numam-dpdk/drivers/mempool/octeontx2/otx2_mempool_ops.c
Pavan Nikhilesh 43d8940495 mempool/octeontx2: fix shift calculation
Shift is used to generate an 8-bit saturate value from the current
aura used count. The shift value should be derived from the log2 of
block count if it is greater than 256 else the shift should be 0.

Fixes: 7bcc47cbe2 ("mempool/octeontx2: add mempool alloc op")
Cc: stable@dpdk.org

Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com>
2021-06-30 18:42:54 +02:00

902 lines
25 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include <rte_mempool.h>
#include <rte_vect.h>
#include "otx2_mempool.h"
static int __rte_hot
otx2_npa_enq(struct rte_mempool *mp, void * const *obj_table, unsigned int n)
{
unsigned int index; const uint64_t aura_handle = mp->pool_id;
const uint64_t reg = npa_lf_aura_handle_to_aura(aura_handle);
const uint64_t addr = npa_lf_aura_handle_to_base(aura_handle) +
NPA_LF_AURA_OP_FREE0;
/* Ensure mbuf init changes are written before the free pointers
* are enqueued to the stack.
*/
rte_io_wmb();
for (index = 0; index < n; index++)
otx2_store_pair((uint64_t)obj_table[index], reg, addr);
return 0;
}
static __rte_noinline int
npa_lf_aura_op_alloc_one(const int64_t wdata, int64_t * const addr,
void **obj_table, uint8_t i)
{
uint8_t retry = 4;
do {
obj_table[i] = (void *)otx2_atomic64_add_nosync(wdata, addr);
if (obj_table[i] != NULL)
return 0;
} while (retry--);
return -ENOENT;
}
#if defined(RTE_ARCH_ARM64)
static __rte_noinline int
npa_lf_aura_op_search_alloc(const int64_t wdata, int64_t * const addr,
void **obj_table, unsigned int n)
{
uint8_t i;
for (i = 0; i < n; i++) {
if (obj_table[i] != NULL)
continue;
if (npa_lf_aura_op_alloc_one(wdata, addr, obj_table, i))
return -ENOENT;
}
return 0;
}
static __rte_noinline int
npa_lf_aura_op_alloc_bulk(const int64_t wdata, int64_t * const addr,
unsigned int n, void **obj_table)
{
register const uint64_t wdata64 __asm("x26") = wdata;
register const uint64_t wdata128 __asm("x27") = wdata;
uint64x2_t failed = vdupq_n_u64(~0);
switch (n) {
case 32:
{
asm volatile (
".cpu generic+lse\n"
"casp x0, x1, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x2, x3, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x4, x5, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x6, x7, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x8, x9, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x10, x11, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x12, x13, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x14, x15, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x16, x17, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x18, x19, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x20, x21, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x22, x23, %[wdata64], %[wdata128], [%[loc]]\n"
"fmov d16, x0\n"
"fmov v16.D[1], x1\n"
"casp x0, x1, %[wdata64], %[wdata128], [%[loc]]\n"
"fmov d17, x2\n"
"fmov v17.D[1], x3\n"
