numam-dpdk/drivers/net/hns3/hns3_flow.c
Chengwen Feng a06c3b0e9f net/hns3: fix flow counter value
User could create flow rules with specified counter by the action of
RTE_FLOW_ACTION_TYPE_COUNT, but the counter may retain the original
value when create.

This patch fix the bug by read the counter when creating the rule
because the counter is read-clear.

Fixes: fcba820d9b ("net/hns3: support flow director")
Cc: stable@dpdk.org

Signed-off-by: Chengwen Feng <fengchengwen@huawei.com>
Signed-off-by: Min Hu (Connor) <humin29@huawei.com>
2021-04-08 18:57:09 +02:00

2027 lines
58 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2021 HiSilicon Limited.
*/
#include <rte_flow_driver.h>
#include <rte_io.h>
#include <rte_malloc.h>
#include "hns3_ethdev.h"
#include "hns3_logs.h"
/* Default default keys */
static uint8_t hns3_hash_key[] = {
0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
};
static const uint8_t full_mask[VNI_OR_TNI_LEN] = { 0xFF, 0xFF, 0xFF };
static const uint8_t zero_mask[VNI_OR_TNI_LEN] = { 0x00, 0x00, 0x00 };
/* Special Filter id for non-specific packet flagging. Don't change value */
#define HNS3_MAX_FILTER_ID 0x0FFF
#define ETHER_TYPE_MASK 0xFFFF
#define IPPROTO_MASK 0xFF
#define TUNNEL_TYPE_MASK 0xFFFF
#define HNS3_TUNNEL_TYPE_VXLAN 0x12B5
#define HNS3_TUNNEL_TYPE_VXLAN_GPE 0x12B6
#define HNS3_TUNNEL_TYPE_GENEVE 0x17C1
#define HNS3_TUNNEL_TYPE_NVGRE 0x6558
static enum rte_flow_item_type first_items[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_GENEVE,
RTE_FLOW_ITEM_TYPE_VXLAN_GPE
};
static enum rte_flow_item_type L2_next_items[] = {
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6
};
static enum rte_flow_item_type L3_next_items[] = {
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_ICMP
};
static enum rte_flow_item_type L4_next_items[] = {
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_GENEVE,
RTE_FLOW_ITEM_TYPE_VXLAN_GPE
};
static enum rte_flow_item_type tunnel_next_items[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN
};
struct items_step_mngr {
enum rte_flow_item_type *items;
int count;
};
static inline void
net_addr_to_host(uint32_t *dst, const rte_be32_t *src, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
dst[i] = rte_be_to_cpu_32(src[i]);
}
/*
* This function is used to find rss general action.
* 1. As we know RSS is used to spread packets among several queues, the flow
* API provide the struct rte_flow_action_rss, user could config its field
* sush as: func/level/types/key/queue to control RSS function.
* 2. The flow API also supports queue region configuration for hns3. It was
* implemented by FDIR + RSS in hns3 hardware, user can create one FDIR rule
* which action is RSS queues region.
* 3. When action is RSS, we use the following rule to distinguish:
* Case 1: pattern have ETH and action's queue_num > 0, indicate it is queue
* region configuration.
* Case other: an rss general action.
*/
static const struct rte_flow_action *
hns3_find_rss_general_action(const struct rte_flow_item pattern[],
const struct rte_flow_action actions[])
{
const struct rte_flow_action *act = NULL;
const struct hns3_rss_conf *rss;
bool have_eth = false;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
if (actions->type == RTE_FLOW_ACTION_TYPE_RSS) {
act = actions;
break;
}
}
if (!act)
return NULL;
for (; pattern->type != RTE_FLOW_ITEM_TYPE_END; pattern++) {
if (pattern->type == RTE_FLOW_ITEM_TYPE_ETH) {
have_eth = true;
break;
}
}
rss = act->conf;
if (have_eth && rss->conf.queue_num) {
/*
* Pattern have ETH and action's queue_num > 0, indicate this is
* queue region configuration.
* Because queue region is implemented by FDIR + RSS in hns3
* hardware, it needs to enter FDIR process, so here return NULL
* to avoid enter RSS process.
*/
return NULL;
}
return act;
}
static inline struct hns3_flow_counter *
hns3_counter_lookup(struct rte_eth_dev *dev, uint32_t id)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_pf *pf = &hns->pf;
struct hns3_flow_counter *cnt;
LIST_FOREACH(cnt, &pf->flow_counters, next) {
if (cnt->id == id)
return cnt;
}
return NULL;
}
static int
hns3_counter_new(struct rte_eth_dev *dev, uint32_t shared, uint32_t id,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_pf *pf = &hns->pf;
struct hns3_hw *hw = &hns->hw;
struct hns3_flow_counter *cnt;
uint64_t value;
int ret;
cnt = hns3_counter_lookup(dev, id);
if (cnt) {
if (!cnt->shared || cnt->shared != shared)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
cnt,
"Counter id is used, shared flag not match");
cnt->ref_cnt++;
return 0;
}
/* Clear the counter by read ops because the counter is read-clear */
ret = hns3_get_count(hw, id, &value);
if (ret)
return rte_flow_error_set(error, EIO,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Clear counter failed!");
cnt = rte_zmalloc("hns3 counter", sizeof(*cnt), 0);
if (cnt == NULL)
return rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_HANDLE, cnt,
"Alloc mem for counter failed");
cnt->id = id;
cnt->shared = shared;
cnt->ref_cnt = 1;
cnt->hits = 0;
LIST_INSERT_HEAD(&pf->flow_counters, cnt, next);
return 0;
}
static int
hns3_counter_query(struct rte_eth_dev *dev, struct rte_flow *flow,
struct rte_flow_query_count *qc,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_flow_counter *cnt;
uint64_t value;
int ret;
/* FDIR is available only in PF driver */
if (hns->is_vf)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Fdir is not supported in VF");
cnt = hns3_counter_lookup(dev, flow->counter_id);
if (cnt == NULL)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Can't find counter id");
ret = hns3_get_count(&hns->hw, flow->counter_id, &value);
if (ret) {
rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Read counter fail.");
return ret;
}
qc->hits_set = 1;
qc->hits = value;
return 0;
}
static int
hns3_counter_release(struct rte_eth_dev *dev, uint32_t id)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_flow_counter *cnt;
cnt = hns3_counter_lookup(dev, id);
if (cnt == NULL) {
hns3_err(hw, "Can't find available counter to release");
return -EINVAL;
}
cnt->ref_cnt--;
if (cnt->ref_cnt == 0) {
LIST_REMOVE(cnt, next);
rte_free(cnt);
}
return 0;
}
static void
hns3_counter_flush(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_pf *pf = &hns->pf;
struct hns3_flow_counter *cnt_ptr;
cnt_ptr = LIST_FIRST(&pf->flow_counters);
while (cnt_ptr) {
LIST_REMOVE(cnt_ptr, next);
rte_free(cnt_ptr);
cnt_ptr = LIST_FIRST(&pf->flow_counters);
}
}
static int
hns3_handle_action_queue(struct rte_eth_dev *dev,
const struct rte_flow_action *action,
struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
const struct rte_flow_action_queue *queue;
struct hns3_hw *hw = &hns->hw;
queue = (const struct rte_flow_action_queue *)action->conf;
if (queue->index >= hw->used_rx_queues) {
hns3_err(hw, "queue ID(%u) is greater than number of "
"available queue (%u) in driver.",
queue->index, hw->used_rx_queues);
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
action, "Invalid queue ID in PF");
}
rule->queue_id = queue->index;
rule->nb_queues = 1;
rule->action = HNS3_FD_ACTION_ACCEPT_PACKET;
return 0;
}
static int
hns3_handle_action_queue_region(struct rte_eth_dev *dev,
const struct rte_flow_action *action,
struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
const struct rte_flow_action_rss *conf = action->conf;
struct hns3_hw *hw = &hns->hw;
uint16_t idx;
if (!hns3_dev_fd_queue_region_supported(hw))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION, action,
"Not support config queue region!");
if ((!rte_is_power_of_2(conf->queue_num)) ||
conf->queue_num > hw->rss_size_max ||
conf->queue[0] >= hw->used_rx_queues ||
conf->queue[0] + conf->queue_num > hw->used_rx_queues) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, action,
"Invalid start queue ID and queue num! the start queue "
"ID must valid, the queue num must be power of 2 and "
"<= rss_size_max.");
}
for (idx = 1; idx < conf->queue_num; idx++) {
if (conf->queue[idx] != conf->queue[idx - 1] + 1)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, action,
"Invalid queue ID sequence! the queue ID "
"must be continuous increment.");
}
rule->queue_id = conf->queue[0];
rule->nb_queues = conf->queue_num;
rule->action = HNS3_FD_ACTION_ACCEPT_PACKET;
return 0;
}
/*
* Parse actions structure from the provided pattern.
