numam-dpdk/drivers/net/virtio/virtio_ethdev.c
Jiayu Hu e7b9d1d280 net/virtio: fix Rx interrupt setup
When use rte_eth_dev_configure() to enable rx queue interrupt for virtio
devices, virtio_init_device() isn't called to set up the interrupt
environment, which causes rx queue interrupt setup failed. This patch is
to fix this issue.

Fixes: 26b683b4f7d0 ("net/virtio: setup Rx queue interrupts")
Cc: stable@dpdk.org

Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
2017-07-31 19:16:23 +02:00

1934 lines
52 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <rte_ethdev.h>
#include <rte_ethdev_pci.h>
#include <rte_memcpy.h>
#include <rte_string_fns.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_common.h>
#include <rte_errno.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_dev.h>
#include "virtio_ethdev.h"
#include "virtio_pci.h"
#include "virtio_logs.h"
#include "virtqueue.h"
#include "virtio_rxtx.h"
static int eth_virtio_dev_uninit(struct rte_eth_dev *eth_dev);
static int virtio_dev_configure(struct rte_eth_dev *dev);
static int virtio_dev_start(struct rte_eth_dev *dev);
static void virtio_dev_stop(struct rte_eth_dev *dev);
static void virtio_dev_promiscuous_enable(struct rte_eth_dev *dev);
static void virtio_dev_promiscuous_disable(struct rte_eth_dev *dev);
static void virtio_dev_allmulticast_enable(struct rte_eth_dev *dev);
static void virtio_dev_allmulticast_disable(struct rte_eth_dev *dev);
static void virtio_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int virtio_dev_link_update(struct rte_eth_dev *dev,
int wait_to_complete);
static void virtio_set_hwaddr(struct virtio_hw *hw);
static void virtio_get_hwaddr(struct virtio_hw *hw);
static void virtio_dev_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats);
static int virtio_dev_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned n);
static int virtio_dev_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned limit);
static void virtio_dev_stats_reset(struct rte_eth_dev *dev);
static void virtio_dev_free_mbufs(struct rte_eth_dev *dev);
static int virtio_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id, int on);
static int virtio_mac_addr_add(struct rte_eth_dev *dev,
struct ether_addr *mac_addr,
uint32_t index, uint32_t vmdq);
static void virtio_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index);
static void virtio_mac_addr_set(struct rte_eth_dev *dev,
struct ether_addr *mac_addr);
static int virtio_dev_queue_stats_mapping_set(
struct rte_eth_dev *eth_dev,
uint16_t queue_id,
uint8_t stat_idx,
uint8_t is_rx);
/*
* The set of PCI devices this driver supports
*/
static const struct rte_pci_id pci_id_virtio_map[] = {
{ RTE_PCI_DEVICE(VIRTIO_PCI_VENDORID, VIRTIO_PCI_LEGACY_DEVICEID_NET) },
{ RTE_PCI_DEVICE(VIRTIO_PCI_VENDORID, VIRTIO_PCI_MODERN_DEVICEID_NET) },
{ .vendor_id = 0, /* sentinel */ },
};
struct rte_virtio_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned offset;
};
/* [rt]x_qX_ is prepended to the name string here */
static const struct rte_virtio_xstats_name_off rte_virtio_rxq_stat_strings[] = {
{"good_packets", offsetof(struct virtnet_rx, stats.packets)},
{"good_bytes", offsetof(struct virtnet_rx, stats.bytes)},
{"errors", offsetof(struct virtnet_rx, stats.errors)},
{"multicast_packets", offsetof(struct virtnet_rx, stats.multicast)},
{"broadcast_packets", offsetof(struct virtnet_rx, stats.broadcast)},
{"undersize_packets", offsetof(struct virtnet_rx, stats.size_bins[0])},
{"size_64_packets", offsetof(struct virtnet_rx, stats.size_bins[1])},
{"size_65_127_packets", offsetof(struct virtnet_rx, stats.size_bins[2])},
{"size_128_255_packets", offsetof(struct virtnet_rx, stats.size_bins[3])},
{"size_256_511_packets", offsetof(struct virtnet_rx, stats.size_bins[4])},
{"size_512_1023_packets", offsetof(struct virtnet_rx, stats.size_bins[5])},
{"size_1024_1518_packets", offsetof(struct virtnet_rx, stats.size_bins[6])},
{"size_1519_max_packets", offsetof(struct virtnet_rx, stats.size_bins[7])},
};
/* [rt]x_qX_ is prepended to the name string here */
static const struct rte_virtio_xstats_name_off rte_virtio_txq_stat_strings[] = {
{"good_packets", offsetof(struct virtnet_tx, stats.packets)},
{"good_bytes", offsetof(struct virtnet_tx, stats.bytes)},
{"errors", offsetof(struct virtnet_tx, stats.errors)},
{"multicast_packets", offsetof(struct virtnet_tx, stats.multicast)},
{"broadcast_packets", offsetof(struct virtnet_tx, stats.broadcast)},
{"undersize_packets", offsetof(struct virtnet_tx, stats.size_bins[0])},
{"size_64_packets", offsetof(struct virtnet_tx, stats.size_bins[1])},
{"size_65_127_packets", offsetof(struct virtnet_tx, stats.size_bins[2])},
{"size_128_255_packets", offsetof(struct virtnet_tx, stats.size_bins[3])},
{"size_256_511_packets", offsetof(struct virtnet_tx, stats.size_bins[4])},
{"size_512_1023_packets", offsetof(struct virtnet_tx, stats.size_bins[5])},
{"size_1024_1518_packets", offsetof(struct virtnet_tx, stats.size_bins[6])},
{"size_1519_max_packets", offsetof(struct virtnet_tx, stats.size_bins[7])},
};
#define VIRTIO_NB_RXQ_XSTATS (sizeof(rte_virtio_rxq_stat_strings) / \
sizeof(rte_virtio_rxq_stat_strings[0]))
#define VIRTIO_NB_TXQ_XSTATS (sizeof(rte_virtio_txq_stat_strings) / \
sizeof(rte_virtio_txq_stat_strings[0]))
struct virtio_hw_internal virtio_hw_internal[RTE_MAX_ETHPORTS];
static int
virtio_send_command(struct virtnet_ctl *cvq, struct virtio_pmd_ctrl *ctrl,
int *dlen, int pkt_num)
{
uint32_t head, i;
int k, sum = 0;
virtio_net_ctrl_ack status = ~0;
struct virtio_pmd_ctrl result;
struct virtqueue *vq;
ctrl->status = status;
if (!cvq || !cvq->vq) {
PMD_INIT_LOG(ERR, "Control queue is not supported.");
return -1;
}
vq = cvq->vq;
head = vq->vq_desc_head_idx;
PMD_INIT_LOG(DEBUG, "vq->vq_desc_head_idx = %d, status = %d, "
"vq->hw->cvq = %p vq = %p",
vq->vq_desc_head_idx, status, vq->hw->cvq, vq);
if ((vq->vq_free_cnt < ((uint32_t)pkt_num + 2)) || (pkt_num < 1))
return -1;
memcpy(cvq->virtio_net_hdr_mz->addr, ctrl,
sizeof(struct virtio_pmd_ctrl));
/*
* Format is enforced in qemu code:
* One TX packet for header;
* At least one TX packet per argument;
* One RX packet for ACK.