"casp x2, x3, %[wdata64], %[wdata128], [%[loc]]\n"
"fmov d18, x4\n"
"fmov v18.D[1], x5\n"
"casp x4, x5, %[wdata64], %[wdata128], [%[loc]]\n"
"fmov d19, x6\n"
"fmov v19.D[1], x7\n"
"casp x6, x7, %[wdata64], %[wdata128], [%[loc]]\n"
"and %[failed].16B, %[failed].16B, v16.16B\n"
"and %[failed].16B, %[failed].16B, v17.16B\n"
"and %[failed].16B, %[failed].16B, v18.16B\n"
"and %[failed].16B, %[failed].16B, v19.16B\n"
"fmov d20, x8\n"
"fmov v20.D[1], x9\n"
"fmov d21, x10\n"
"fmov v21.D[1], x11\n"
"fmov d22, x12\n"
"fmov v22.D[1], x13\n"
"fmov d23, x14\n"
"fmov v23.D[1], x15\n"
"and %[failed].16B, %[failed].16B, v20.16B\n"
"and %[failed].16B, %[failed].16B, v21.16B\n"
"and %[failed].16B, %[failed].16B, v22.16B\n"
"and %[failed].16B, %[failed].16B, v23.16B\n"
"st1 { v16.2d, v17.2d, v18.2d, v19.2d}, [%[dst]], 64\n"
"st1 { v20.2d, v21.2d, v22.2d, v23.2d}, [%[dst]], 64\n"
"fmov d16, x16\n"
"fmov v16.D[1], x17\n"
"fmov d17, x18\n"
"fmov v17.D[1], x19\n"
"fmov d18, x20\n"
"fmov v18.D[1], x21\n"
"fmov d19, x22\n"
"fmov v19.D[1], x23\n"
"and %[failed].16B, %[failed].16B, v16.16B\n"
"and %[failed].16B, %[failed].16B, v17.16B\n"
"and %[failed].16B, %[failed].16B, v18.16B\n"
"and %[failed].16B, %[failed].16B, v19.16B\n"
"fmov d20, x0\n"
"fmov v20.D[1], x1\n"
"fmov d21, x2\n"
"fmov v21.D[1], x3\n"
"fmov d22, x4\n"
"fmov v22.D[1], x5\n"
"fmov d23, x6\n"
"fmov v23.D[1], x7\n"
"and %[failed].16B, %[failed].16B, v20.16B\n"
"and %[failed].16B, %[failed].16B, v21.16B\n"
"and %[failed].16B, %[failed].16B, v22.16B\n"
"and %[failed].16B, %[failed].16B, v23.16B\n"
"st1 { v16.2d, v17.2d, v18.2d, v19.2d}, [%[dst]], 64\n"
"st1 { v20.2d, v21.2d, v22.2d, v23.2d}, [%[dst]], 64\n"
: "+Q" (*addr), [failed] "=&w" (failed)
: [wdata64] "r" (wdata64), [wdata128] "r" (wdata128),
[dst] "r" (obj_table), [loc] "r" (addr)
: "memory", "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16",
"x17", "x18", "x19", "x20", "x21", "x22", "x23", "v16", "v17",
"v18", "v19", "v20", "v21", "v22", "v23"
);
break;
}
case 16:
{
asm volatile (
".cpu generic+lse\n"
"casp x0, x1, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x2, x3, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x4, x5, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x6, x7, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x8, x9, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x10, x11, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x12, x13, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x14, x15, %[wdata64], %[wdata128], [%[loc]]\n"
"fmov d16, x0\n"
"fmov v16.D[1], x1\n"
"fmov d17, x2\n"
"fmov v17.D[1], x3\n"
"fmov d18, x4\n"
"fmov v18.D[1], x5\n"
"fmov d19, x6\n"
"fmov v19.D[1], x7\n"
"and %[failed].16B, %[failed].16B, v16.16B\n"
"and %[failed].16B, %[failed].16B, v17.16B\n"
"and %[failed].16B, %[failed].16B, v18.16B\n"
"and %[failed].16B, %[failed].16B, v19.16B\n"
"fmov d20, x8\n"
"fmov v20.D[1], x9\n"
"fmov d21, x10\n"
"fmov v21.D[1], x11\n"
"fmov d22, x12\n"
"fmov v22.D[1], x13\n"
"fmov d23, x14\n"