* The pattern is validated as the items are copied.
*
* @param actions[in]
* @param rule[out]
* NIC specfilc actions derived from the actions.
* @param error[out]
*/
static int
hns3_handle_actions(struct rte_eth_dev *dev,
const struct rte_flow_action actions[],
struct hns3_fdir_rule *rule, struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
const struct rte_flow_action_count *act_count;
const struct rte_flow_action_mark *mark;
struct hns3_pf *pf = &hns->pf;
uint32_t counter_num;
int ret;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_QUEUE:
ret = hns3_handle_action_queue(dev, actions, rule,
error);
if (ret)
return ret;
break;
case RTE_FLOW_ACTION_TYPE_DROP:
rule->action = HNS3_FD_ACTION_DROP_PACKET;
break;
/*
* Here RSS's real action is queue region.
* Queue region is implemented by FDIR + RSS in hns3 hardware,
* the FDIR's action is one queue region (start_queue_id and
* queue_num), then RSS spread packets to the queue region by
* RSS algorigthm.
*/
case RTE_FLOW_ACTION_TYPE_RSS:
ret = hns3_handle_action_queue_region(dev, actions,
rule, error);
if (ret)
return ret;
break;
case RTE_FLOW_ACTION_TYPE_MARK:
mark =
(const struct rte_flow_action_mark *)actions->conf;
if (mark->id >= HNS3_MAX_FILTER_ID)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
actions,
"Invalid Mark ID");
rule->fd_id = mark->id;
rule->flags |= HNS3_RULE_FLAG_FDID;
break;
case RTE_FLOW_ACTION_TYPE_FLAG:
rule->fd_id = HNS3_MAX_FILTER_ID;
rule->flags |= HNS3_RULE_FLAG_FDID;
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
act_count =
(const struct rte_flow_action_count *)actions->conf;
counter_num = pf->fdir.fd_cfg.cnt_num[HNS3_FD_STAGE_1];
if (act_count->id >= counter_num)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
actions,
"Invalid counter id");
rule->act_cnt = *act_count;
rule->flags |= HNS3_RULE_FLAG_COUNTER;
break;
case RTE_FLOW_ACTION_TYPE_VOID:
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "Unsupported action");
}
}
return 0;
}
static int
hns3_check_attr(const struct rte_flow_attr *attr, struct rte_flow_error *error)
{
if (!attr->ingress)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Ingress can't be zero");
if (attr->egress)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress");
if (attr->transfer)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
attr, "No support for transfer");
if (attr->priority)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority");
if (attr->group)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
attr, "Not support group");
return 0;
}
static int
hns3_parse_eth(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error __rte_unused)
{
const struct rte_flow_item_eth *eth_spec;
const struct rte_flow_item_eth *eth_mask;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
eth_mask = item->mask;
if (eth_mask->type) {
hns3_set_bit(rule->input_set, INNER_ETH_TYPE, 1);
rule->key_conf.mask.ether_type =
rte_be_to_cpu_16(eth_mask->type);
}
if (!rte_is_zero_ether_addr(&eth_mask->src)) {
hns3_set_bit(rule->input_set, INNER_SRC_MAC, 1);
memcpy(rule->key_conf.mask.src_mac,
eth_mask->src.addr_bytes, RTE_ETHER_ADDR_LEN);
}
if (!rte_is_zero_ether_addr(&eth_mask->dst)) {
hns3_set_bit(rule->input_set, INNER_DST_MAC, 1);
memcpy(rule->key_conf.mask.dst_mac,
eth_mask->dst.addr_bytes, RTE_ETHER_ADDR_LEN);
}
}
eth_spec = item->spec;
rule->key_conf.spec.ether_type = rte_be_to_cpu_16(eth_spec->type);
memcpy(rule->key_conf.spec.src_mac, eth_spec->src.addr_bytes,
RTE_ETHER_ADDR_LEN);
memcpy(rule->key_conf.spec.dst_mac, eth_spec->dst.addr_bytes,
RTE_ETHER_ADDR_LEN);
return 0;
}
static int
hns3_parse_vlan(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_vlan *vlan_spec;
const struct rte_flow_item_vlan *vlan_mask;
rule->key_conf.vlan_num++;
if (rule->key_conf.vlan_num > VLAN_TAG_NUM_MAX)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Vlan_num is more than 2");
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
vlan_mask = item->mask;
if (vlan_mask->tci) {
if (rule->key_conf.vlan_num == 1) {
hns3_set_bit(rule->input_set, INNER_VLAN_TAG1,
1);
rule->key_conf.mask.vlan_tag1 =
rte_be_to_cpu_16(vlan_mask->tci);
} else {
hns3_set_bit(rule->input_set, INNER_VLAN_TAG2,
1);
rule->key_conf.mask.vlan_tag2 =
rte_be_to_cpu_16(vlan_mask->tci);
}
}
}
vlan_spec = item->spec;
if (rule->key_conf.vlan_num == 1)
rule->key_conf.spec.vlan_tag1 =
rte_be_to_cpu_16(vlan_spec->tci);
else
rule->key_conf.spec.vlan_tag2 =
rte_be_to_cpu_16(vlan_spec->tci);
return 0;
}
static bool
hns3_check_ipv4_mask_supported(const struct rte_flow_item_ipv4 *ipv4_mask)
{
if (ipv4_mask->hdr.total_length || ipv4_mask->hdr.packet_id ||
ipv4_mask->hdr.fragment_offset || ipv4_mask->hdr.time_to_live ||
ipv4_mask->hdr.hdr_checksum)
return false;
return true;
}
static int
hns3_parse_ipv4(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_ipv4 *ipv4_spec;
const struct rte_flow_item_ipv4 *ipv4_mask;
hns3_set_bit(rule->input_set, INNER_ETH_TYPE, 1);
rule->key_conf.spec.ether_type = RTE_ETHER_TYPE_IPV4;
rule->key_conf.mask.ether_type = ETHER_TYPE_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
ipv4_mask = item->mask;
if (!hns3_check_ipv4_mask_supported(ipv4_mask)) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
item,
"Only support src & dst ip,tos,proto in IPV4");
}
if (ipv4_mask->hdr.src_addr) {
hns3_set_bit(rule->input_set, INNER_SRC_IP, 1);
rule->key_conf.mask.src_ip[IP_ADDR_KEY_ID] =
rte_be_to_cpu_32(ipv4_mask->hdr.src_addr);
}
if (ipv4_mask->hdr.dst_addr) {
hns3_set_bit(rule->input_set, INNER_DST_IP, 1);
rule->key_conf.mask.dst_ip[IP_ADDR_KEY_ID] =
rte_be_to_cpu_32(ipv4_mask->hdr.dst_addr);
}
if (ipv4_mask->hdr.type_of_service) {