*/
vq->vq_ring.desc[head].flags = VRING_DESC_F_NEXT;
vq->vq_ring.desc[head].addr = cvq->virtio_net_hdr_mem;
vq->vq_ring.desc[head].len = sizeof(struct virtio_net_ctrl_hdr);
vq->vq_free_cnt--;
i = vq->vq_ring.desc[head].next;
for (k = 0; k < pkt_num; k++) {
vq->vq_ring.desc[i].flags = VRING_DESC_F_NEXT;
vq->vq_ring.desc[i].addr = cvq->virtio_net_hdr_mem
+ sizeof(struct virtio_net_ctrl_hdr)
+ sizeof(ctrl->status) + sizeof(uint8_t)*sum;
vq->vq_ring.desc[i].len = dlen[k];
sum += dlen[k];
vq->vq_free_cnt--;
i = vq->vq_ring.desc[i].next;
}
vq->vq_ring.desc[i].flags = VRING_DESC_F_WRITE;
vq->vq_ring.desc[i].addr = cvq->virtio_net_hdr_mem
+ sizeof(struct virtio_net_ctrl_hdr);
vq->vq_ring.desc[i].len = sizeof(ctrl->status);
vq->vq_free_cnt--;
vq->vq_desc_head_idx = vq->vq_ring.desc[i].next;
vq_update_avail_ring(vq, head);
vq_update_avail_idx(vq);
PMD_INIT_LOG(DEBUG, "vq->vq_queue_index = %d", vq->vq_queue_index);
virtqueue_notify(vq);
rte_rmb();
while (VIRTQUEUE_NUSED(vq) == 0) {
rte_rmb();
usleep(100);
}
while (VIRTQUEUE_NUSED(vq)) {
uint32_t idx, desc_idx, used_idx;
struct vring_used_elem *uep;
used_idx = (uint32_t)(vq->vq_used_cons_idx
& (vq->vq_nentries - 1));
uep = &vq->vq_ring.used->ring[used_idx];
idx = (uint32_t) uep->id;
desc_idx = idx;
while (vq->vq_ring.desc[desc_idx].flags & VRING_DESC_F_NEXT) {
desc_idx = vq->vq_ring.desc[desc_idx].next;
vq->vq_free_cnt++;
}
vq->vq_ring.desc[desc_idx].next = vq->vq_desc_head_idx;
vq->vq_desc_head_idx = idx;
vq->vq_used_cons_idx++;
vq->vq_free_cnt++;
}
PMD_INIT_LOG(DEBUG, "vq->vq_free_cnt=%d\nvq->vq_desc_head_idx=%d",
vq->vq_free_cnt, vq->vq_desc_head_idx);
memcpy(&result, cvq->virtio_net_hdr_mz->addr,
sizeof(struct virtio_pmd_ctrl));
return result.status;
}
static int
virtio_set_multiple_queues(struct rte_eth_dev *dev, uint16_t nb_queues)
{
struct virtio_hw *hw = dev->data->dev_private;
struct virtio_pmd_ctrl ctrl;
int dlen[1];
int ret;
ctrl.hdr.class = VIRTIO_NET_CTRL_MQ;
ctrl.hdr.cmd = VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET;
memcpy(ctrl.data, &nb_queues, sizeof(uint16_t));
dlen[0] = sizeof(uint16_t);
ret = virtio_send_command(hw->cvq, &ctrl, dlen, 1);
if (ret) {
PMD_INIT_LOG(ERR, "Multiqueue configured but send command "
"failed, this is too late now...");
return -EINVAL;
}
return 0;
}
static void
virtio_dev_queue_release(void *queue __rte_unused)
{
/* do nothing */
}
static int
virtio_get_queue_type(struct virtio_hw *hw, uint16_t vtpci_queue_idx)
{
if (vtpci_queue_idx == hw->max_queue_pairs * 2)
return VTNET_CQ;
else if (vtpci_queue_idx % 2 == 0)
return VTNET_RQ;
else
return VTNET_TQ;
}
static uint16_t
virtio_get_nr_vq(struct virtio_hw *hw)
{
uint16_t nr_vq = hw->max_queue_pairs * 2;
if (vtpci_with_feature(hw, VIRTIO_NET_F_CTRL_VQ))
nr_vq += 1;
return nr_vq;
}
static void
virtio_init_vring(struct virtqueue *vq)
{
int size = vq->vq_nentries;
struct vring *vr = &vq->vq_ring;
uint8_t *ring_mem = vq->vq_ring_virt_mem;
PMD_INIT_FUNC_TRACE();
/*
* Reinitialise since virtio port might have been stopped and restarted
*/
memset(ring_mem, 0, vq->vq_ring_size);
vring_init(vr, size, ring_mem, VIRTIO_PCI_VRING_ALIGN);
vq->vq_used_cons_idx = 0;
vq->vq_desc_head_idx = 0;
vq->vq_avail_idx = 0;
vq->vq_desc_tail_idx = (uint16_t)(vq->vq_nentries - 1);
vq->vq_free_cnt = vq->vq_nentries;
memset(vq->vq_descx, 0, sizeof(struct vq_desc_extra) * vq->vq_nentries);
vring_desc_init(vr->desc, size);
/*
* Disable device(host) interrupting guest
*/
virtqueue_disable_intr(vq);
}
static int
virtio_init_queue(struct rte_eth_dev *dev, uint16_t vtpci_queue_idx)
{
char vq_name[VIRTQUEUE_MAX_NAME_SZ];
char vq_hdr_name[VIRTQUEUE_MAX_NAME_SZ];
const struct rte_memzone *mz = NULL, *hdr_mz = NULL;
unsigned int vq_size, size;
struct virtio_hw *hw = dev->data->dev_private;
struct virtnet_rx *rxvq = NULL;
struct virtnet_tx *txvq = NULL;
struct virtnet_ctl *cvq = NULL;
struct virtqueue *vq;
size_t sz_hdr_mz = 0;
void *sw_ring = NULL;
int queue_type = virtio_get_queue_type(hw, vtpci_queue_idx);
int ret;
PMD_INIT_LOG(DEBUG, "setting up queue: %u", vtpci_queue_idx);
/*
* Read the virtqueue size from the Queue Size field
* Always power of 2 and if 0 virtqueue does not exist
*/
vq_size = VTPCI_OPS(hw)->get_queue_num(hw, vtpci_queue_idx);
PMD_INIT_LOG(DEBUG, "vq_size: %u", vq_size);
if (vq_size == 0) {
PMD_INIT_LOG(ERR, "virtqueue does not exist");
return -EINVAL;
}
if (!rte_is_power_of_2(vq_size)) {
PMD_INIT_LOG(ERR, "virtqueue size is not powerof 2");
return -EINVAL;
}
snprintf(vq_name, sizeof(vq_name), "port%d_vq%d",
dev->data->port_id, vtpci_queue_idx);
size = RTE_ALIGN_CEIL(sizeof(*vq) +
vq_size * sizeof(struct vq_desc_extra),
RTE_CACHE_LINE_SIZE);
if (queue_type == VTNET_TQ) {
/*
* For each xmit packet, allocate a virtio_net_hdr
* and indirect ring elements
*/
sz_hdr_mz = vq_size * sizeof(struct virtio_tx_region);
} else if (queue_type == VTNET_CQ) {
/* Allocate a page for control vq command, data and status */
sz_hdr_mz = PAGE_SIZE;
}
vq = rte_zmalloc_socket(vq_name, size, RTE_CACHE_LINE_SIZE,
SOCKET_ID_ANY);
if (vq == NULL) {
PMD_INIT_LOG(ERR, "can not allocate vq");
return -ENOMEM;
}
hw->vqs[vtpci_queue_idx] = vq;
vq->hw = hw;
vq->vq_queue_index = vtpci_queue_idx;
vq->vq_nentries = vq_size;
/*
* Reserve a memzone for vring elements
*/
size = vring_size(vq_size, VIRTIO_PCI_VRING_ALIGN);
vq->vq_ring_size = RTE_ALIGN_CEIL(size, VIRTIO_PCI_VRING_ALIGN);
PMD_INIT_LOG(DEBUG, "vring_size: %d, rounded_vring_size: %d",
size, vq->vq_ring_size);
mz = rte_memzone_reserve_aligned(vq_name, vq->vq_ring_size,
SOCKET_ID_ANY,
0, VIRTIO_PCI_VRING_ALIGN);
if (mz == NULL) {
if (rte_errno == EEXIST)
mz = rte_memzone_lookup(vq_name);
if (mz == NULL) {
ret = -ENOMEM;
goto fail_q_alloc;
}
}
memset(mz->addr, 0, mz->len);
vq->vq_ring_mem = mz->phys_addr;
vq->vq_ring_virt_mem = mz->addr;
PMD_INIT_LOG(DEBUG, "vq->vq_ring_mem: 0x%" PRIx64,
(uint64_t)mz->phys_addr);
PMD_INIT_LOG(DEBUG, "vq->vq_ring_virt_mem: 0x%" PRIx64,
(uint64_t)(uintptr_t)mz->addr);
virtio_init_vring(vq);
if (sz_hdr_mz) {
snprintf(vq_hdr_name, sizeof(vq_hdr_name), "port%d_vq%d_hdr",
dev->data->port_id, vtpci_queue_idx);
hdr_mz = rte_memzone_reserve_aligned(vq_hdr_name, sz_hdr_mz,
SOCKET_ID_ANY, 0,
RTE_CACHE_LINE_SIZE);
if (hdr_mz == NULL) {
if (rte_errno == EEXIST)
hdr_mz = rte_memzone_lookup(vq_hdr_name);
if (hdr_mz == NULL) {
ret = -ENOMEM;
goto fail_q_alloc;
}
}
}
if (queue_type == VTNET_RQ) {
size_t sz_sw = (RTE_PMD_VIRTIO_RX_MAX_BURST + vq_size) *
sizeof(vq->sw_ring[0]);
sw_ring = rte_zmalloc_socket("sw_ring", sz_sw,
RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
if (!sw_ring) {
PMD_INIT_LOG(ERR, "can not allocate RX soft ring");
ret = -ENOMEM;
goto fail_q_alloc;
}
vq->sw_ring = sw_ring;
rxvq = &vq->rxq;
rxvq->vq = vq;
rxvq->port_id = dev->data->port_id;
rxvq->mz = mz;
} else if (queue_type == VTNET_TQ) {
txvq = &vq->txq;
txvq->vq = vq;
txvq->port_id = dev->data->port_id;
txvq->mz = mz;
txvq->virtio_net_hdr_mz = hdr_mz;
txvq->virtio_net_hdr_mem = hdr_mz->phys_addr;
} else if (queue_type == VTNET_CQ) {
cvq = &vq->cq;
cvq->vq = vq;
cvq->mz = mz;
cvq->virtio_net_hdr_mz = hdr_mz;
cvq->virtio_net_hdr_mem = hdr_mz->phys_addr;
memset(cvq->virtio_net_hdr_mz->addr, 0, PAGE_SIZE);
hw->cvq = cvq;
}
/* For virtio_user case (that is when hw->dev is NULL), we use
* virtual address. And we need properly set _offset_, please see
* VIRTIO_MBUF_DATA_DMA_ADDR in virtqueue.h for more information.