"fmov v23.D[1], x15\n"
"and %[failed].16B, %[failed].16B, v20.16B\n"
"and %[failed].16B, %[failed].16B, v21.16B\n"
"and %[failed].16B, %[failed].16B, v22.16B\n"
"and %[failed].16B, %[failed].16B, v23.16B\n"
"st1 { v16.2d, v17.2d, v18.2d, v19.2d}, [%[dst]], 64\n"
"st1 { v20.2d, v21.2d, v22.2d, v23.2d}, [%[dst]], 64\n"
: "+Q" (*addr), [failed] "=&w" (failed)
: [wdata64] "r" (wdata64), [wdata128] "r" (wdata128),
[dst] "r" (obj_table), [loc] "r" (addr)
: "memory", "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "v16",
"v17", "v18", "v19", "v20", "v21", "v22", "v23"
);
break;
}
case 8:
{
asm volatile (
".cpu generic+lse\n"
"casp x0, x1, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x2, x3, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x4, x5, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x6, x7, %[wdata64], %[wdata128], [%[loc]]\n"
"fmov d16, x0\n"
"fmov v16.D[1], x1\n"
"fmov d17, x2\n"
"fmov v17.D[1], x3\n"
"fmov d18, x4\n"
"fmov v18.D[1], x5\n"
"fmov d19, x6\n"
"fmov v19.D[1], x7\n"
"and %[failed].16B, %[failed].16B, v16.16B\n"
"and %[failed].16B, %[failed].16B, v17.16B\n"
"and %[failed].16B, %[failed].16B, v18.16B\n"
"and %[failed].16B, %[failed].16B, v19.16B\n"
"st1 { v16.2d, v17.2d, v18.2d, v19.2d}, [%[dst]], 64\n"
: "+Q" (*addr), [failed] "=&w" (failed)
: [wdata64] "r" (wdata64), [wdata128] "r" (wdata128),
[dst] "r" (obj_table), [loc] "r" (addr)
: "memory", "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"v16", "v17", "v18", "v19"
);
break;
}
case 4:
{
asm volatile (
".cpu generic+lse\n"
"casp x0, x1, %[wdata64], %[wdata128], [%[loc]]\n"
"casp x2, x3, %[wdata64], %[wdata128], [%[loc]]\n"
"fmov d16, x0\n"
"fmov v16.D[1], x1\n"
"fmov d17, x2\n"
"fmov v17.D[1], x3\n"
"and %[failed].16B, %[failed].16B, v16.16B\n"
"and %[failed].16B, %[failed].16B, v17.16B\n"
"st1 { v16.2d, v17.2d}, [%[dst]], 32\n"
: "+Q" (*addr), [failed] "=&w" (failed)
: [wdata64] "r" (wdata64), [wdata128] "r" (wdata128),
[dst] "r" (obj_table), [loc] "r" (addr)
: "memory", "x0", "x1", "x2", "x3", "v16", "v17"
);
break;
}
case 2:
{
asm volatile (
".cpu generic+lse\n"
"casp x0, x1, %[wdata64], %[wdata128], [%[loc]]\n"
"fmov d16, x0\n"
"fmov v16.D[1], x1\n"
"and %[failed].16B, %[failed].16B, v16.16B\n"
"st1 { v16.2d}, [%[dst]], 16\n"
: "+Q" (*addr), [failed] "=&w" (failed)
: [wdata64] "r" (wdata64), [wdata128] "r" (wdata128),
[dst] "r" (obj_table), [loc] "r" (addr)
: "memory", "x0", "x1", "v16"
);
break;
}
case 1:
return npa_lf_aura_op_alloc_one(wdata, addr, obj_table, 0);
}
if (unlikely(!(vgetq_lane_u64(failed, 0) & vgetq_lane_u64(failed, 1))))
return npa_lf_aura_op_search_alloc(wdata, addr, (void **)
((char *)obj_table - (sizeof(uint64_t) * n)), n);
return 0;
}
static __rte_noinline void
otx2_npa_clear_alloc(struct rte_mempool *mp, void **obj_table, unsigned int n)
{
unsigned int i;
for (i = 0; i < n; i++) {
if (obj_table[i] != NULL) {
otx2_npa_enq(mp, &obj_table[i], 1);
obj_table[i] = NULL;
}
}
}
static __rte_noinline int __rte_hot