hns3_set_bit(rule->input_set, INNER_IP_TOS, 1);
rule->key_conf.mask.ip_tos =
ipv4_mask->hdr.type_of_service;
}
if (ipv4_mask->hdr.next_proto_id) {
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 1);
rule->key_conf.mask.ip_proto =
ipv4_mask->hdr.next_proto_id;
}
}
ipv4_spec = item->spec;
rule->key_conf.spec.src_ip[IP_ADDR_KEY_ID] =
rte_be_to_cpu_32(ipv4_spec->hdr.src_addr);
rule->key_conf.spec.dst_ip[IP_ADDR_KEY_ID] =
rte_be_to_cpu_32(ipv4_spec->hdr.dst_addr);
rule->key_conf.spec.ip_tos = ipv4_spec->hdr.type_of_service;
rule->key_conf.spec.ip_proto = ipv4_spec->hdr.next_proto_id;
return 0;
}
static int
hns3_parse_ipv6(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_ipv6 *ipv6_spec;
const struct rte_flow_item_ipv6 *ipv6_mask;
hns3_set_bit(rule->input_set, INNER_ETH_TYPE, 1);
rule->key_conf.spec.ether_type = RTE_ETHER_TYPE_IPV6;
rule->key_conf.mask.ether_type = ETHER_TYPE_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
ipv6_mask = item->mask;
if (ipv6_mask->hdr.vtc_flow || ipv6_mask->hdr.payload_len ||
ipv6_mask->hdr.hop_limits) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
item,
"Only support src & dst ip,proto in IPV6");
}
net_addr_to_host(rule->key_conf.mask.src_ip,
(const rte_be32_t *)ipv6_mask->hdr.src_addr,
IP_ADDR_LEN);
net_addr_to_host(rule->key_conf.mask.dst_ip,
(const rte_be32_t *)ipv6_mask->hdr.dst_addr,
IP_ADDR_LEN);
rule->key_conf.mask.ip_proto = ipv6_mask->hdr.proto;
if (rule->key_conf.mask.src_ip[IP_ADDR_KEY_ID])
hns3_set_bit(rule->input_set, INNER_SRC_IP, 1);
if (rule->key_conf.mask.dst_ip[IP_ADDR_KEY_ID])
hns3_set_bit(rule->input_set, INNER_DST_IP, 1);
if (ipv6_mask->hdr.proto)
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 1);
}
ipv6_spec = item->spec;
net_addr_to_host(rule->key_conf.spec.src_ip,
(const rte_be32_t *)ipv6_spec->hdr.src_addr,
IP_ADDR_LEN);
net_addr_to_host(rule->key_conf.spec.dst_ip,
(const rte_be32_t *)ipv6_spec->hdr.dst_addr,
IP_ADDR_LEN);
rule->key_conf.spec.ip_proto = ipv6_spec->hdr.proto;
return 0;
}
static bool
hns3_check_tcp_mask_supported(const struct rte_flow_item_tcp *tcp_mask)
{
if (tcp_mask->hdr.sent_seq || tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off || tcp_mask->hdr.tcp_flags ||
tcp_mask->hdr.rx_win || tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp)
return false;
return true;
}
static int
hns3_parse_tcp(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_tcp *tcp_spec;
const struct rte_flow_item_tcp *tcp_mask;
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 1);
rule->key_conf.spec.ip_proto = IPPROTO_TCP;
rule->key_conf.mask.ip_proto = IPPROTO_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
tcp_mask = item->mask;
if (!hns3_check_tcp_mask_supported(tcp_mask)) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
item,
"Only support src & dst port in TCP");
}
if (tcp_mask->hdr.src_port) {
hns3_set_bit(rule->input_set, INNER_SRC_PORT, 1);
rule->key_conf.mask.src_port =
rte_be_to_cpu_16(tcp_mask->hdr.src_port);
}
if (tcp_mask->hdr.dst_port) {
hns3_set_bit(rule->input_set, INNER_DST_PORT, 1);
rule->key_conf.mask.dst_port =
rte_be_to_cpu_16(tcp_mask->hdr.dst_port);
}
}
tcp_spec = item->spec;
rule->key_conf.spec.src_port = rte_be_to_cpu_16(tcp_spec->hdr.src_port);
rule->key_conf.spec.dst_port = rte_be_to_cpu_16(tcp_spec->hdr.dst_port);
return 0;
}
static int
hns3_parse_udp(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_udp *udp_spec;
const struct rte_flow_item_udp *udp_mask;
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 1);
rule->key_conf.spec.ip_proto = IPPROTO_UDP;
rule->key_conf.mask.ip_proto = IPPROTO_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
udp_mask = item->mask;
if (udp_mask->hdr.dgram_len || udp_mask->hdr.dgram_cksum) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
item,
"Only support src & dst port in UDP");
}
if (udp_mask->hdr.src_port) {
hns3_set_bit(rule->input_set, INNER_SRC_PORT, 1);
rule->key_conf.mask.src_port =
rte_be_to_cpu_16(udp_mask->hdr.src_port);
}
if (udp_mask->hdr.dst_port) {
hns3_set_bit(rule->input_set, INNER_DST_PORT, 1);
rule->key_conf.mask.dst_port =
rte_be_to_cpu_16(udp_mask->hdr.dst_port);
}
}
udp_spec = item->spec;
rule->key_conf.spec.src_port = rte_be_to_cpu_16(udp_spec->hdr.src_port);
rule->key_conf.spec.dst_port = rte_be_to_cpu_16(udp_spec->hdr.dst_port);
return 0;
}
static int
hns3_parse_sctp(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_sctp *sctp_spec;
const struct rte_flow_item_sctp *sctp_mask;
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 1);
rule->key_conf.spec.ip_proto = IPPROTO_SCTP;
rule->key_conf.mask.ip_proto = IPPROTO_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
if (item->mask) {
sctp_mask = item->mask;
if (sctp_mask->hdr.cksum)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK,
item,
"Only support src & dst port in SCTP");
if (sctp_mask->hdr.src_port) {
hns3_set_bit(rule->input_set, INNER_SRC_PORT, 1);
rule->key_conf.mask.src_port =
rte_be_to_cpu_16(sctp_mask->hdr.src_port);
}
if (sctp_mask->hdr.dst_port) {
hns3_set_bit(rule->input_set, INNER_DST_PORT, 1);
rule->key_conf.mask.dst_port =
rte_be_to_cpu_16(sctp_mask->hdr.dst_port);
}
if (sctp_mask->hdr.tag) {
hns3_set_bit(rule->input_set, INNER_SCTP_TAG, 1);
rule->key_conf.mask.sctp_tag =
rte_be_to_cpu_32(sctp_mask->hdr.tag);
}
}
sctp_spec = item->spec;
rule->key_conf.spec.src_port =
rte_be_to_cpu_16(sctp_spec->hdr.src_port);
rule->key_conf.spec.dst_port =
rte_be_to_cpu_16(sctp_spec->hdr.dst_port);
rule->key_conf.spec.sctp_tag = rte_be_to_cpu_32(sctp_spec->hdr.tag);
return 0;
}
/*
* Check items before tunnel, save inner configs to outer configs, and clear
* inner configs.