*/
if (!hw->virtio_user_dev)
vq->offset = offsetof(struct rte_mbuf, buf_physaddr);
else {
vq->vq_ring_mem = (uintptr_t)mz->addr;
vq->offset = offsetof(struct rte_mbuf, buf_addr);
if (queue_type == VTNET_TQ)
txvq->virtio_net_hdr_mem = (uintptr_t)hdr_mz->addr;
else if (queue_type == VTNET_CQ)
cvq->virtio_net_hdr_mem = (uintptr_t)hdr_mz->addr;
}
if (queue_type == VTNET_TQ) {
struct virtio_tx_region *txr;
unsigned int i;
txr = hdr_mz->addr;
memset(txr, 0, vq_size * sizeof(*txr));
for (i = 0; i < vq_size; i++) {
struct vring_desc *start_dp = txr[i].tx_indir;
vring_desc_init(start_dp, RTE_DIM(txr[i].tx_indir));
/* first indirect descriptor is always the tx header */
start_dp->addr = txvq->virtio_net_hdr_mem
+ i * sizeof(*txr)
+ offsetof(struct virtio_tx_region, tx_hdr);
start_dp->len = hw->vtnet_hdr_size;
start_dp->flags = VRING_DESC_F_NEXT;
}
}
if (VTPCI_OPS(hw)->setup_queue(hw, vq) < 0) {
PMD_INIT_LOG(ERR, "setup_queue failed");
return -EINVAL;
}
return 0;
fail_q_alloc:
rte_free(sw_ring);
rte_memzone_free(hdr_mz);
rte_memzone_free(mz);
rte_free(vq);
return ret;
}
static void
virtio_free_queues(struct virtio_hw *hw)
{
uint16_t nr_vq = virtio_get_nr_vq(hw);
struct virtqueue *vq;
int queue_type;
uint16_t i;
if (hw->vqs == NULL)
return;
for (i = 0; i < nr_vq; i++) {
vq = hw->vqs[i];
if (!vq)
continue;
queue_type = virtio_get_queue_type(hw, i);
if (queue_type == VTNET_RQ) {
rte_free(vq->sw_ring);
rte_memzone_free(vq->rxq.mz);
} else if (queue_type == VTNET_TQ) {
rte_memzone_free(vq->txq.mz);
rte_memzone_free(vq->txq.virtio_net_hdr_mz);
} else {
rte_memzone_free(vq->cq.mz);
rte_memzone_free(vq->cq.virtio_net_hdr_mz);
}
rte_free(vq);
hw->vqs[i] = NULL;
}
rte_free(hw->vqs);
hw->vqs = NULL;
}
static int
virtio_alloc_queues(struct rte_eth_dev *dev)
{
struct virtio_hw *hw = dev->data->dev_private;
uint16_t nr_vq = virtio_get_nr_vq(hw);
uint16_t i;
int ret;
hw->vqs = rte_zmalloc(NULL, sizeof(struct virtqueue *) * nr_vq, 0);
if (!hw->vqs) {
PMD_INIT_LOG(ERR, "failed to allocate vqs");
return -ENOMEM;
}
for (i = 0; i < nr_vq; i++) {
ret = virtio_init_queue(dev, i);
if (ret < 0) {
virtio_free_queues(hw);
return ret;
}
}
return 0;
}
static void virtio_queues_unbind_intr(struct rte_eth_dev *dev);
static void
virtio_dev_close(struct rte_eth_dev *dev)
{
struct virtio_hw *hw = dev->data->dev_private;
struct rte_intr_conf *intr_conf = &dev->data->dev_conf.intr_conf;
PMD_INIT_LOG(DEBUG, "virtio_dev_close");
/* reset the NIC */
if (dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)
VTPCI_OPS(hw)->set_config_irq(hw, VIRTIO_MSI_NO_VECTOR);
if (intr_conf->rxq)
virtio_queues_unbind_intr(dev);
if (intr_conf->lsc || intr_conf->rxq) {
rte_intr_disable(dev->intr_handle);
rte_intr_efd_disable(dev->intr_handle);
rte_free(dev->intr_handle->intr_vec);
dev->intr_handle->intr_vec = NULL;
}
vtpci_reset(hw);
virtio_dev_free_mbufs(dev);
virtio_free_queues(hw);
}
static void
virtio_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct virtio_hw *hw = dev->data->dev_private;
struct virtio_pmd_ctrl ctrl;
int dlen[1];
int ret;
if (!vtpci_with_feature(hw, VIRTIO_NET_F_CTRL_RX)) {
PMD_INIT_LOG(INFO, "host does not support rx control");
return;
}
ctrl.hdr.class = VIRTIO_NET_CTRL_RX;
ctrl.hdr.cmd = VIRTIO_NET_CTRL_RX_PROMISC;
ctrl.data[0] = 1;
dlen[0] = 1;
ret = virtio_send_command(hw->cvq, &ctrl, dlen, 1);
if (ret)
PMD_INIT_LOG(ERR, "Failed to enable promisc");
}
static void
virtio_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct virtio_hw *hw = dev->data->dev_private;
struct virtio_pmd_ctrl ctrl;
int dlen[1];
int ret;
if (!vtpci_with_feature(hw, VIRTIO_NET_F_CTRL_RX)) {
PMD_INIT_LOG(INFO, "host does not support rx control");
return;
}
ctrl.hdr.class = VIRTIO_NET_CTRL_RX;
ctrl.hdr.cmd = VIRTIO_NET_CTRL_RX_PROMISC;
ctrl.data[0] = 0;
dlen[0] = 1;
ret = virtio_send_command(hw->cvq, &ctrl, dlen, 1);
if (ret)
PMD_INIT_LOG(ERR, "Failed to disable promisc");
}
static void
virtio_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct virtio_hw *hw = dev->data->dev_private;
struct virtio_pmd_ctrl ctrl;
int dlen[1];
int ret;
if (!vtpci_with_feature(hw, VIRTIO_NET_F_CTRL_RX)) {
PMD_INIT_LOG(INFO, "host does not support rx control");
return;
}
ctrl.hdr.class = VIRTIO_NET_CTRL_RX;
ctrl.hdr.cmd = VIRTIO_NET_CTRL_RX_ALLMULTI;
ctrl.data[0] = 1;
dlen[0] = 1;
ret = virtio_send_command(hw->cvq, &ctrl, dlen, 1);
if (ret)
PMD_INIT_LOG(ERR, "Failed to enable allmulticast");
}
static void
virtio_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct virtio_hw *hw = dev->data->dev_private;
struct virtio_pmd_ctrl ctrl;
int dlen[1];
int ret;
if (!vtpci_with_feature(hw, VIRTIO_NET_F_CTRL_RX)) {
PMD_INIT_LOG(INFO, "host does not support rx control");
return;
}
ctrl.hdr.class = VIRTIO_NET_CTRL_RX;
ctrl.hdr.cmd = VIRTIO_NET_CTRL_RX_ALLMULTI;
ctrl.data[0] = 0;
dlen[0] = 1;
ret = virtio_send_command(hw->cvq, &ctrl, dlen, 1);
if (ret)
PMD_INIT_LOG(ERR, "Failed to disable allmulticast");
}
#define VLAN_TAG_LEN 4 /* 802.3ac tag (not DMA'd) */
static int
virtio_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct virtio_hw *hw = dev->data->dev_private;
uint32_t ether_hdr_len = ETHER_HDR_LEN + VLAN_TAG_LEN +
hw->vtnet_hdr_size;
uint32_t frame_size = mtu + ether_hdr_len;
uint32_t max_frame_size = hw->max_mtu + ether_hdr_len;
max_frame_size = RTE_MIN(max_frame_size, VIRTIO_MAX_RX_PKTLEN);
if (mtu < ETHER_MIN_MTU || frame_size > max_frame_size) {
PMD_INIT_LOG(ERR, "MTU should be between %d and %d",
ETHER_MIN_MTU, max_frame_size - ether_hdr_len);