otx2_npa_deq_arm64(struct rte_mempool *mp, void **obj_table, unsigned int n)
{
const int64_t wdata = npa_lf_aura_handle_to_aura(mp->pool_id);
void **obj_table_bak = obj_table;
const unsigned int nfree = n;
unsigned int parts;
int64_t * const addr = (int64_t * const)
(npa_lf_aura_handle_to_base(mp->pool_id) +
NPA_LF_AURA_OP_ALLOCX(0));
while (n) {
parts = n > 31 ? 32 : rte_align32prevpow2(n);
n -= parts;
if (unlikely(npa_lf_aura_op_alloc_bulk(wdata, addr,
parts, obj_table))) {
otx2_npa_clear_alloc(mp, obj_table_bak, nfree - n);
return -ENOENT;
}
obj_table += parts;
}
return 0;
}
#else
static inline int __rte_hot
otx2_npa_deq(struct rte_mempool *mp, void **obj_table, unsigned int n)
{
const int64_t wdata = npa_lf_aura_handle_to_aura(mp->pool_id);
unsigned int index;
uint64_t obj;
int64_t * const addr = (int64_t *)
(npa_lf_aura_handle_to_base(mp->pool_id) +
NPA_LF_AURA_OP_ALLOCX(0));
for (index = 0; index < n; index++, obj_table++) {
obj = npa_lf_aura_op_alloc_one(wdata, addr, obj_table, 0);
if (obj == 0) {
for (; index > 0; index--) {
obj_table--;
otx2_npa_enq(mp, obj_table, 1);
}
return -ENOENT;
}
*obj_table = (void *)obj;
}
return 0;
}
#endif
static unsigned int
otx2_npa_get_count(const struct rte_mempool *mp)
{
return (unsigned int)npa_lf_aura_op_available(mp->pool_id);
}
static int
npa_lf_aura_pool_init(struct otx2_mbox *mbox, uint32_t aura_id,
struct npa_aura_s *aura, struct npa_pool_s *pool)
{
struct npa_aq_enq_req *aura_init_req, *pool_init_req;
struct npa_aq_enq_rsp *aura_init_rsp, *pool_init_rsp;
struct otx2_mbox_dev *mdev = &mbox->dev[0];
struct otx2_idev_cfg *idev;
int rc, off;
idev = otx2_intra_dev_get_cfg();
if (idev == NULL)
return -ENOMEM;
aura_init_req = otx2_mbox_alloc_msg_npa_aq_enq(mbox);
aura_init_req->aura_id = aura_id;
aura_init_req->ctype = NPA_AQ_CTYPE_AURA;
aura_init_req->op = NPA_AQ_INSTOP_INIT;
otx2_mbox_memcpy(&aura_init_req->aura, aura, sizeof(*aura));
pool_init_req = otx2_mbox_alloc_msg_npa_aq_enq(mbox);
pool_init_req->aura_id = aura_id;
pool_init_req->ctype = NPA_AQ_CTYPE_POOL;
pool_init_req->op = NPA_AQ_INSTOP_INIT;
otx2_mbox_memcpy(&pool_init_req->pool, pool, sizeof(*pool));
otx2_mbox_msg_send(mbox, 0);
rc = otx2_mbox_wait_for_rsp(mbox, 0);
if (rc < 0)
return rc;
off = mbox->rx_start +
RTE_ALIGN(sizeof(struct mbox_hdr), MBOX_MSG_ALIGN);
aura_init_rsp = (struct npa_aq_enq_rsp *)((uintptr_t)mdev->mbase + off);
off = mbox->rx_start + aura_init_rsp->hdr.next_msgoff;
pool_init_rsp = (struct npa_aq_enq_rsp *)((uintptr_t)mdev->mbase + off);
if (rc == 2 && aura_init_rsp->hdr.rc == 0 && pool_init_rsp->hdr.rc == 0)
return 0;
else
return NPA_LF_ERR_AURA_POOL_INIT;
if (!(idev->npa_lock_mask & BIT_ULL(aura_id)))
return 0;
aura_init_req = otx2_mbox_alloc_msg_npa_aq_enq(mbox);
aura_init_req->aura_id = aura_id;
aura_init_req->ctype = NPA_AQ_CTYPE_AURA;
aura_init_req->op = NPA_AQ_INSTOP_LOCK;
pool_init_req = otx2_mbox_alloc_msg_npa_aq_enq(mbox);
if (!pool_init_req) {
/* The shared memory buffer can be full.
