup the Checksum Register.
|
|
* Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
|
|
*/
|
|
rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
|
|
|
|
if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
|
|
rxcsum |= E1000_RXCSUM_IPOFL;
|
|
else
|
|
rxcsum &= ~E1000_RXCSUM_IPOFL;
|
|
E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
|
|
|
|
/* No MRQ or RSS support for now */
|
|
|
|
/* Set early receive threshold on appropriate hw */
|
|
if ((hw->mac.type == e1000_ich9lan ||
|
|
hw->mac.type == e1000_pch2lan ||
|
|
hw->mac.type == e1000_ich10lan) &&
|
|
rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
|
|
u32 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(0));
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(0), rxdctl | 3);
|
|
E1000_WRITE_REG(hw, E1000_ERT, 0x100 | (1 << 13));
|
|
}
|
|
|
|
if (hw->mac.type == e1000_pch2lan) {
|
|
if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
|
|
e1000_lv_jumbo_workaround_ich8lan(hw, TRUE);
|
|
else
|
|
e1000_lv_jumbo_workaround_ich8lan(hw, FALSE);
|
|
}
|
|
|
|
/* Setup the Receive Control Register. */
|
|
if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
|
|
rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
|
|
else
|
|
rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
|
|
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
|
|
E1000_RCTL_RDMTS_HALF |
|
|
(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
|
|
|
|
/* Make sure VLAN Filters are off. */
|
|
rctl &= ~E1000_RCTL_VFE;
|
|
/* Don't store bad packets. */
|
|
rctl &= ~E1000_RCTL_SBP;
|
|
/* Legacy descriptor type. */
|
|
rctl &= ~E1000_RCTL_DTYP_MASK;
|
|
|
|
/*
|
|
* Configure support of jumbo frames, if any.
|
|
*/
|
|
if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
|
|
rctl |= E1000_RCTL_LPE;
|
|
else
|
|
rctl &= ~E1000_RCTL_LPE;
|
|
|
|
/* Enable Receives. */
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Enable transmit unit.
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
eth_em_tx_init(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw;
|
|
struct em_tx_queue *txq;
|
|
uint32_t tctl;
|
|
uint32_t txdctl;
|
|
uint16_t i;
|
|
|
|
hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
|
|
/* Setup the Base and Length of the Tx Descriptor Rings. */
|
|
for (i = 0; i < dev->data->nb_tx_queues; i++) {
|
|
uint64_t bus_addr;
|
|
|
|
txq = dev->data->tx_queues[i];
|
|
bus_addr = txq->tx_ring_phys_addr;
|
|
E1000_WRITE_REG(hw, E1000_TDLEN(i),
|
|
txq->nb_tx_desc *
|
|
sizeof(*txq->tx_ring));
|
|
E1000_WRITE_REG(hw, E1000_TDBAH(i),
|
|
(uint32_t)(bus_addr >> 32));
|
|
E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
|
|
|
|
/* Setup the HW Tx Head and Tail descriptor pointers. */
|
|
E1000_WRITE_REG(hw, E1000_TDT(i), 0);
|
|
E1000_WRITE_REG(hw, E1000_TDH(i), 0);
|
|
|
|
/* Setup Transmit threshold registers. */
|
|
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
|
|
/*
|
|
* bit 22 is reserved, on some models should always be 0,
|
|
* on others - always 1.
|
|
*/
|
|
txdctl &= E1000_TXDCTL_COUNT_DESC;
|
|
txdctl |= txq->pthresh & 0x3F;
|
|
txdctl |= (txq->hthresh & 0x3F) << 8;
|
|
txdctl |= (txq->wthresh & 0x3F) << 16;
|
|
txdctl |= E1000_TXDCTL_GRAN;
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
|
|
}
|
|
|
|
/* Program the Transmit Control Register. */
|
|
tctl = E1000_READ_REG(hw, E1000_TCTL);
|
|
tctl &= ~E1000_TCTL_CT;
|
|
tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
|
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
|
|
|
|
/* SPT and CNP Si errata workaround to avoid data corruption */
|
|
if (hw->mac.type == e1000_pch_spt) {
|
|
uint32_t reg_val;
|
|
reg_val = E1000_READ_REG(hw, E1000_IOSFPC);
|
|
reg_val |= E1000_RCTL_RDMTS_HEX;
|
|
E1000_WRITE_REG(hw, E1000_IOSFPC, reg_val);
|
|
|
|
/* Dropping the number of outstanding requests from
|
|
* 3 to 2 in order to avoid a buffer overrun.