return -EINVAL;
}
return 0;
}
static int
virtio_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct virtnet_rx *rxvq = dev->data->rx_queues[queue_id];
struct virtqueue *vq = rxvq->vq;
virtqueue_enable_intr(vq);
return 0;
}
static int
virtio_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct virtnet_rx *rxvq = dev->data->rx_queues[queue_id];
struct virtqueue *vq = rxvq->vq;
virtqueue_disable_intr(vq);
return 0;
}
/*
* dev_ops for virtio, bare necessities for basic operation
*/
static const struct eth_dev_ops virtio_eth_dev_ops = {
.dev_configure = virtio_dev_configure,
.dev_start = virtio_dev_start,
.dev_stop = virtio_dev_stop,
.dev_close = virtio_dev_close,
.promiscuous_enable = virtio_dev_promiscuous_enable,
.promiscuous_disable = virtio_dev_promiscuous_disable,
.allmulticast_enable = virtio_dev_allmulticast_enable,
.allmulticast_disable = virtio_dev_allmulticast_disable,
.mtu_set = virtio_mtu_set,
.dev_infos_get = virtio_dev_info_get,
.stats_get = virtio_dev_stats_get,
.xstats_get = virtio_dev_xstats_get,
.xstats_get_names = virtio_dev_xstats_get_names,
.stats_reset = virtio_dev_stats_reset,
.xstats_reset = virtio_dev_stats_reset,
.link_update = virtio_dev_link_update,
.rx_queue_setup = virtio_dev_rx_queue_setup,
.rx_queue_intr_enable = virtio_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = virtio_dev_rx_queue_intr_disable,
.rx_queue_release = virtio_dev_queue_release,
.rx_descriptor_done = virtio_dev_rx_queue_done,
.tx_queue_setup = virtio_dev_tx_queue_setup,
.tx_queue_release = virtio_dev_queue_release,
/* collect stats per queue */
.queue_stats_mapping_set = virtio_dev_queue_stats_mapping_set,
.vlan_filter_set = virtio_vlan_filter_set,
.mac_addr_add = virtio_mac_addr_add,
.mac_addr_remove = virtio_mac_addr_remove,
.mac_addr_set = virtio_mac_addr_set,
};
static inline int
virtio_dev_atomic_read_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = link;
struct rte_eth_link *src = &(dev->data->dev_link);
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
/**
* Atomically writes the link status information into global
* structure rte_eth_dev.
*
* @param dev
* - Pointer to the structure rte_eth_dev to read from.
* - Pointer to the buffer to be saved with the link status.
*
* @return
* - On success, zero.
* - On failure, negative value.
*/
static inline int
virtio_dev_atomic_write_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = &(dev->data->dev_link);
struct rte_eth_link *src = link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
static void
virtio_update_stats(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
unsigned i;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
const struct virtnet_tx *txvq = dev->data->tx_queues[i];
if (txvq == NULL)
continue;
stats->opackets += txvq->stats.packets;
stats->obytes += txvq->stats.bytes;
stats->oerrors += txvq->stats.errors;
if (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
stats->q_opackets[i] = txvq->stats.packets;
stats->q_obytes[i] = txvq->stats.bytes;
}
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
const struct virtnet_rx *rxvq = dev->data->rx_queues[i];
if (rxvq == NULL)
continue;
stats->ipackets += rxvq->stats.packets;
stats->ibytes += rxvq->stats.bytes;
stats->ierrors += rxvq->stats.errors;
if (i < RTE_ETHDEV_QUEUE_STAT_CNTRS) {
stats->q_ipackets[i] = rxvq->stats.packets;
stats->q_ibytes[i] = rxvq->stats.bytes;
}
}
stats->rx_nombuf = dev->data->rx_mbuf_alloc_failed;
}
static int virtio_dev_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
__rte_unused unsigned limit)
{
unsigned i;
unsigned count = 0;
unsigned t;
unsigned nstats = dev->data->nb_tx_queues * VIRTIO_NB_TXQ_XSTATS +
dev->data->nb_rx_queues * VIRTIO_NB_RXQ_XSTATS;
if (xstats_names != NULL) {
/* Note: limit checked in rte_eth_xstats_names() */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct virtqueue *rxvq = dev->data->rx_queues[i];
if (rxvq == NULL)
continue;
for (t = 0; t < VIRTIO_NB_RXQ_XSTATS; t++) {
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"rx_q%u_%s", i,
rte_virtio_rxq_stat_strings[t].name);
count++;
}
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct virtqueue *txvq = dev->data->tx_queues[i];
if (txvq == NULL)
continue;
for (t = 0; t < VIRTIO_NB_TXQ_XSTATS; t++) {
snprintf(xstats_names[count].name,
sizeof(xstats_names[count].name),
"tx_q%u_%s", i,
rte_virtio_txq_stat_strings[t].name);
count++;
}
}
return count;
}
return nstats;
}
static int
virtio_dev_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
unsigned n)
{
unsigned i;
unsigned count = 0;
unsigned nstats = dev->data->nb_tx_queues * VIRTIO_NB_TXQ_XSTATS +
dev->data->nb_rx_queues * VIRTIO_NB_RXQ_XSTATS;
if (n < nstats)
return nstats;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct virtnet_rx *rxvq = dev->data->rx_queues[i];
if (rxvq == NULL)
continue;
unsigned t;
for (t = 0; t < VIRTIO_NB_RXQ_XSTATS; t++) {
xstats[count].value = *(uint64_t *)(((char *)rxvq) +
rte_virtio_rxq_stat_strings[t].offset);
xstats[count].id = count;
count++;
}
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct virtnet_tx *txvq = dev->data->tx_queues[i];
if (txvq == NULL)
continue;
unsigned t;
for (t = 0; t < VIRTIO_NB_TXQ_XSTATS; t++) {
xstats[count].value = *(uint64_t *)(((char *)txvq) +
rte_virtio_txq_stat_strings[t].offset);
xstats[count].id = count;
count++;
}
}
return count;
}
static void
virtio_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
virtio_update_stats(dev, stats);
}
static void