* Flush it and retry
*/
otx2_mbox_msg_send(mbox, 0);
rc = otx2_mbox_wait_for_rsp(mbox, 0);
if (rc < 0) {
otx2_err("Failed to LOCK AURA context");
return -ENOMEM;
}
pool_init_req = otx2_mbox_alloc_msg_npa_aq_enq(mbox);
if (!pool_init_req) {
otx2_err("Failed to LOCK POOL context");
return -ENOMEM;
}
}
pool_init_req->aura_id = aura_id;
pool_init_req->ctype = NPA_AQ_CTYPE_POOL;
pool_init_req->op = NPA_AQ_INSTOP_LOCK;
rc = otx2_mbox_process(mbox);
if (rc < 0) {
otx2_err("Failed to lock POOL ctx to NDC");
return -ENOMEM;
}
return 0;
}
static int
npa_lf_aura_pool_fini(struct otx2_mbox *mbox,
uint32_t aura_id,
uint64_t aura_handle)
{
struct npa_aq_enq_req *aura_req, *pool_req;
struct npa_aq_enq_rsp *aura_rsp, *pool_rsp;
struct otx2_mbox_dev *mdev = &mbox->dev[0];
struct ndc_sync_op *ndc_req;
struct otx2_idev_cfg *idev;
int rc, off;
idev = otx2_intra_dev_get_cfg();
if (idev == NULL)
return -EINVAL;
/* Procedure for disabling an aura/pool */
rte_delay_us(10);
npa_lf_aura_op_alloc(aura_handle, 0);
pool_req = otx2_mbox_alloc_msg_npa_aq_enq(mbox);
pool_req->aura_id = aura_id;
pool_req->ctype = NPA_AQ_CTYPE_POOL;
pool_req->op = NPA_AQ_INSTOP_WRITE;
pool_req->pool.ena = 0;
pool_req->pool_mask.ena = ~pool_req->pool_mask.ena;
aura_req = otx2_mbox_alloc_msg_npa_aq_enq(mbox);
aura_req->aura_id = aura_id;
aura_req->ctype = NPA_AQ_CTYPE_AURA;
aura_req->op = NPA_AQ_INSTOP_WRITE;
aura_req->aura.ena = 0;
aura_req->aura_mask.ena = ~aura_req->aura_mask.ena;
otx2_mbox_msg_send(mbox, 0);
rc = otx2_mbox_wait_for_rsp(mbox, 0);
if (rc < 0)
return rc;
off = mbox->rx_start +
RTE_ALIGN(sizeof(struct mbox_hdr), MBOX_MSG_ALIGN);
pool_rsp = (struct npa_aq_enq_rsp *)((uintptr_t)mdev->mbase + off);
off = mbox->rx_start + pool_rsp->hdr.next_msgoff;
aura_rsp = (struct npa_aq_enq_rsp *)((uintptr_t)mdev->mbase + off);
if (rc != 2 || aura_rsp->hdr.rc != 0 || pool_rsp->hdr.rc != 0)
return NPA_LF_ERR_AURA_POOL_FINI;
/* Sync NDC-NPA for LF */
ndc_req = otx2_mbox_alloc_msg_ndc_sync_op(mbox);
ndc_req->npa_lf_sync = 1;
rc = otx2_mbox_process(mbox);
if (rc) {
otx2_err("Error on NDC-NPA LF sync, rc %d", rc);
return NPA_LF_ERR_AURA_POOL_FINI;
}
if (!(idev->npa_lock_mask & BIT_ULL(aura_id)))
return 0;
aura_req = otx2_mbox_alloc_msg_npa_aq_enq(mbox);
aura_req->aura_id = aura_id;
aura_req->ctype = NPA_AQ_CTYPE_AURA;
aura_req->op = NPA_AQ_INSTOP_UNLOCK;
rc = otx2_mbox_process(mbox);
if (rc < 0) {
otx2_err("Failed to unlock AURA ctx to NDC");
return -EINVAL;
}
pool_req = otx2_mbox_alloc_msg_npa_aq_enq(mbox);
pool_req->aura_id = aura_id;
pool_req->ctype = NPA_AQ_CTYPE_POOL;
pool_req->op = NPA_AQ_INSTOP_UNLOCK;
rc = otx2_mbox_process(mbox);
if (rc < 0) {
otx2_err("Failed to unlock POOL ctx to NDC");
return -EINVAL;
}
return 0;
}
static inline char*
npa_lf_stack_memzone_name(struct otx2_npa_lf *lf, int pool_id, char *name)
{