* The key consists of two parts: meta_data and tuple keys.
* Meta data uses 15 bits, including vlan_num(2bit), des_port(12bit) and tunnel
* packet(1bit).
* Tuple keys uses 384bit, including ot_dst-mac(48bit), ot_dst-port(16bit),
* ot_tun_vni(24bit), ot_flow_id(8bit), src-mac(48bit), dst-mac(48bit),
* src-ip(32/128bit), dst-ip(32/128bit), src-port(16bit), dst-port(16bit),
* tos(8bit), ether-proto(16bit), ip-proto(8bit), vlantag1(16bit),
* Vlantag2(16bit) and sctp-tag(32bit).
*/
static int
hns3_handle_tunnel(const struct rte_flow_item *item,
struct hns3_fdir_rule *rule, struct rte_flow_error *error)
{
/* check eth config */
if (rule->input_set & (BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC)))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Outer eth mac is unsupported");
if (rule->input_set & BIT(INNER_ETH_TYPE)) {
hns3_set_bit(rule->input_set, OUTER_ETH_TYPE, 1);
rule->key_conf.spec.outer_ether_type =
rule->key_conf.spec.ether_type;
rule->key_conf.mask.outer_ether_type =
rule->key_conf.mask.ether_type;
hns3_set_bit(rule->input_set, INNER_ETH_TYPE, 0);
rule->key_conf.spec.ether_type = 0;
rule->key_conf.mask.ether_type = 0;
}
/* check vlan config */
if (rule->input_set & (BIT(INNER_VLAN_TAG1) | BIT(INNER_VLAN_TAG2)))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Outer vlan tags is unsupported");
/* clear vlan_num for inner vlan select */
rule->key_conf.outer_vlan_num = rule->key_conf.vlan_num;
rule->key_conf.vlan_num = 0;
/* check L3 config */
if (rule->input_set &
(BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) | BIT(INNER_IP_TOS)))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Outer ip is unsupported");
if (rule->input_set & BIT(INNER_IP_PROTO)) {
hns3_set_bit(rule->input_set, OUTER_IP_PROTO, 1);
rule->key_conf.spec.outer_proto = rule->key_conf.spec.ip_proto;
rule->key_conf.mask.outer_proto = rule->key_conf.mask.ip_proto;
hns3_set_bit(rule->input_set, INNER_IP_PROTO, 0);
rule->key_conf.spec.ip_proto = 0;
rule->key_conf.mask.ip_proto = 0;
}
/* check L4 config */
if (rule->input_set & BIT(INNER_SCTP_TAG))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Outer sctp tag is unsupported");
if (rule->input_set & BIT(INNER_SRC_PORT)) {
hns3_set_bit(rule->input_set, OUTER_SRC_PORT, 1);
rule->key_conf.spec.outer_src_port =
rule->key_conf.spec.src_port;
rule->key_conf.mask.outer_src_port =
rule->key_conf.mask.src_port;
hns3_set_bit(rule->input_set, INNER_SRC_PORT, 0);
rule->key_conf.spec.src_port = 0;
rule->key_conf.mask.src_port = 0;
}
if (rule->input_set & BIT(INNER_DST_PORT)) {
hns3_set_bit(rule->input_set, INNER_DST_PORT, 0);
rule->key_conf.spec.dst_port = 0;
rule->key_conf.mask.dst_port = 0;
}
return 0;
}
static int
hns3_parse_vxlan(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_vxlan *vxlan_spec;
const struct rte_flow_item_vxlan *vxlan_mask;
hns3_set_bit(rule->input_set, OUTER_DST_PORT, 1);
rule->key_conf.mask.tunnel_type = TUNNEL_TYPE_MASK;
if (item->type == RTE_FLOW_ITEM_TYPE_VXLAN)
rule->key_conf.spec.tunnel_type = HNS3_TUNNEL_TYPE_VXLAN;
else
rule->key_conf.spec.tunnel_type = HNS3_TUNNEL_TYPE_VXLAN_GPE;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
vxlan_mask = item->mask;
vxlan_spec = item->spec;
if (vxlan_mask->flags)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"Flags is not supported in VxLAN");
/* VNI must be totally masked or not. */
if (memcmp(vxlan_mask->vni, full_mask, VNI_OR_TNI_LEN) &&
memcmp(vxlan_mask->vni, zero_mask, VNI_OR_TNI_LEN))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"VNI must be totally masked or not in VxLAN");
if (vxlan_mask->vni[0]) {
hns3_set_bit(rule->input_set, OUTER_TUN_VNI, 1);
memcpy(rule->key_conf.mask.outer_tun_vni, vxlan_mask->vni,
VNI_OR_TNI_LEN);
}
memcpy(rule->key_conf.spec.outer_tun_vni, vxlan_spec->vni,
VNI_OR_TNI_LEN);
return 0;
}
static int
hns3_parse_nvgre(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_nvgre *nvgre_spec;
const struct rte_flow_item_nvgre *nvgre_mask;
hns3_set_bit(rule->input_set, OUTER_IP_PROTO, 1);
rule->key_conf.spec.outer_proto = IPPROTO_GRE;
rule->key_conf.mask.outer_proto = IPPROTO_MASK;
hns3_set_bit(rule->input_set, OUTER_DST_PORT, 1);
rule->key_conf.spec.tunnel_type = HNS3_TUNNEL_TYPE_NVGRE;
rule->key_conf.mask.tunnel_type = ~HNS3_TUNNEL_TYPE_NVGRE;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
nvgre_mask = item->mask;
nvgre_spec = item->spec;
if (nvgre_mask->protocol || nvgre_mask->c_k_s_rsvd0_ver)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"Ver/protocal is not supported in NVGRE");
/* TNI must be totally masked or not. */
if (memcmp(nvgre_mask->tni, full_mask, VNI_OR_TNI_LEN) &&
memcmp(nvgre_mask->tni, zero_mask, VNI_OR_TNI_LEN))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"TNI must be totally masked or not in NVGRE");
if (nvgre_mask->tni[0]) {
hns3_set_bit(rule->input_set, OUTER_TUN_VNI, 1);
memcpy(rule->key_conf.mask.outer_tun_vni, nvgre_mask->tni,
VNI_OR_TNI_LEN);
}
memcpy(rule->key_conf.spec.outer_tun_vni, nvgre_spec->tni,
VNI_OR_TNI_LEN);
if (nvgre_mask->flow_id) {
hns3_set_bit(rule->input_set, OUTER_TUN_FLOW_ID, 1);
rule->key_conf.mask.outer_tun_flow_id = nvgre_mask->flow_id;
}
rule->key_conf.spec.outer_tun_flow_id = nvgre_spec->flow_id;
return 0;
}
static int
hns3_parse_geneve(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
const struct rte_flow_item_geneve *geneve_spec;
const struct rte_flow_item_geneve *geneve_mask;
hns3_set_bit(rule->input_set, OUTER_DST_PORT, 1);
rule->key_conf.spec.tunnel_type = HNS3_TUNNEL_TYPE_GENEVE;
rule->key_conf.mask.tunnel_type = TUNNEL_TYPE_MASK;
/* Only used to describe the protocol stack. */
if (item->spec == NULL && item->mask == NULL)
return 0;
geneve_mask = item->mask;
geneve_spec = item->spec;
if (geneve_mask->ver_opt_len_o_c_rsvd0 || geneve_mask->protocol)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"Ver/protocal is not supported in GENEVE");
/* VNI must be totally masked or not. */
if (memcmp(geneve_mask->vni, full_mask, VNI_OR_TNI_LEN) &&
memcmp(geneve_mask->vni, zero_mask, VNI_OR_TNI_LEN))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_MASK, item,
"VNI must be totally masked or not in GENEVE");
if (geneve_mask->vni[0]) {
hns3_set_bit(rule->input_set, OUTER_TUN_VNI, 1);
memcpy(rule->key_conf.mask.outer_tun_vni, geneve_mask->vni,
VNI_OR_TNI_LEN);
}
memcpy(rule->key_conf.spec.outer_tun_vni, geneve_spec->vni,
VNI_OR_TNI_LEN);
return 0;
}
static int
hns3_parse_tunnel(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
int ret;
if (item->spec == NULL && item->mask)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't configure FDIR with mask "
"but without spec");
else if (item->spec && (item->mask == NULL))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Tunnel packets must configure "
"with mask");