virtio_dev_stats_reset(struct rte_eth_dev *dev)
{
unsigned int i;
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct virtnet_tx *txvq = dev->data->tx_queues[i];
if (txvq == NULL)
continue;
txvq->stats.packets = 0;
txvq->stats.bytes = 0;
txvq->stats.errors = 0;
txvq->stats.multicast = 0;
txvq->stats.broadcast = 0;
memset(txvq->stats.size_bins, 0,
sizeof(txvq->stats.size_bins[0]) * 8);
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct virtnet_rx *rxvq = dev->data->rx_queues[i];
if (rxvq == NULL)
continue;
rxvq->stats.packets = 0;
rxvq->stats.bytes = 0;
rxvq->stats.errors = 0;
rxvq->stats.multicast = 0;
rxvq->stats.broadcast = 0;
memset(rxvq->stats.size_bins, 0,
sizeof(rxvq->stats.size_bins[0]) * 8);
}
}
static void
virtio_set_hwaddr(struct virtio_hw *hw)
{
vtpci_write_dev_config(hw,
offsetof(struct virtio_net_config, mac),
&hw->mac_addr, ETHER_ADDR_LEN);
}
static void
virtio_get_hwaddr(struct virtio_hw *hw)
{
if (vtpci_with_feature(hw, VIRTIO_NET_F_MAC)) {
vtpci_read_dev_config(hw,
offsetof(struct virtio_net_config, mac),
&hw->mac_addr, ETHER_ADDR_LEN);
} else {
eth_random_addr(&hw->mac_addr[0]);
virtio_set_hwaddr(hw);
}
}
static int
virtio_mac_table_set(struct virtio_hw *hw,
const struct virtio_net_ctrl_mac *uc,
const struct virtio_net_ctrl_mac *mc)
{
struct virtio_pmd_ctrl ctrl;
int err, len[2];
if (!vtpci_with_feature(hw, VIRTIO_NET_F_CTRL_MAC_ADDR)) {
PMD_DRV_LOG(INFO, "host does not support mac table");
return -1;
}
ctrl.hdr.class = VIRTIO_NET_CTRL_MAC;
ctrl.hdr.cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET;
len[0] = uc->entries * ETHER_ADDR_LEN + sizeof(uc->entries);
memcpy(ctrl.data, uc, len[0]);
len[1] = mc->entries * ETHER_ADDR_LEN + sizeof(mc->entries);
memcpy(ctrl.data + len[0], mc, len[1]);
err = virtio_send_command(hw->cvq, &ctrl, len, 2);
if (err != 0)
PMD_DRV_LOG(NOTICE, "mac table set failed: %d", err);
return err;
}
static int
virtio_mac_addr_add(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
uint32_t index, uint32_t vmdq __rte_unused)
{
struct virtio_hw *hw = dev->data->dev_private;
const struct ether_addr *addrs = dev->data->mac_addrs;
unsigned int i;
struct virtio_net_ctrl_mac *uc, *mc;
if (index >= VIRTIO_MAX_MAC_ADDRS) {
PMD_DRV_LOG(ERR, "mac address index %u out of range", index);
return -EINVAL;
}
uc = alloca(VIRTIO_MAX_MAC_ADDRS * ETHER_ADDR_LEN + sizeof(uc->entries));
uc->entries = 0;
mc = alloca(VIRTIO_MAX_MAC_ADDRS * ETHER_ADDR_LEN + sizeof(mc->entries));
mc->entries = 0;
for (i = 0; i < VIRTIO_MAX_MAC_ADDRS; i++) {
const struct ether_addr *addr
= (i == index) ? mac_addr : addrs + i;
struct virtio_net_ctrl_mac *tbl
= is_multicast_ether_addr(addr) ? mc : uc;
memcpy(&tbl->macs[tbl->entries++], addr, ETHER_ADDR_LEN);
}
return virtio_mac_table_set(hw, uc, mc);
}
static void
virtio_mac_addr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct virtio_hw *hw = dev->data->dev_private;
struct ether_addr *addrs = dev->data->mac_addrs;
struct virtio_net_ctrl_mac *uc, *mc;
unsigned int i;
if (index >= VIRTIO_MAX_MAC_ADDRS) {
PMD_DRV_LOG(ERR, "mac address index %u out of range", index);
return;
}
uc = alloca(VIRTIO_MAX_MAC_ADDRS * ETHER_ADDR_LEN + sizeof(uc->entries));
uc->entries = 0;
mc = alloca(VIRTIO_MAX_MAC_ADDRS * ETHER_ADDR_LEN + sizeof(mc->entries));
mc->entries = 0;
for (i = 0; i < VIRTIO_MAX_MAC_ADDRS; i++) {
struct virtio_net_ctrl_mac *tbl;
if (i == index || is_zero_ether_addr(addrs + i))
continue;
tbl = is_multicast_ether_addr(addrs + i) ? mc : uc;
memcpy(&tbl->macs[tbl->entries++], addrs + i, ETHER_ADDR_LEN);
}
virtio_mac_table_set(hw, uc, mc);
}
static void
virtio_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr)
{
struct virtio_hw *hw = dev->data->dev_private;
memcpy(hw->mac_addr, mac_addr, ETHER_ADDR_LEN);
/* Use atomic update if available */
if (vtpci_with_feature(hw, VIRTIO_NET_F_CTRL_MAC_ADDR)) {
struct virtio_pmd_ctrl ctrl;
int len = ETHER_ADDR_LEN;
ctrl.hdr.class = VIRTIO_NET_CTRL_MAC;
ctrl.hdr.cmd = VIRTIO_NET_CTRL_MAC_ADDR_SET;
memcpy(ctrl.data, mac_addr, ETHER_ADDR_LEN);
virtio_send_command(hw->cvq, &ctrl, &len, 1);
} else if (vtpci_with_feature(hw, VIRTIO_NET_F_MAC))
virtio_set_hwaddr(hw);
}
static int
virtio_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct virtio_hw *hw = dev->data->dev_private;
struct virtio_pmd_ctrl ctrl;
int len;
if (!vtpci_with_feature(hw, VIRTIO_NET_F_CTRL_VLAN))
return -ENOTSUP;
ctrl.hdr.class = VIRTIO_NET_CTRL_VLAN;
ctrl.hdr.cmd = on ? VIRTIO_NET_CTRL_VLAN_ADD : VIRTIO_NET_CTRL_VLAN_DEL;
memcpy(ctrl.data, &vlan_id, sizeof(vlan_id));
len = sizeof(vlan_id);
return virtio_send_command(hw->cvq, &ctrl, &len, 1);
}
static int
virtio_negotiate_features(struct virtio_hw *hw, uint64_t req_features)
{
uint64_t host_features;
/* Prepare guest_features: feature that driver wants to support */
PMD_INIT_LOG(DEBUG, "guest_features before negotiate = %" PRIx64,
req_features);
/* Read device(host) feature bits */
host_features = VTPCI_OPS(hw)->get_features(hw);
PMD_INIT_LOG(DEBUG, "host_features before negotiate = %" PRIx64,
host_features);
/* If supported, ensure MTU value is valid before acknowledging it. */
if (host_features & req_features & (1ULL << VIRTIO_NET_F_MTU)) {
struct virtio_net_config config;
vtpci_read_dev_config(hw,
offsetof(struct virtio_net_config, mtu),
&config.mtu, sizeof(config.mtu));
if (config.mtu < ETHER_MIN_MTU)
req_features &= ~(1ULL << VIRTIO_NET_F_MTU);
}
/*
* Negotiate features: Subset of device feature bits are written back
* guest feature bits.