|
|
*/
|
|
reg_val = E1000_READ_REG(hw, E1000_TARC(0));
|
|
reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
|
|
reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
|
|
E1000_WRITE_REG(hw, E1000_TARC(0), reg_val);
|
|
}
|
|
|
|
/* This write will effectively turn on the transmit unit. */
|
|
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
|
|
}
|
|
|
|
void
|
|
em_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_rxq_info *qinfo)
|
|
{
|
|
struct em_rx_queue *rxq;
|
|
|
|
rxq = dev->data->rx_queues[queue_id];
|
|
|
|
qinfo->mp = rxq->mb_pool;
|
|
qinfo->scattered_rx = dev->data->scattered_rx;
|
|
qinfo->nb_desc = rxq->nb_rx_desc;
|
|
qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
|
|
qinfo->conf.offloads = rxq->offloads;
|
|
}
|
|
|
|
void
|
|
em_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
|
|
struct rte_eth_txq_info *qinfo)
|
|
{
|
|
struct em_tx_queue *txq;
|
|
|
|
txq = dev->data->tx_queues[queue_id];
|
|
|
|
qinfo->nb_desc = txq->nb_tx_desc;
|
|
|
|
qinfo->conf.tx_thresh.pthresh = txq->pthresh;
|
|
qinfo->conf.tx_thresh.hthresh = txq->hthresh;
|
|
qinfo->conf.tx_thresh.wthresh = txq->wthresh;
|
|
qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
|
|
qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
|
|
qinfo->conf.offloads = txq->offloads;
|
|
}
|
|
|
|
static void
|
|
e1000_flush_tx_ring(struct rte_eth_dev *dev)
|
|
{
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
volatile struct e1000_data_desc *tx_desc;
|
|
volatile uint32_t *tdt_reg_addr;
|
|
uint32_t tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
|
|
uint16_t size = 512;
|
|
struct em_tx_queue *txq;
|
|
int i;
|
|
|
|
if (dev->data->tx_queues == NULL)
|
|
return;
|
|
tctl = E1000_READ_REG(hw, E1000_TCTL);
|
|
E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
|
|
for (i = 0; i < dev->data->nb_tx_queues &&
|
|
i < E1000_I219_MAX_TX_QUEUE_NUM; i++) {
|
|
txq = dev->data->tx_queues[i];
|
|
tdt = E1000_READ_REG(hw, E1000_TDT(i));
|
|
if (tdt != txq->tx_tail)
|
|
return;
|
|
tx_desc = &txq->tx_ring[txq->tx_tail];
|
|
tx_desc->buffer_addr = rte_cpu_to_le_64(txq->tx_ring_phys_addr);
|
|
tx_desc->lower.data = rte_cpu_to_le_32(txd_lower | size);
|
|
tx_desc->upper.data = 0;
|
|
|
|
rte_cio_wmb();
|
|
txq->tx_tail++;
|
|
if (txq->tx_tail == txq->nb_tx_desc)
|
|
txq->tx_tail = 0;
|
|
tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(i));
|
|
E1000_PCI_REG_WRITE(tdt_reg_addr, txq->tx_tail);
|
|
usec_delay(250);
|
|
}
|
|
}
|
|
|
|
static void
|
|
e1000_flush_rx_ring(struct rte_eth_dev *dev)
|
|
{
|
|
uint32_t rctl, rxdctl;
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
int i;
|
|
|
|
rctl = E1000_READ_REG(hw, E1000_RCTL);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
|
E1000_WRITE_FLUSH(hw);
|
|
usec_delay(150);
|
|
|
|
for (i = 0; i < dev->data->nb_rx_queues &&
|
|
i < E1000_I219_MAX_RX_QUEUE_NUM; i++) {
|
|
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
|
|
/* zero the lower 14 bits (prefetch and host thresholds) */
|
|
rxdctl &= 0xffffc000;
|
|
|
|
/* update thresholds: prefetch threshold to 31,
|
|
* host threshold to 1 and make sure the granularity
|
|
* is "descriptors" and not "cache lines"
|
|
*/
|
|
rxdctl |= (0x1F | (1UL << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
|
|
|
|
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
|
|
}
|
|
/* momentarily enable the RX ring for the changes to take effect */
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
|
|
E1000_WRITE_FLUSH(hw);
|
|
usec_delay(150);
|
|
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
|
|
}
|
|
|
|
/**
|
|
* em_flush_desc_rings - remove all descriptors from the descriptor rings
|
|
*
|
|
* In i219, the descriptor rings must be emptied before resetting/closing the
|
|
* HW. Failure to do this will cause the HW to enter a unit hang state which
|
|
* can only be released by PCI reset on the device
|
|
*
|
|
*/
|
|
|
|
void
|
|
em_flush_desc_rings(struct rte_eth_dev *dev)
|
|
{
|
|
uint32_t fextnvm11, tdlen;
|
|
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
|
|
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
|
|
uint16_t pci_cfg_status = 0;
|
|
int ret;
|
|
|
|
fextnvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
|
|
E1000_WRITE_REG(hw, E1000_FEXTNVM11,
|
|
fextnvm11 | E1000_FEXTNVM11_DISABLE_MULR_FIX);
|
|
tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
|
|
ret = rte_pci_read_config(pci_dev, &pci_cfg_status,
|
|
sizeof(pci_cfg_status), PCI_CFG_STATUS_REG);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x",
|
|
PCI_CFG_STATUS_REG);
|
|
return;
|
|
}
|
|
|
|
/* do nothing if we're not in faulty state, or if the queue is empty */
|
|
if ((pci_cfg_status & FLUSH_DESC_REQUIRED) && tdlen) {
|
|
/* flush desc ring */
|
|
e1000_flush_tx_ring(dev);
|
|
ret = rte_pci_read_config(pci_dev, &pci_cfg_status,
|
|
sizeof(pci_cfg_status), PCI_CFG_STATUS_REG);
|
|
if (ret < 0) {
|
|
PMD_DRV_LOG(ERR, "Failed to read PCI offset 0x%x",
|
|
PCI_CFG_STATUS_REG);
|
|
return;
|
|
}
|
|
|
|
if (pci_cfg_status & FLUSH_DESC_REQUIRED)
|
|
e1000_flush_rx_ring(dev);
|
|
}
|
|
}
|