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_VXLAN:
case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
ret = hns3_parse_vxlan(item, rule, error);
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
ret = hns3_parse_nvgre(item, rule, error);
break;
case RTE_FLOW_ITEM_TYPE_GENEVE:
ret = hns3_parse_geneve(item, rule, error);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Unsupported tunnel type!");
}
if (ret)
return ret;
return hns3_handle_tunnel(item, rule, error);
}
static int
hns3_parse_normal(const struct rte_flow_item *item, struct hns3_fdir_rule *rule,
struct items_step_mngr *step_mngr,
struct rte_flow_error *error)
{
int ret;
if (item->spec == NULL && item->mask)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Can't configure FDIR with mask "
"but without spec");
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
ret = hns3_parse_eth(item, rule, error);
step_mngr->items = L2_next_items;
step_mngr->count = ARRAY_SIZE(L2_next_items);
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
ret = hns3_parse_vlan(item, rule, error);
step_mngr->items = L2_next_items;
step_mngr->count = ARRAY_SIZE(L2_next_items);
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ret = hns3_parse_ipv4(item, rule, error);
step_mngr->items = L3_next_items;
step_mngr->count = ARRAY_SIZE(L3_next_items);
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ret = hns3_parse_ipv6(item, rule, error);
step_mngr->items = L3_next_items;
step_mngr->count = ARRAY_SIZE(L3_next_items);
break;
case RTE_FLOW_ITEM_TYPE_TCP:
ret = hns3_parse_tcp(item, rule, error);
step_mngr->items = L4_next_items;
step_mngr->count = ARRAY_SIZE(L4_next_items);
break;
case RTE_FLOW_ITEM_TYPE_UDP:
ret = hns3_parse_udp(item, rule, error);
step_mngr->items = L4_next_items;
step_mngr->count = ARRAY_SIZE(L4_next_items);
break;
case RTE_FLOW_ITEM_TYPE_SCTP:
ret = hns3_parse_sctp(item, rule, error);
step_mngr->items = L4_next_items;
step_mngr->count = ARRAY_SIZE(L4_next_items);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "Unsupported normal type!");
}
return ret;
}
static int
hns3_validate_item(const struct rte_flow_item *item,
struct items_step_mngr step_mngr,
struct rte_flow_error *error)
{
int i;
if (item->last)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM_LAST, item,
"Not supported last point for range");
for (i = 0; i < step_mngr.count; i++) {
if (item->type == step_mngr.items[i])
break;
}
if (i == step_mngr.count) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Inval or missing item");
}
return 0;
}
static inline bool
is_tunnel_packet(enum rte_flow_item_type type)
{
if (type == RTE_FLOW_ITEM_TYPE_VXLAN_GPE ||
type == RTE_FLOW_ITEM_TYPE_VXLAN ||
type == RTE_FLOW_ITEM_TYPE_NVGRE ||
type == RTE_FLOW_ITEM_TYPE_GENEVE)
return true;
return false;
}
/*
* Parse the rule to see if it is a IP or MAC VLAN flow director rule.
* And get the flow director filter info BTW.
* UDP/TCP/SCTP PATTERN:
* The first not void item can be ETH or IPV4 or IPV6
* The second not void item must be IPV4 or IPV6 if the first one is ETH.
* The next not void item could be UDP or TCP or SCTP (optional)
* The next not void item could be RAW (for flexbyte, optional)
* The next not void item must be END.
* A Fuzzy Match pattern can appear at any place before END.
* Fuzzy Match is optional for IPV4 but is required for IPV6
* MAC VLAN PATTERN:
* The first not void item must be ETH.
* The second not void item must be MAC VLAN.
* The next not void item must be END.
* ACTION:
* The first not void action should be QUEUE or DROP.
* The second not void optional action should be MARK,
* mark_id is a uint32_t number.
* The next not void action should be END.
* UDP/TCP/SCTP pattern example:
* ITEM Spec Mask
* ETH NULL NULL
* IPV4 src_addr 192.168.1.20 0xFFFFFFFF
* dst_addr 192.167.3.50 0xFFFFFFFF
* UDP/TCP/SCTP src_port 80 0xFFFF
* dst_port 80 0xFFFF
* END
* MAC VLAN pattern example:
* ITEM Spec Mask
* ETH dst_addr
{0xAC, 0x7B, 0xA1, {0xFF, 0xFF, 0xFF,
0x2C, 0x6D, 0x36} 0xFF, 0xFF, 0xFF}
* MAC VLAN tci 0x2016 0xEFFF
* END
* Other members in mask and spec should set to 0x00.
* Item->last should be NULL.
*/
static int
hns3_parse_fdir_filter(struct rte_eth_dev *dev,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct hns3_fdir_rule *rule,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
const struct rte_flow_item *item;
struct items_step_mngr step_mngr;
int ret;
/* FDIR is available only in PF driver */
if (hns->is_vf)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Fdir not supported in VF");
step_mngr.items = first_items;
step_mngr.count = ARRAY_SIZE(first_items);
for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (item->type == RTE_FLOW_ITEM_TYPE_VOID)
continue;
ret = hns3_validate_item(item, step_mngr, error);
if (ret)
return ret;
if (is_tunnel_packet(item->type)) {
ret = hns3_parse_tunnel(item, rule, error);
if (ret)
return ret;
step_mngr.items = tunnel_next_items;
step_mngr.count = ARRAY_SIZE(tunnel_next_items);
} else {
ret = hns3_parse_normal(item, rule, &step_mngr, error);
if (ret)
return ret;
}
}
return hns3_handle_actions(dev, actions, rule, error);
}
void
hns3_filterlist_init(struct rte_eth_dev *dev)
{
struct hns3_process_private *process_list = dev->process_private;
TAILQ_INIT(&process_list->fdir_list);
TAILQ_INIT(&process_list->filter_rss_list);
TAILQ_INIT(&process_list->flow_list);
}
static void
hns3_filterlist_flush(struct rte_eth_dev *dev)
{
struct hns3_process_private *process_list = dev->process_private;
struct hns3_fdir_rule_ele *fdir_rule_ptr;
struct hns3_rss_conf_ele *rss_filter_ptr;
struct hns3_flow_mem *flow_node;
fdir_rule_ptr = TAILQ_FIRST(&process_list->fdir_list);
while (fdir_rule_ptr) {
TAILQ_REMOVE(&process_list->fdir_list, fdir_rule_ptr, entries);
rte_free(fdir_rule_ptr);
fdir_rule_ptr = TAILQ_FIRST(&process_list->fdir_list);
}
rss_filter_ptr = TAILQ_FIRST(&process_list->filter_rss_list);
while (rss_filter_ptr) {
TAILQ_REMOVE(&process_list->filter_rss_list, rss_filter_ptr,
entries);
rte_free(rss_filter_ptr);
rss_filter_ptr = TAILQ_FIRST(&process_list->filter_rss_list);
}
flow_node = TAILQ_FIRST(&process_list->flow_list);
while (flow_node) {
TAILQ_REMOVE(&process_list->flow_list, flow_node, entries);
rte_free(flow_node->flow);
rte_free(flow_node);
flow_node = TAILQ_FIRST(&process_list->flow_list);
}
}
static bool
hns3_action_rss_same(const struct rte_flow_action_rss *comp,
const struct rte_flow_action_rss *with)
{
bool func_is_same;
/*
* When user flush all RSS rule, RSS func is set invalid with
* RTE_ETH_HASH_FUNCTION_MAX. Then the user create a flow after
* flushed, any validate RSS func is different with it before
* flushed. Others, when user create an action RSS with RSS func
* specified RTE_ETH_HASH_FUNCTION_DEFAULT, the func is the same
* between continuous RSS flow.