snprintf(name, RTE_MEMZONE_NAMESIZE, "otx2_npa_stack_%x_%d",
lf->pf_func, pool_id);
return name;
}
static inline const struct rte_memzone *
npa_lf_stack_dma_alloc(struct otx2_npa_lf *lf, char *name,
int pool_id, size_t size)
{
return rte_memzone_reserve_aligned(
npa_lf_stack_memzone_name(lf, pool_id, name), size, 0,
RTE_MEMZONE_IOVA_CONTIG, OTX2_ALIGN);
}
static inline int
npa_lf_stack_dma_free(struct otx2_npa_lf *lf, char *name, int pool_id)
{
const struct rte_memzone *mz;
mz = rte_memzone_lookup(npa_lf_stack_memzone_name(lf, pool_id, name));
if (mz == NULL)
return -EINVAL;
return rte_memzone_free(mz);
}
static inline int
bitmap_ctzll(uint64_t slab)
{
if (slab == 0)
return 0;
return __builtin_ctzll(slab);
}
static int
npa_lf_aura_pool_pair_alloc(struct otx2_npa_lf *lf, const uint32_t block_size,
const uint32_t block_count, struct npa_aura_s *aura,
struct npa_pool_s *pool, uint64_t *aura_handle)
{
int rc, aura_id, pool_id, stack_size, alloc_size;
char name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
uint64_t slab;
uint32_t pos;
/* Sanity check */
if (!lf || !block_size || !block_count ||
!pool || !aura || !aura_handle)
return NPA_LF_ERR_PARAM;
/* Block size should be cache line aligned and in range of 128B-128KB */
if (block_size % OTX2_ALIGN || block_size < 128 ||
block_size > 128 * 1024)
return NPA_LF_ERR_INVALID_BLOCK_SZ;
pos = slab = 0;
/* Scan from the beginning */
__rte_bitmap_scan_init(lf->npa_bmp);
/* Scan bitmap to get the free pool */
rc = rte_bitmap_scan(lf->npa_bmp, &pos, &slab);
/* Empty bitmap */
if (rc == 0) {
otx2_err("Mempools exhausted, 'max_pools' devargs to increase");
return -ERANGE;
}
/* Get aura_id from resource bitmap */
aura_id = pos + bitmap_ctzll(slab);
/* Mark pool as reserved */
rte_bitmap_clear(lf->npa_bmp, aura_id);
/* Configuration based on each aura has separate pool(aura-pool pair) */
pool_id = aura_id;
rc = (aura_id < 0 || pool_id >= (int)lf->nr_pools || aura_id >=
(int)BIT_ULL(6 + lf->aura_sz)) ? NPA_LF_ERR_AURA_ID_ALLOC : 0;
if (rc)
goto exit;
/* Allocate stack memory */
stack_size = (block_count + lf->stack_pg_ptrs - 1) / lf->stack_pg_ptrs;
alloc_size = stack_size * lf->stack_pg_bytes;
mz = npa_lf_stack_dma_alloc(lf, name, pool_id, alloc_size);
if (mz == NULL) {
rc = -ENOMEM;
goto aura_res_put;
}
/* Update aura fields */
aura->pool_addr = pool_id;/* AF will translate to associated poolctx */
aura->ena = 1;
aura->shift = rte_log2_u32(block_count);
aura->shift = aura->shift < 8 ? 0 : aura->shift - 8;
aura->limit = block_count;
aura->pool_caching = 1;
aura->err_int_ena = BIT(NPA_AURA_ERR_INT_AURA_ADD_OVER);
aura->err_int_ena |= BIT(NPA_AURA_ERR_INT_AURA_ADD_UNDER);
aura->err_int_ena |= BIT(NPA_AURA_ERR_INT_AURA_FREE_UNDER);
aura->err_int_ena |= BIT(NPA_AURA_ERR_INT_POOL_DIS);
/* Many to one reduction */
aura->err_qint_idx = aura_id % lf->qints;