*/
hw->guest_features = req_features;
hw->guest_features = vtpci_negotiate_features(hw, host_features);
PMD_INIT_LOG(DEBUG, "features after negotiate = %" PRIx64,
hw->guest_features);
if (hw->modern) {
if (!vtpci_with_feature(hw, VIRTIO_F_VERSION_1)) {
PMD_INIT_LOG(ERR,
"VIRTIO_F_VERSION_1 features is not enabled.");
return -1;
}
vtpci_set_status(hw, VIRTIO_CONFIG_STATUS_FEATURES_OK);
if (!(vtpci_get_status(hw) & VIRTIO_CONFIG_STATUS_FEATURES_OK)) {
PMD_INIT_LOG(ERR,
"failed to set FEATURES_OK status!");
return -1;
}
}
hw->req_guest_features = req_features;
return 0;
}
/*
* Process Virtio Config changed interrupt and call the callback
* if link state changed.
*/
void
virtio_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = param;
struct virtio_hw *hw = dev->data->dev_private;
uint8_t isr;
/* Read interrupt status which clears interrupt */
isr = vtpci_isr(hw);
PMD_DRV_LOG(INFO, "interrupt status = %#x", isr);
if (rte_intr_enable(dev->intr_handle) < 0)
PMD_DRV_LOG(ERR, "interrupt enable failed");
if (isr & VIRTIO_PCI_ISR_CONFIG) {
if (virtio_dev_link_update(dev, 0) == 0)
_rte_eth_dev_callback_process(dev,
RTE_ETH_EVENT_INTR_LSC,
NULL, NULL);
}
}
static void
rx_func_get(struct rte_eth_dev *eth_dev)
{
struct virtio_hw *hw = eth_dev->data->dev_private;
if (vtpci_with_feature(hw, VIRTIO_NET_F_MRG_RXBUF))
eth_dev->rx_pkt_burst = &virtio_recv_mergeable_pkts;
else
eth_dev->rx_pkt_burst = &virtio_recv_pkts;
}
/* Only support 1:1 queue/interrupt mapping so far.
* TODO: support n:1 queue/interrupt mapping when there are limited number of
* interrupt vectors (<N+1).
*/
static int
virtio_queues_bind_intr(struct rte_eth_dev *dev)
{
uint32_t i;
struct virtio_hw *hw = dev->data->dev_private;
PMD_INIT_LOG(INFO, "queue/interrupt binding");
for (i = 0; i < dev->data->nb_rx_queues; ++i) {
dev->intr_handle->intr_vec[i] = i + 1;
if (VTPCI_OPS(hw)->set_queue_irq(hw, hw->vqs[i * 2], i + 1) ==
VIRTIO_MSI_NO_VECTOR) {
PMD_DRV_LOG(ERR, "failed to set queue vector");
return -EBUSY;
}
}
return 0;
}
static void
virtio_queues_unbind_intr(struct rte_eth_dev *dev)
{
uint32_t i;
struct virtio_hw *hw = dev->data->dev_private;
PMD_INIT_LOG(INFO, "queue/interrupt unbinding");
for (i = 0; i < dev->data->nb_rx_queues; ++i)
VTPCI_OPS(hw)->set_queue_irq(hw,
hw->vqs[i * VTNET_CQ],
VIRTIO_MSI_NO_VECTOR);
}
static int
virtio_configure_intr(struct rte_eth_dev *dev)
{
struct virtio_hw *hw = dev->data->dev_private;
if (!rte_intr_cap_multiple(dev->intr_handle)) {
PMD_INIT_LOG(ERR, "Multiple intr vector not supported");
return -ENOTSUP;
}
if (rte_intr_efd_enable(dev->intr_handle, dev->data->nb_rx_queues)) {
PMD_INIT_LOG(ERR, "Fail to create eventfd");
return -1;
}
if (!dev->intr_handle->intr_vec) {
dev->intr_handle->intr_vec =
rte_zmalloc("intr_vec",
hw->max_queue_pairs * sizeof(int), 0);
if (!dev->intr_handle->intr_vec) {
PMD_INIT_LOG(ERR, "Failed to allocate %u rxq vectors",
hw->max_queue_pairs);
return -ENOMEM;
}
}
/* Re-register callback to update max_intr */
rte_intr_callback_unregister(dev->intr_handle,
virtio_interrupt_handler,
dev);
rte_intr_callback_register(dev->intr_handle,
virtio_interrupt_handler,
dev);
/* DO NOT try to remove this! This function will enable msix, or QEMU
* will encounter SIGSEGV when DRIVER_OK is sent.
* And for legacy devices, this should be done before queue/vec binding
* to change the config size from 20 to 24, or VIRTIO_MSI_QUEUE_VECTOR
* (22) will be ignored.
*/
if (rte_intr_enable(dev->intr_handle) < 0) {
PMD_DRV_LOG(ERR, "interrupt enable failed");
return -1;
}
if (virtio_queues_bind_intr(dev) < 0) {
PMD_INIT_LOG(ERR, "Failed to bind queue/interrupt");
return -1;
}
return 0;
}
/* reset device and renegotiate features if needed */
static int
virtio_init_device(struct rte_eth_dev *eth_dev, uint64_t req_features)
{
struct virtio_hw *hw = eth_dev->data->dev_private;
struct virtio_net_config *config;
struct virtio_net_config local_config;
struct rte_pci_device *pci_dev = NULL;
int ret;
/* Reset the device although not necessary at startup */
vtpci_reset(hw);
/* Tell the host we've noticed this device. */
vtpci_set_status(hw, VIRTIO_CONFIG_STATUS_ACK);
/* Tell the host we've known how to drive the device. */
vtpci_set_status(hw, VIRTIO_CONFIG_STATUS_DRIVER);
if (virtio_negotiate_features(hw, req_features) < 0)
return -1;
if (!hw->virtio_user_dev) {
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
rte_eth_copy_pci_info(eth_dev, pci_dev);
}
eth_dev->data->dev_flags = RTE_ETH_DEV_DETACHABLE;
/* If host does not support both status and MSI-X then disable LSC */
if (vtpci_with_feature(hw, VIRTIO_NET_F_STATUS) && hw->use_msix)
eth_dev->data->dev_flags |= RTE_ETH_DEV_INTR_LSC;
else
eth_dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
rx_func_get(eth_dev);
/* Setting up rx_header size for the device */
if (vtpci_with_feature(hw, VIRTIO_NET_F_MRG_RXBUF) ||
vtpci_with_feature(hw, VIRTIO_F_VERSION_1))
hw->vtnet_hdr_size = sizeof(struct virtio_net_hdr_mrg_rxbuf);
else
hw->vtnet_hdr_size = sizeof(struct virtio_net_hdr);
/* Copy the permanent MAC address to: virtio_hw */
virtio_get_hwaddr(hw);
ether_addr_copy((struct ether_addr *) hw->mac_addr,
&eth_dev->data->mac_addrs[0]);
PMD_INIT_LOG(DEBUG,
"PORT MAC: %02X:%02X:%02X:%02X:%02X:%02X",
hw->mac_addr[0], hw->mac_addr[1], hw->mac_addr[2],
hw->mac_addr[3], hw->mac_addr[4], hw->mac_addr[5]);
if (vtpci_with_feature(hw, VIRTIO_NET_F_CTRL_VQ)) {
config = &local_config;
vtpci_read_dev_config(hw,
offsetof(struct virtio_net_config, mac),
&config->mac, sizeof(config->mac));
if (vtpci_with_feature(hw, VIRTIO_NET_F_STATUS)) {
vtpci_read_dev_config(hw,
offsetof(struct virtio_net_config, status),
&config->status, sizeof(config->status));
} else {
PMD_INIT_LOG(DEBUG,
"VIRTIO_NET_F_STATUS is not supported");
config->status = 0;
}
if (vtpci_with_feature(hw, VIRTIO_NET_F_MQ)) {
vtpci_read_dev_config(hw,
offsetof(struct virtio_net_config, max_virtqueue_pairs),
&config->max_virtqueue_pairs,
sizeof(config->max_virtqueue_pairs));
} else {
PMD_INIT_LOG(DEBUG,
"VIRTIO_NET_F_MQ is not supported");
config->max_virtqueue_pairs = 1;
}
hw->max_queue_pairs = config->max_virtqueue_pairs;
if (vtpci_with_feature(hw, VIRTIO_NET_F_MTU)) {
vtpci_read_dev_config(hw,
offsetof(struct virtio_net_config, mtu),
&config->mtu,
sizeof(config->mtu));
/*
* MTU value has already been checked at negotiation
* time, but check again in case it has changed since
* then, which should not happen.