*/
if (comp->func == RTE_ETH_HASH_FUNCTION_MAX)
func_is_same = false;
else
func_is_same = with->func ? (comp->func == with->func) : true;
return (func_is_same &&
comp->types == (with->types & HNS3_ETH_RSS_SUPPORT) &&
comp->level == with->level && comp->key_len == with->key_len &&
comp->queue_num == with->queue_num &&
!memcmp(comp->key, with->key, with->key_len) &&
!memcmp(comp->queue, with->queue,
sizeof(*with->queue) * with->queue_num));
}
static int
hns3_rss_conf_copy(struct hns3_rss_conf *out,
const struct rte_flow_action_rss *in)
{
if (in->key_len > RTE_DIM(out->key) ||
in->queue_num > RTE_DIM(out->queue))
return -EINVAL;
if (in->key == NULL && in->key_len)
return -EINVAL;
out->conf = (struct rte_flow_action_rss) {
.func = in->func,
.level = in->level,
.types = in->types,
.key_len = in->key_len,
.queue_num = in->queue_num,
};
out->conf.queue = memcpy(out->queue, in->queue,
sizeof(*in->queue) * in->queue_num);
if (in->key)
out->conf.key = memcpy(out->key, in->key, in->key_len);
return 0;
}
static bool
hns3_rss_input_tuple_supported(struct hns3_hw *hw,
const struct rte_flow_action_rss *rss)
{
/*
* For IP packet, it is not supported to use src/dst port fields to RSS
* hash for the following packet types.
* - IPV4 FRAG | IPV4 NONFRAG | IPV6 FRAG | IPV6 NONFRAG
* Besides, for Kunpeng920, the NIC HW is not supported to use src/dst
* port fields to RSS hash for IPV6 SCTP packet type. However, the
* Kunpeng930 and future kunpeng series support to use src/dst port
* fields to RSS hash for IPv6 SCTP packet type.
*/
if (rss->types & (ETH_RSS_L4_DST_ONLY | ETH_RSS_L4_SRC_ONLY) &&
(rss->types & ETH_RSS_IP ||
(!hw->rss_info.ipv6_sctp_offload_supported &&
rss->types & ETH_RSS_NONFRAG_IPV6_SCTP)))
return false;
return true;
}
/*
* This function is used to parse rss action validatation.
*/
static int
hns3_parse_rss_filter(struct rte_eth_dev *dev,
const struct rte_flow_action *actions,
struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_rss_conf *rss_conf = &hw->rss_info;
const struct rte_flow_action_rss *rss;
const struct rte_flow_action *act;
uint32_t act_index = 0;
uint16_t n;
NEXT_ITEM_OF_ACTION(act, actions, act_index);
rss = act->conf;
if (rss == NULL) {
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
act, "no valid queues");
}
if (rss->queue_num > RTE_DIM(rss_conf->queue))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, act,
"queue number configured exceeds "
"queue buffer size driver supported");
for (n = 0; n < rss->queue_num; n++) {
if (rss->queue[n] < hw->alloc_rss_size)
continue;
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, act,
"queue id must be less than queue number allocated to a TC");
}
if (!(rss->types & HNS3_ETH_RSS_SUPPORT) && rss->types)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
act,
"Flow types is unsupported by "
"hns3's RSS");
if (rss->func >= RTE_ETH_HASH_FUNCTION_MAX)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, act,
"RSS hash func are not supported");
if (rss->level)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, act,
"a nonzero RSS encapsulation level is not supported");
if (rss->key_len && rss->key_len != RTE_DIM(rss_conf->key))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION_CONF, act,
"RSS hash key must be exactly 40 bytes");
if (!hns3_rss_input_tuple_supported(hw, rss))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_CONF,
&rss->types,
"input RSS types are not supported");
act_index++;
/* Check if the next not void action is END */
NEXT_ITEM_OF_ACTION(act, actions, act_index);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(rss_conf, 0, sizeof(struct hns3_rss_conf));
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Not supported action.");
}
return 0;
}
static int
hns3_disable_rss(struct hns3_hw *hw)
{
int ret;
/* Redirected the redirection table to queue 0 */
ret = hns3_rss_reset_indir_table(hw);
if (ret)
return ret;
/* Disable RSS */
hw->rss_info.conf.types = 0;
hw->rss_dis_flag = true;
return 0;
}
static void
hns3_parse_rss_key(struct hns3_hw *hw, struct rte_flow_action_rss *rss_conf)
{
if (rss_conf->key == NULL || rss_conf->key_len < HNS3_RSS_KEY_SIZE) {
hns3_warn(hw, "Default RSS hash key to be set");
rss_conf->key = hns3_hash_key;
rss_conf->key_len = HNS3_RSS_KEY_SIZE;
}
}
static int
hns3_parse_rss_algorithm(struct hns3_hw *hw, enum rte_eth_hash_function *func,
uint8_t *hash_algo)
{
enum rte_eth_hash_function algo_func = *func;
switch (algo_func) {
case RTE_ETH_HASH_FUNCTION_DEFAULT:
/* Keep *hash_algo as what it used to be */
algo_func = hw->rss_info.conf.func;
break;
case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
*hash_algo = HNS3_RSS_HASH_ALGO_TOEPLITZ;
break;
case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR:
*hash_algo = HNS3_RSS_HASH_ALGO_SIMPLE;
break;
case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ:
*hash_algo = HNS3_RSS_HASH_ALGO_SYMMETRIC_TOEP;
break;
default:
hns3_err(hw, "Invalid RSS algorithm configuration(%d)",
algo_func);
return -EINVAL;
}
*func = algo_func;
return 0;
}
static int
hns3_hw_rss_hash_set(struct hns3_hw *hw, struct rte_flow_action_rss *rss_config)
{
struct hns3_rss_tuple_cfg *tuple;
int ret;
hns3_parse_rss_key(hw, rss_config);
ret = hns3_parse_rss_algorithm(hw, &rss_config->func,
&hw->rss_info.hash_algo);
if (ret)
return ret;
ret = hns3_rss_set_algo_key(hw, rss_config->key);
if (ret)
return ret;
hw->rss_info.conf.func = rss_config->func;
tuple = &hw->rss_info.rss_tuple_sets;
ret = hns3_set_rss_tuple_by_rss_hf(hw, tuple, rss_config->types);
if (ret)
hns3_err(hw, "Update RSS tuples by rss hf failed %d", ret);
return ret;
}
static int
hns3_update_indir_table(struct rte_eth_dev *dev,
const struct rte_flow_action_rss *conf, uint16_t num)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint16_t indir_tbl[HNS3_RSS_IND_TBL_SIZE_MAX];
uint16_t j;
uint32_t i;
/* Fill in redirection table */
memcpy(indir_tbl, hw->rss_info.rss_indirection_tbl,
sizeof(hw->rss_info.rss_indirection_tbl));
for (i = 0, j = 0; i < hw->rss_ind_tbl_size; i++, j++) {
j %= num;
if (conf->queue[j] >= hw->alloc_rss_size) {
hns3_err(hw, "queue id(%u) set to redirection table "
"exceeds queue number(%u) allocated to a TC.",
conf->queue[j], hw->alloc_rss_size);
return -EINVAL;
}
indir_tbl[i] = conf->queue[j];
}
return hns3_set_rss_indir_table(hw, indir_tbl, hw->rss_ind_tbl_size);
}
static int
hns3_config_rss_filter(struct rte_eth_dev *dev,
const struct hns3_rss_conf *conf, bool add)
{
struct hns3_process_private *process_list = dev->process_private;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_rss_conf_ele *rss_filter_ptr;
struct hns3_hw *hw = &hns->hw;
struct hns3_rss_conf *rss_info;
uint64_t flow_types;
uint16_t num;
int ret;
struct rte_flow_action_rss rss_flow_conf = {
.func = conf->conf.func,
.level = conf->conf.level,
.types = conf->conf.types,
.key_len = conf->conf.key_len,
.queue_num = conf->conf.queue_num,
.key = conf->conf.key_len ?