/* Update pool fields */
pool->stack_base = mz->iova;
pool->ena = 1;
pool->buf_size = block_size / OTX2_ALIGN;
pool->stack_max_pages = stack_size;
pool->shift = rte_log2_u32(block_count);
pool->shift = pool->shift < 8 ? 0 : pool->shift - 8;
pool->ptr_start = 0;
pool->ptr_end = ~0;
pool->stack_caching = 1;
pool->err_int_ena = BIT(NPA_POOL_ERR_INT_OVFLS);
pool->err_int_ena |= BIT(NPA_POOL_ERR_INT_RANGE);
pool->err_int_ena |= BIT(NPA_POOL_ERR_INT_PERR);
/* Many to one reduction */
pool->err_qint_idx = pool_id % lf->qints;
/* Issue AURA_INIT and POOL_INIT op */
rc = npa_lf_aura_pool_init(lf->mbox, aura_id, aura, pool);
if (rc)
goto stack_mem_free;
*aura_handle = npa_lf_aura_handle_gen(aura_id, lf->base);
/* Update aura count */
npa_lf_aura_op_cnt_set(*aura_handle, 0, block_count);
/* Read it back to make sure aura count is updated */
npa_lf_aura_op_cnt_get(*aura_handle);
return 0;
stack_mem_free:
rte_memzone_free(mz);
aura_res_put:
rte_bitmap_set(lf->npa_bmp, aura_id);
exit:
return rc;
}
static int
npa_lf_aura_pool_pair_free(struct otx2_npa_lf *lf, uint64_t aura_handle)
{
char name[RTE_MEMZONE_NAMESIZE];
int aura_id, pool_id, rc;
if (!lf || !aura_handle)
return NPA_LF_ERR_PARAM;
aura_id = pool_id = npa_lf_aura_handle_to_aura(aura_handle);
rc = npa_lf_aura_pool_fini(lf->mbox, aura_id, aura_handle);
rc |= npa_lf_stack_dma_free(lf, name, pool_id);
rte_bitmap_set(lf->npa_bmp, aura_id);
return rc;
}
static int
npa_lf_aura_range_update_check(uint64_t aura_handle)
{
uint64_t aura_id = npa_lf_aura_handle_to_aura(aura_handle);
struct otx2_npa_lf *lf = otx2_npa_lf_obj_get();
struct npa_aura_lim *lim = lf->aura_lim;
__otx2_io struct npa_pool_s *pool;
struct npa_aq_enq_req *req;
struct npa_aq_enq_rsp *rsp;
int rc;
req = otx2_mbox_alloc_msg_npa_aq_enq(lf->mbox);
req->aura_id = aura_id;
req->ctype = NPA_AQ_CTYPE_POOL;
req->op = NPA_AQ_INSTOP_READ;
rc = otx2_mbox_process_msg(lf->mbox, (void *)&rsp);
if (rc) {
otx2_err("Failed to get pool(0x%"PRIx64") context", aura_id);
return rc;
}
pool = &rsp->pool;
if (lim[aura_id].ptr_start != pool->ptr_start ||
lim[aura_id].ptr_end != pool->ptr_end) {
otx2_err("Range update failed on pool(0x%"PRIx64")", aura_id);
return -ERANGE;
}
return 0;
}
static int
otx2_npa_alloc(struct rte_mempool *mp)
{
uint32_t block_size, block_count;
uint64_t aura_handle = 0;
struct otx2_npa_lf *lf;
struct npa_aura_s aura;
struct npa_pool_s pool;
size_t padding;
int rc;
lf = otx2_npa_lf_obj_get();
if (lf == NULL) {
rc = -EINVAL;
goto error;
}
block_size = mp->elt_size + mp->header_size + mp->trailer_size;
/*
* OCTEON TX2 has 8 sets, 41 ways L1D cache, VA<9:7> bits dictate
* the set selection.
* Add additional padding to ensure that the element size always
* occupies odd number of cachelines to ensure even distribution
* of elements among L1D cache sets.