*/
if (config->mtu < ETHER_MIN_MTU) {
PMD_INIT_LOG(ERR, "invalid max MTU value (%u)",
config->mtu);
return -1;
}
hw->max_mtu = config->mtu;
/* Set initial MTU to maximum one supported by vhost */
eth_dev->data->mtu = config->mtu;
} else {
hw->max_mtu = VIRTIO_MAX_RX_PKTLEN - ETHER_HDR_LEN -
VLAN_TAG_LEN - hw->vtnet_hdr_size;
}
PMD_INIT_LOG(DEBUG, "config->max_virtqueue_pairs=%d",
config->max_virtqueue_pairs);
PMD_INIT_LOG(DEBUG, "config->status=%d", config->status);
PMD_INIT_LOG(DEBUG,
"PORT MAC: %02X:%02X:%02X:%02X:%02X:%02X",
config->mac[0], config->mac[1],
config->mac[2], config->mac[3],
config->mac[4], config->mac[5]);
} else {
PMD_INIT_LOG(DEBUG, "config->max_virtqueue_pairs=1");
hw->max_queue_pairs = 1;
}
ret = virtio_alloc_queues(eth_dev);
if (ret < 0)
return ret;
if (eth_dev->data->dev_conf.intr_conf.rxq) {
if (virtio_configure_intr(eth_dev) < 0) {
PMD_INIT_LOG(ERR, "failed to configure interrupt");
return -1;
}
}
vtpci_reinit_complete(hw);
if (pci_dev)
PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x",
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id);
return 0;
}
/*
* Remap the PCI device again (IO port map for legacy device and
* memory map for modern device), so that the secondary process
* could have the PCI initiated correctly.
*/
static int
virtio_remap_pci(struct rte_pci_device *pci_dev, struct virtio_hw *hw)
{
if (hw->modern) {
/*
* We don't have to re-parse the PCI config space, since
* rte_pci_map_device() makes sure the mapped address
* in secondary process would equal to the one mapped in
* the primary process: error will be returned if that
* requirement is not met.
*
* That said, we could simply reuse all cap pointers
* (such as dev_cfg, common_cfg, etc.) parsed from the
* primary process, which is stored in shared memory.
*/
if (rte_pci_map_device(pci_dev)) {
PMD_INIT_LOG(DEBUG, "failed to map pci device!");
return -1;
}
} else {
if (rte_pci_ioport_map(pci_dev, 0, VTPCI_IO(hw)) < 0)
return -1;
}
return 0;
}
static void
virtio_set_vtpci_ops(struct virtio_hw *hw)
{
#ifdef RTE_VIRTIO_USER
if (hw->virtio_user_dev)
VTPCI_OPS(hw) = &virtio_user_ops;
else
#endif
if (hw->modern)
VTPCI_OPS(hw) = &modern_ops;
else
VTPCI_OPS(hw) = &legacy_ops;
}
/*
* This function is based on probe() function in virtio_pci.c
* It returns 0 on success.
*/
int
eth_virtio_dev_init(struct rte_eth_dev *eth_dev)
{
struct virtio_hw *hw = eth_dev->data->dev_private;
int ret;
RTE_BUILD_BUG_ON(RTE_PKTMBUF_HEADROOM < sizeof(struct virtio_net_hdr_mrg_rxbuf));
eth_dev->dev_ops = &virtio_eth_dev_ops;
eth_dev->tx_pkt_burst = &virtio_xmit_pkts;
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
if (!hw->virtio_user_dev) {
ret = virtio_remap_pci(RTE_ETH_DEV_TO_PCI(eth_dev), hw);
if (ret)
return ret;
}
virtio_set_vtpci_ops(hw);
if (hw->use_simple_rxtx) {
eth_dev->tx_pkt_burst = virtio_xmit_pkts_simple;
eth_dev->rx_pkt_burst = virtio_recv_pkts_vec;
} else {
rx_func_get(eth_dev);
}
return 0;
}
/* Allocate memory for storing MAC addresses */
eth_dev->data->mac_addrs = rte_zmalloc("virtio", VIRTIO_MAX_MAC_ADDRS * ETHER_ADDR_LEN, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR,
"Failed to allocate %d bytes needed to store MAC addresses",
VIRTIO_MAX_MAC_ADDRS * ETHER_ADDR_LEN);
return -ENOMEM;
}
hw->port_id = eth_dev->data->port_id;
/* For virtio_user case the hw->virtio_user_dev is populated by
* virtio_user_eth_dev_alloc() before eth_virtio_dev_init() is called.
*/
if (!hw->virtio_user_dev) {
ret = vtpci_init(RTE_ETH_DEV_TO_PCI(eth_dev), hw);
if (ret)
return ret;
}
/* reset device and negotiate default features */
ret = virtio_init_device(eth_dev, VIRTIO_PMD_DEFAULT_GUEST_FEATURES);
if (ret < 0)
return ret;
/* Setup interrupt callback */
if (eth_dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)
rte_intr_callback_register(eth_dev->intr_handle,
virtio_interrupt_handler, eth_dev);
return 0;
}
static int
eth_virtio_dev_uninit(struct rte_eth_dev *eth_dev)
{
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
return -EPERM;
virtio_dev_stop(eth_dev);
virtio_dev_close(eth_dev);
eth_dev->dev_ops = NULL;
eth_dev->tx_pkt_burst = NULL;
eth_dev->rx_pkt_burst = NULL;
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
/* reset interrupt callback */
if (eth_dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)
rte_intr_callback_unregister(eth_dev->intr_handle,
virtio_interrupt_handler,
eth_dev);
if (eth_dev->device)
rte_pci_unmap_device(RTE_ETH_DEV_TO_PCI(eth_dev));
PMD_INIT_LOG(DEBUG, "dev_uninit completed");
return 0;
}
static int eth_virtio_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev, sizeof(struct virtio_hw),
eth_virtio_dev_init);
}
static int eth_virtio_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, eth_virtio_dev_uninit);
}
static struct rte_pci_driver rte_virtio_pmd = {
.driver = {
.name = "net_virtio",
},
.id_table = pci_id_virtio_map,
.drv_flags = 0,
.probe = eth_virtio_pci_probe,
.remove = eth_virtio_pci_remove,
};
RTE_INIT(rte_virtio_pmd_init);
static void
rte_virtio_pmd_init(void)
{
if (rte_eal_iopl_init() != 0) {
PMD_INIT_LOG(ERR, "IOPL call failed - cannot use virtio PMD");
return;
}
rte_pci_register(&rte_virtio_pmd);
}
/*
* Configure virtio device
* It returns 0 on success.
*/
static int
virtio_dev_configure(struct rte_eth_dev *dev)
{
const struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
struct virtio_hw *hw = dev->data->dev_private;
int ret;
PMD_INIT_LOG(DEBUG, "configure");
if (dev->data->dev_conf.intr_conf.rxq) {
ret = virtio_init_device(dev, hw->req_guest_features);
if (ret < 0)
return ret;
}
/* Virtio does L4 checksum but not L3! */
if (rxmode->hw_ip_checksum) {
PMD_DRV_LOG(NOTICE,
"virtio does not support IP checksum");
return -ENOTSUP;
}
if (rxmode->enable_lro) {
PMD_DRV_LOG(NOTICE,
"virtio does not support Large Receive Offload");
return -ENOTSUP;
}
/* start control queue */
if (vtpci_with_feature(hw, VIRTIO_NET_F_CTRL_VQ))
virtio_dev_cq_start(dev);
hw->vlan_strip = rxmode->hw_vlan_strip;
if (rxmode->hw_vlan_filter
&& !vtpci_with_feature(hw, VIRTIO_NET_F_CTRL_VLAN)) {
PMD_DRV_LOG(NOTICE,
"vlan filtering not available on this host");
return -ENOTSUP;
}
if (dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)
/* Enable vector (0) for Link State Intrerrupt */
if (VTPCI_OPS(hw)->set_config_irq(hw, 0) ==
VIRTIO_MSI_NO_VECTOR) {
PMD_DRV_LOG(ERR, "failed to set config vector");
return -EBUSY;
}
return 0;
}
static int
virtio_dev_start(struct rte_eth_dev *dev)
{
uint16_t nb_queues, i;
struct virtnet_rx *rxvq;
struct virtnet_tx *txvq __rte_unused;
struct virtio_hw *hw = dev->data->dev_private;
/* check if lsc interrupt feature is enabled */
if (dev->data->dev_conf.intr_conf.lsc) {
if (!(dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC)) {
PMD_DRV_LOG(ERR, "link status not supported by host");
return -ENOTSUP;
}
}
/* Enable uio/vfio intr/eventfd mapping: althrough we already did that
* in device configure, but it could be unmapped when device is
* stopped.