(void *)(uintptr_t)conf->conf.key : NULL,
.queue = conf->conf.queue,
};
/* Filter the unsupported flow types */
flow_types = conf->conf.types ?
rss_flow_conf.types & HNS3_ETH_RSS_SUPPORT :
hw->rss_info.conf.types;
if (flow_types != rss_flow_conf.types)
hns3_warn(hw, "modified RSS types based on hardware support, "
"requested:%" PRIx64 " configured:%" PRIx64,
rss_flow_conf.types, flow_types);
/* Update the useful flow types */
rss_flow_conf.types = flow_types;
rss_info = &hw->rss_info;
if (!add) {
if (!conf->valid)
return 0;
ret = hns3_disable_rss(hw);
if (ret) {
hns3_err(hw, "RSS disable failed(%d)", ret);
return ret;
}
if (rss_flow_conf.queue_num) {
/*
* Due the content of queue pointer have been reset to
* 0, the rss_info->conf.queue should be set to NULL
*/
rss_info->conf.queue = NULL;
rss_info->conf.queue_num = 0;
}
/* set RSS func invalid after flushed */
rss_info->conf.func = RTE_ETH_HASH_FUNCTION_MAX;
return 0;
}
/* Set rx queues to use */
num = RTE_MIN(dev->data->nb_rx_queues, rss_flow_conf.queue_num);
if (rss_flow_conf.queue_num > num)
hns3_warn(hw, "Config queue numbers %u are beyond the scope of truncated",
rss_flow_conf.queue_num);
hns3_info(hw, "Max of contiguous %u PF queues are configured", num);
rte_spinlock_lock(&hw->lock);
if (num) {
ret = hns3_update_indir_table(dev, &rss_flow_conf, num);
if (ret)
goto rss_config_err;
}
/* Set hash algorithm and flow types by the user's config */
ret = hns3_hw_rss_hash_set(hw, &rss_flow_conf);
if (ret)
goto rss_config_err;
ret = hns3_rss_conf_copy(rss_info, &rss_flow_conf);
if (ret) {
hns3_err(hw, "RSS config init fail(%d)", ret);
goto rss_config_err;
}
/*
* When create a new RSS rule, the old rule will be overlaid and set
* invalid.
*/
TAILQ_FOREACH(rss_filter_ptr, &process_list->filter_rss_list, entries)
rss_filter_ptr->filter_info.valid = false;
rss_config_err:
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3_clear_rss_filter(struct rte_eth_dev *dev)
{
struct hns3_process_private *process_list = dev->process_private;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_rss_conf_ele *rss_filter_ptr;
struct hns3_hw *hw = &hns->hw;
int rss_rule_succ_cnt = 0; /* count for success of clearing RSS rules */
int rss_rule_fail_cnt = 0; /* count for failure of clearing RSS rules */
int ret = 0;
rss_filter_ptr = TAILQ_FIRST(&process_list->filter_rss_list);
while (rss_filter_ptr) {
TAILQ_REMOVE(&process_list->filter_rss_list, rss_filter_ptr,
entries);
ret = hns3_config_rss_filter(dev, &rss_filter_ptr->filter_info,
false);
if (ret)
rss_rule_fail_cnt++;
else
rss_rule_succ_cnt++;
rte_free(rss_filter_ptr);
rss_filter_ptr = TAILQ_FIRST(&process_list->filter_rss_list);
}
if (rss_rule_fail_cnt) {
hns3_err(hw, "fail to delete all RSS filters, success num = %d "
"fail num = %d", rss_rule_succ_cnt,
rss_rule_fail_cnt);
ret = -EIO;
}
return ret;
}
int
hns3_restore_rss_filter(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
/* When user flush all rules, it doesn't need to restore RSS rule */
if (hw->rss_info.conf.func == RTE_ETH_HASH_FUNCTION_MAX)
return 0;
return hns3_config_rss_filter(dev, &hw->rss_info, true);
}
static int
hns3_flow_parse_rss(struct rte_eth_dev *dev,
const struct hns3_rss_conf *conf, bool add)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
bool ret;
ret = hns3_action_rss_same(&hw->rss_info.conf, &conf->conf);
if (ret) {
hns3_err(hw, "Enter duplicate RSS configuration : %d", ret);
return -EINVAL;
}
return hns3_config_rss_filter(dev, conf, add);
}
static int
hns3_flow_args_check(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
if (pattern == NULL)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
if (actions == NULL)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
if (attr == NULL)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return hns3_check_attr(attr, error);
}
/*
* Check if the flow rule is supported by hns3.
* It only checkes the format. Don't guarantee the rule can be programmed into
* the HW. Because there can be no enough room for the rule.
*/
static int
hns3_flow_validate(struct rte_eth_dev *dev, const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct hns3_fdir_rule fdir_rule;
int ret;
ret = hns3_flow_args_check(attr, pattern, actions, error);
if (ret)
return ret;
if (hns3_find_rss_general_action(pattern, actions))
return hns3_parse_rss_filter(dev, actions, error);
memset(&fdir_rule, 0, sizeof(struct hns3_fdir_rule));
return hns3_parse_fdir_filter(dev, pattern, actions, &fdir_rule, error);
}
/*
* Create or destroy a flow rule.
* Theorically one rule can match more than one filters.
* We will let it use the filter which it hit first.
* So, the sequence matters.