*/
padding = ((block_size / RTE_CACHE_LINE_SIZE) % 2) ? 0 :
RTE_CACHE_LINE_SIZE;
mp->trailer_size += padding;
block_size += padding;
block_count = mp->size;
if (block_size % OTX2_ALIGN != 0) {
otx2_err("Block size should be multiple of 128B");
rc = -ERANGE;
goto error;
}
memset(&aura, 0, sizeof(struct npa_aura_s));
memset(&pool, 0, sizeof(struct npa_pool_s));
pool.nat_align = 1;
pool.buf_offset = 1;
if ((uint32_t)pool.buf_offset * OTX2_ALIGN != mp->header_size) {
otx2_err("Unsupported mp->header_size=%d", mp->header_size);
rc = -EINVAL;
goto error;
}
/* Use driver specific mp->pool_config to override aura config */
if (mp->pool_config != NULL)
memcpy(&aura, mp->pool_config, sizeof(struct npa_aura_s));
rc = npa_lf_aura_pool_pair_alloc(lf, block_size, block_count,
&aura, &pool, &aura_handle);
if (rc) {
otx2_err("Failed to alloc pool or aura rc=%d", rc);
goto error;
}
/* Store aura_handle for future queue operations */
mp->pool_id = aura_handle;
otx2_npa_dbg("lf=%p block_sz=%d block_count=%d aura_handle=0x%"PRIx64,
lf, block_size, block_count, aura_handle);
/* Just hold the reference of the object */
otx2_npa_lf_obj_ref();
return 0;
error:
return rc;
}
static void
otx2_npa_free(struct rte_mempool *mp)
{
struct otx2_npa_lf *lf = otx2_npa_lf_obj_get();
int rc = 0;
otx2_npa_dbg("lf=%p aura_handle=0x%"PRIx64, lf, mp->pool_id);
if (lf != NULL)
rc = npa_lf_aura_pool_pair_free(lf, mp->pool_id);
if (rc)
otx2_err("Failed to free pool or aura rc=%d", rc);
/* Release the reference of npalf */
otx2_npa_lf_fini();
}
static ssize_t
otx2_npa_calc_mem_size(const struct rte_mempool *mp, uint32_t obj_num,
uint32_t pg_shift, size_t *min_chunk_size, size_t *align)
{
size_t total_elt_sz;
/* Need space for one more obj on each chunk to fulfill
* alignment requirements.
*/
total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
return rte_mempool_op_calc_mem_size_helper(mp, obj_num, pg_shift,
total_elt_sz, min_chunk_size,
align);
}
static uint8_t
otx2_npa_l1d_way_set_get(uint64_t iova)
{
return (iova >> rte_log2_u32(RTE_CACHE_LINE_SIZE)) & 0x7;
}
static int
otx2_npa_populate(struct rte_mempool *mp, unsigned int max_objs, void *vaddr,
rte_iova_t iova, size_t len,
rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg)
{
#define OTX2_L1D_NB_SETS 8
uint64_t distribution[OTX2_L1D_NB_SETS];
rte_iova_t start_iova;
size_t total_elt_sz;
uint8_t set;
size_t off;
int i;
if (iova == RTE_BAD_IOVA)
return -EINVAL;
total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
/* Align object start address to a multiple of total_elt_sz */
off = total_elt_sz - ((((uintptr_t)vaddr - 1) % total_elt_sz) + 1);
if (len < off)
return -EINVAL;
vaddr = (char *)vaddr + off;
iova += off;
len -= off;
memset(distribution, 0, sizeof(uint64_t) * OTX2_L1D_NB_SETS);
start_iova = iova;
while (start_iova < iova + len) {
set = otx2_npa_l1d_way_set_get(start_iova + mp->header_size);
distribution[set]++;
start_iova += total_elt_sz;
}
otx2_npa_dbg("iova %"PRIx64", aligned iova %"PRIx64"", iova - off,
iova);
otx2_npa_dbg("length %"PRIu64", aligned length %"PRIu64"",
(uint64_t)(len + off), (uint64_t)len);
otx2_npa_dbg("element size %"PRIu64"", (uint64_t)total_elt_sz);
otx2_npa_dbg("requested objects %"PRIu64", possible objects %"PRIu64"",
(uint64_t)max_objs, (uint64_t)(len / total_elt_sz));
otx2_npa_dbg("L1D set distribution :");
for (i = 0; i < OTX2_L1D_NB_SETS; i++)
otx2_npa_dbg("set[%d] : objects : %"PRIu64"", i,
distribution[i]);
npa_lf_aura_op_range_set(mp->pool_id, iova, iova + len);
if (npa_lf_aura_range_update_check(mp->pool_id) < 0)
return -EBUSY;
return rte_mempool_op_populate_helper(mp,
RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ,
max_objs, vaddr, iova, len,
obj_cb, obj_cb_arg);
}
static struct rte_mempool_ops otx2_npa_ops = {
.name = "octeontx2_npa",
.alloc = otx2_npa_alloc,
.free = otx2_npa_free,
.enqueue = otx2_npa_enq,
.get_count = otx2_npa_get_count,
.calc_mem_size = otx2_npa_calc_mem_size,
.populate = otx2_npa_populate,
#if defined(RTE_ARCH_ARM64)
.dequeue = otx2_npa_deq_arm64,
#else
.dequeue = otx2_npa_deq,
#endif
};
MEMPOOL_REGISTER_OPS(otx2_npa_ops);