*/
if (dev->data->dev_conf.intr_conf.lsc ||
dev->data->dev_conf.intr_conf.rxq) {
rte_intr_disable(dev->intr_handle);
if (rte_intr_enable(dev->intr_handle) < 0) {
PMD_DRV_LOG(ERR, "interrupt enable failed");
return -EIO;
}
}
/*Notify the backend
*Otherwise the tap backend might already stop its queue due to fullness.
*vhost backend will have no chance to be waked up
*/
nb_queues = RTE_MAX(dev->data->nb_rx_queues, dev->data->nb_tx_queues);
if (hw->max_queue_pairs > 1) {
if (virtio_set_multiple_queues(dev, nb_queues) != 0)
return -EINVAL;
}
PMD_INIT_LOG(DEBUG, "nb_queues=%d", nb_queues);
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxvq = dev->data->rx_queues[i];
virtqueue_notify(rxvq->vq);
}
PMD_INIT_LOG(DEBUG, "Notified backend at initialization");
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxvq = dev->data->rx_queues[i];
VIRTQUEUE_DUMP(rxvq->vq);
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txvq = dev->data->tx_queues[i];
VIRTQUEUE_DUMP(txvq->vq);
}
hw->started = 1;
/* Initialize Link state */
virtio_dev_link_update(dev, 0);
return 0;
}
static void virtio_dev_free_mbufs(struct rte_eth_dev *dev)
{
struct rte_mbuf *buf;
int i, mbuf_num = 0;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
struct virtnet_rx *rxvq = dev->data->rx_queues[i];
PMD_INIT_LOG(DEBUG,
"Before freeing rxq[%d] used and unused buf", i);
VIRTQUEUE_DUMP(rxvq->vq);
PMD_INIT_LOG(DEBUG, "rx_queues[%d]=%p", i, rxvq);
while ((buf = virtqueue_detatch_unused(rxvq->vq)) != NULL) {
rte_pktmbuf_free(buf);
mbuf_num++;
}
PMD_INIT_LOG(DEBUG, "free %d mbufs", mbuf_num);
PMD_INIT_LOG(DEBUG,
"After freeing rxq[%d] used and unused buf", i);
VIRTQUEUE_DUMP(rxvq->vq);
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
struct virtnet_tx *txvq = dev->data->tx_queues[i];
PMD_INIT_LOG(DEBUG,
"Before freeing txq[%d] used and unused bufs",
i);
VIRTQUEUE_DUMP(txvq->vq);
mbuf_num = 0;
while ((buf = virtqueue_detatch_unused(txvq->vq)) != NULL) {
rte_pktmbuf_free(buf);
mbuf_num++;
}
PMD_INIT_LOG(DEBUG, "free %d mbufs", mbuf_num);
PMD_INIT_LOG(DEBUG,
"After freeing txq[%d] used and unused buf", i);
VIRTQUEUE_DUMP(txvq->vq);
}
}
/*
* Stop device: disable interrupt and mark link down
*/
static void
virtio_dev_stop(struct rte_eth_dev *dev)
{
struct virtio_hw *hw = dev->data->dev_private;
struct rte_eth_link link;
struct rte_intr_conf *intr_conf = &dev->data->dev_conf.intr_conf;
PMD_INIT_LOG(DEBUG, "stop");
if (intr_conf->lsc || intr_conf->rxq)
rte_intr_disable(dev->intr_handle);
hw->started = 0;
memset(&link, 0, sizeof(link));
virtio_dev_atomic_write_link_status(dev, &link);
}
static int
virtio_dev_link_update(struct rte_eth_dev *dev, __rte_unused int wait_to_complete)
{
struct rte_eth_link link, old;
uint16_t status;
struct virtio_hw *hw = dev->data->dev_private;
memset(&link, 0, sizeof(link));
virtio_dev_atomic_read_link_status(dev, &link);
old = link;
link.link_duplex = ETH_LINK_FULL_DUPLEX;
link.link_speed = SPEED_10G;
if (hw->started == 0) {
link.link_status = ETH_LINK_DOWN;
} else if (vtpci_with_feature(hw, VIRTIO_NET_F_STATUS)) {
PMD_INIT_LOG(DEBUG, "Get link status from hw");
vtpci_read_dev_config(hw,
offsetof(struct virtio_net_config, status),
&status, sizeof(status));
if ((status & VIRTIO_NET_S_LINK_UP) == 0) {
link.link_status = ETH_LINK_DOWN;
PMD_INIT_LOG(DEBUG, "Port %d is down",
dev->data->port_id);
} else {
link.link_status = ETH_LINK_UP;
PMD_INIT_LOG(DEBUG, "Port %d is up",
dev->data->port_id);
}
} else {
link.link_status = ETH_LINK_UP;
}
virtio_dev_atomic_write_link_status(dev, &link);
return (old.link_status == link.link_status) ? -1 : 0;
}
static void
virtio_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
uint64_t tso_mask, host_features;
struct virtio_hw *hw = dev->data->dev_private;
dev_info->speed_capa = ETH_LINK_SPEED_10G; /* fake value */
dev_info->pci_dev = dev->device ? RTE_ETH_DEV_TO_PCI(dev) : NULL;
dev_info->max_rx_queues =
RTE_MIN(hw->max_queue_pairs, VIRTIO_MAX_RX_QUEUES);
dev_info->max_tx_queues =
RTE_MIN(hw->max_queue_pairs, VIRTIO_MAX_TX_QUEUES);
dev_info->min_rx_bufsize = VIRTIO_MIN_RX_BUFSIZE;
dev_info->max_rx_pktlen = VIRTIO_MAX_RX_PKTLEN;
dev_info->max_mac_addrs = VIRTIO_MAX_MAC_ADDRS;
dev_info->default_txconf = (struct rte_eth_txconf) {
.txq_flags = ETH_TXQ_FLAGS_NOOFFLOADS
};
host_features = VTPCI_OPS(hw)->get_features(hw);
dev_info->rx_offload_capa = 0;
if (host_features & (1ULL << VIRTIO_NET_F_GUEST_CSUM)) {
dev_info->rx_offload_capa |=
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM;
}
tso_mask = (1ULL << VIRTIO_NET_F_GUEST_TSO4) |
(1ULL << VIRTIO_NET_F_GUEST_TSO6);
dev_info->tx_offload_capa = 0;
if (hw->guest_features & (1ULL << VIRTIO_NET_F_CSUM)) {
dev_info->tx_offload_capa |=
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM;
}
tso_mask = (1ULL << VIRTIO_NET_F_HOST_TSO4) |
(1ULL << VIRTIO_NET_F_HOST_TSO6);
if ((hw->guest_features & tso_mask) == tso_mask)
dev_info->tx_offload_capa |= DEV_TX_OFFLOAD_TCP_TSO;
}
/*
* It enables testpmd to collect per queue stats.
*/
static int
virtio_dev_queue_stats_mapping_set(__rte_unused struct rte_eth_dev *eth_dev,
__rte_unused uint16_t queue_id, __rte_unused uint8_t stat_idx,
__rte_unused uint8_t is_rx)
{
return 0;
}
RTE_PMD_EXPORT_NAME(net_virtio, __COUNTER__);
RTE_PMD_REGISTER_PCI_TABLE(net_virtio, pci_id_virtio_map);
RTE_PMD_REGISTER_KMOD_DEP(net_virtio, "* igb_uio | uio_pci_generic | vfio-pci");