*/
static struct rte_flow *
hns3_flow_create(struct rte_eth_dev *dev, const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct hns3_process_private *process_list = dev->process_private;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
const struct hns3_rss_conf *rss_conf;
struct hns3_fdir_rule_ele *fdir_rule_ptr;
struct hns3_rss_conf_ele *rss_filter_ptr;
struct hns3_flow_mem *flow_node;
const struct rte_flow_action *act;
struct rte_flow *flow;
struct hns3_fdir_rule fdir_rule;
int ret;
ret = hns3_flow_validate(dev, attr, pattern, actions, error);
if (ret)
return NULL;
flow = rte_zmalloc("hns3 flow", sizeof(struct rte_flow), 0);
if (flow == NULL) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to allocate flow memory");
return NULL;
}
flow_node = rte_zmalloc("hns3 flow node",
sizeof(struct hns3_flow_mem), 0);
if (flow_node == NULL) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to allocate flow list memory");
rte_free(flow);
return NULL;
}
flow_node->flow = flow;
TAILQ_INSERT_TAIL(&process_list->flow_list, flow_node, entries);
act = hns3_find_rss_general_action(pattern, actions);
if (act) {
rss_conf = act->conf;
ret = hns3_flow_parse_rss(dev, rss_conf, true);
if (ret)
goto err;
rss_filter_ptr = rte_zmalloc("hns3 rss filter",
sizeof(struct hns3_rss_conf_ele),
0);
if (rss_filter_ptr == NULL) {
hns3_err(hw,
"Failed to allocate hns3_rss_filter memory");
ret = -ENOMEM;
goto err;
}
hns3_rss_conf_copy(&rss_filter_ptr->filter_info,
&rss_conf->conf);
rss_filter_ptr->filter_info.valid = true;
TAILQ_INSERT_TAIL(&process_list->filter_rss_list,
rss_filter_ptr, entries);
flow->rule = rss_filter_ptr;
flow->filter_type = RTE_ETH_FILTER_HASH;
return flow;
}
memset(&fdir_rule, 0, sizeof(struct hns3_fdir_rule));
ret = hns3_parse_fdir_filter(dev, pattern, actions, &fdir_rule, error);
if (ret)
goto out;
if (fdir_rule.flags & HNS3_RULE_FLAG_COUNTER) {
ret = hns3_counter_new(dev, fdir_rule.act_cnt.shared,
fdir_rule.act_cnt.id, error);
if (ret)
goto out;
flow->counter_id = fdir_rule.act_cnt.id;
}
fdir_rule_ptr = rte_zmalloc("hns3 fdir rule",
sizeof(struct hns3_fdir_rule_ele),
0);
if (fdir_rule_ptr == NULL) {
hns3_err(hw, "failed to allocate fdir_rule memory.");
ret = -ENOMEM;
goto err_fdir;
}
ret = hns3_fdir_filter_program(hns, &fdir_rule, false);
if (!ret) {
memcpy(&fdir_rule_ptr->fdir_conf, &fdir_rule,
sizeof(struct hns3_fdir_rule));
TAILQ_INSERT_TAIL(&process_list->fdir_list,
fdir_rule_ptr, entries);
flow->rule = fdir_rule_ptr;
flow->filter_type = RTE_ETH_FILTER_FDIR;
return flow;
}
rte_free(fdir_rule_ptr);
err_fdir:
if (fdir_rule.flags & HNS3_RULE_FLAG_COUNTER)
hns3_counter_release(dev, fdir_rule.act_cnt.id);
err:
rte_flow_error_set(error, -ret, RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create flow");
out:
TAILQ_REMOVE(&process_list->flow_list, flow_node, entries);
rte_free(flow_node);
rte_free(flow);
return NULL;
}
/* Destroy a flow rule on hns3. */
static int
hns3_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow,
struct rte_flow_error *error)
{
struct hns3_process_private *process_list = dev->process_private;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_fdir_rule_ele *fdir_rule_ptr;
struct hns3_rss_conf_ele *rss_filter_ptr;
struct hns3_flow_mem *flow_node;
enum rte_filter_type filter_type;
struct hns3_fdir_rule fdir_rule;
int ret;
if (flow == NULL)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE,
flow, "Flow is NULL");
filter_type = flow->filter_type;
switch (filter_type) {
case RTE_ETH_FILTER_FDIR:
fdir_rule_ptr = (struct hns3_fdir_rule_ele *)flow->rule;
memcpy(&fdir_rule, &fdir_rule_ptr->fdir_conf,
sizeof(struct hns3_fdir_rule));
ret = hns3_fdir_filter_program(hns, &fdir_rule, true);
if (ret)
return rte_flow_error_set(error, EIO,
RTE_FLOW_ERROR_TYPE_HANDLE,
flow,
"Destroy FDIR fail.Try again");
if (fdir_rule.flags & HNS3_RULE_FLAG_COUNTER)
hns3_counter_release(dev, fdir_rule.act_cnt.id);
TAILQ_REMOVE(&process_list->fdir_list, fdir_rule_ptr, entries);
rte_free(fdir_rule_ptr);
fdir_rule_ptr = NULL;
break;
case RTE_ETH_FILTER_HASH:
rss_filter_ptr = (struct hns3_rss_conf_ele *)flow->rule;
ret = hns3_config_rss_filter(dev, &rss_filter_ptr->filter_info,
false);
if (ret)
return rte_flow_error_set(error, EIO,
RTE_FLOW_ERROR_TYPE_HANDLE,
flow,
"Destroy RSS fail.Try again");
TAILQ_REMOVE(&process_list->filter_rss_list, rss_filter_ptr,
entries);
rte_free(rss_filter_ptr);
rss_filter_ptr = NULL;
break;
default:
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, flow,
"Unsupported filter type");
}
TAILQ_FOREACH(flow_node, &process_list->flow_list, entries) {
if (flow_node->flow == flow) {
TAILQ_REMOVE(&process_list->flow_list, flow_node,
entries);
rte_free(flow_node);
flow_node = NULL;
break;
}
}
rte_free(flow);
flow = NULL;
return 0;
}
/* Destroy all flow rules associated with a port on hns3. */
static int
hns3_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error)
{
struct hns3_adapter *hns = dev->data->dev_private;
int ret;
/* FDIR is available only in PF driver */
if (!hns->is_vf) {
ret = hns3_clear_all_fdir_filter(hns);
if (ret) {
rte_flow_error_set(error, ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to flush rule");
return ret;
}
hns3_counter_flush(dev);
}
ret = hns3_clear_rss_filter(dev);
if (ret) {
rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to flush rss filter");
return ret;
}
hns3_filterlist_flush(dev);
return 0;
}
/* Query an existing flow rule. */
static int
hns3_flow_query(struct rte_eth_dev *dev, struct rte_flow *flow,
const struct rte_flow_action *actions, void *data,
struct rte_flow_error *error)
{
struct rte_flow_action_rss *rss_conf;
struct hns3_rss_conf_ele *rss_rule;
struct rte_flow_query_count *qc;
int ret;
if (!flow->rule)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL, "invalid rule");
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
qc = (struct rte_flow_query_count *)data;
ret = hns3_counter_query(dev, flow, qc, error);
if (ret)
return ret;
break;
case RTE_FLOW_ACTION_TYPE_RSS:
if (flow->filter_type != RTE_ETH_FILTER_HASH) {
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions, "action is not supported");
}
rss_conf = (struct rte_flow_action_rss *)data;
rss_rule = (struct hns3_rss_conf_ele *)flow->rule;
rte_memcpy(rss_conf, &rss_rule->filter_info.conf,
sizeof(struct rte_flow_action_rss));
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions, "action is not supported");
}
}
return 0;
}
static const struct rte_flow_ops hns3_flow_ops = {
.validate = hns3_flow_validate,
.create = hns3_flow_create,
.destroy = hns3_flow_destroy,
.flush = hns3_flow_flush,
.query = hns3_flow_query,
.isolate = NULL,
};
int
hns3_dev_flow_ops_get(struct rte_eth_dev *dev,
const struct rte_flow_ops **ops)
{
struct hns3_hw *hw;
hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (hw->adapter_state >= HNS3_NIC_CLOSED)
return -ENODEV;
*ops = &hns3_flow_ops;
return 0;
}