numam-dpdk/drivers/net/i40e/i40e_ethdev_vf.c
Matan Azrad d5b0924ba6 ethdev: add return value to stats get dev op
The stats_get dev op API doesn't include return value, so PMD cannot
return an error in case of failure at stats getting process time.

Since PCI devices can be removed and there is a time between the
physical removal to the RMV interrupt, the user may get invalid stats
without any indication.

This patch changes the stats_get API return value to be int instead of
void.

All the net PMDs stats_get dev ops are adjusted by this patch.

Signed-off-by: Matan Azrad <matan@mellanox.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2017-10-12 01:52:49 +01:00

2668 lines
72 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_eal.h>
#include <rte_alarm.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ethdev_pci.h>
#include <rte_malloc.h>
#include <rte_dev.h>
#include "i40e_logs.h"
#include "base/i40e_prototype.h"
#include "base/i40e_adminq_cmd.h"
#include "base/i40e_type.h"
#include "i40e_rxtx.h"
#include "i40e_ethdev.h"
#include "i40e_pf.h"
#define I40EVF_VSI_DEFAULT_MSIX_INTR 1
#define I40EVF_VSI_DEFAULT_MSIX_INTR_LNX 0
/* busy wait delay in msec */
#define I40EVF_BUSY_WAIT_DELAY 10
#define I40EVF_BUSY_WAIT_COUNT 50
#define MAX_RESET_WAIT_CNT 20
struct i40evf_arq_msg_info {
enum virtchnl_ops ops;
enum i40e_status_code result;
uint16_t buf_len;
uint16_t msg_len;
uint8_t *msg;
};
struct vf_cmd_info {
enum virtchnl_ops ops;
uint8_t *in_args;
uint32_t in_args_size;
uint8_t *out_buffer;
/* Input & output type. pass in buffer size and pass out
* actual return result
*/
uint32_t out_size;
};
enum i40evf_aq_result {
I40EVF_MSG_ERR = -1, /* Meet error when accessing admin queue */
I40EVF_MSG_NON, /* Read nothing from admin queue */
I40EVF_MSG_SYS, /* Read system msg from admin queue */
I40EVF_MSG_CMD, /* Read async command result */
};
static int i40evf_dev_configure(struct rte_eth_dev *dev);
static int i40evf_dev_start(struct rte_eth_dev *dev);
static void i40evf_dev_stop(struct rte_eth_dev *dev);
static void i40evf_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int i40evf_dev_link_update(struct rte_eth_dev *dev,
int wait_to_complete);
static int i40evf_dev_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats);
static int i40evf_dev_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned n);
static int i40evf_dev_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned limit);
static void i40evf_dev_xstats_reset(struct rte_eth_dev *dev);
static int i40evf_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id, int on);
static void i40evf_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static void i40evf_dev_close(struct rte_eth_dev *dev);
static int i40evf_dev_reset(struct rte_eth_dev *dev);
static void i40evf_dev_promiscuous_enable(struct rte_eth_dev *dev);
static void i40evf_dev_promiscuous_disable(struct rte_eth_dev *dev);
static void i40evf_dev_allmulticast_enable(struct rte_eth_dev *dev);
static void i40evf_dev_allmulticast_disable(struct rte_eth_dev *dev);
static int i40evf_init_vlan(struct rte_eth_dev *dev);
static int i40evf_dev_rx_queue_start(struct rte_eth_dev *dev,
uint16_t rx_queue_id);
static int i40evf_dev_rx_queue_stop(struct rte_eth_dev *dev,
uint16_t rx_queue_id);
static int i40evf_dev_tx_queue_start(struct rte_eth_dev *dev,
uint16_t tx_queue_id);
static int i40evf_dev_tx_queue_stop(struct rte_eth_dev *dev,
uint16_t tx_queue_id);
static int i40evf_add_mac_addr(struct rte_eth_dev *dev,
struct ether_addr *addr,
uint32_t index,
uint32_t pool);
static void i40evf_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
static int i40evf_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int i40evf_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int i40evf_config_rss(struct i40e_vf *vf);
static int i40evf_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int i40evf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int i40evf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static void i40evf_set_default_mac_addr(struct rte_eth_dev *dev,
struct ether_addr *mac_addr);
static int
i40evf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
static int
i40evf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
static void i40evf_handle_pf_event(struct rte_eth_dev *dev,
uint8_t *msg,
uint16_t msglen);
/* Default hash key buffer for RSS */
static uint32_t rss_key_default[I40E_VFQF_HKEY_MAX_INDEX + 1];
struct rte_i40evf_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned offset;
};
static const struct rte_i40evf_xstats_name_off rte_i40evf_stats_strings[] = {
{"rx_bytes", offsetof(struct i40e_eth_stats, rx_bytes)},
{"rx_unicast_packets", offsetof(struct i40e_eth_stats, rx_unicast)},
{"rx_multicast_packets", offsetof(struct i40e_eth_stats, rx_multicast)},
{"rx_broadcast_packets", offsetof(struct i40e_eth_stats, rx_broadcast)},
{"rx_dropped_packets", offsetof(struct i40e_eth_stats, rx_discards)},
{"rx_unknown_protocol_packets", offsetof(struct i40e_eth_stats,
rx_unknown_protocol)},
{"tx_bytes", offsetof(struct i40e_eth_stats, tx_bytes)},
{"tx_unicast_packets", offsetof(struct i40e_eth_stats, tx_unicast)},
{"tx_multicast_packets", offsetof(struct i40e_eth_stats, tx_multicast)},
{"tx_broadcast_packets", offsetof(struct i40e_eth_stats, tx_broadcast)},
{"tx_dropped_packets", offsetof(struct i40e_eth_stats, tx_discards)},
{"tx_error_packets", offsetof(struct i40e_eth_stats, tx_errors)},
};
#define I40EVF_NB_XSTATS (sizeof(rte_i40evf_stats_strings) / \
sizeof(rte_i40evf_stats_strings[0]))
static const struct eth_dev_ops i40evf_eth_dev_ops = {
.dev_configure = i40evf_dev_configure,
.dev_start = i40evf_dev_start,
.dev_stop = i40evf_dev_stop,
.promiscuous_enable = i40evf_dev_promiscuous_enable,
.promiscuous_disable = i40evf_dev_promiscuous_disable,
.allmulticast_enable = i40evf_dev_allmulticast_enable,
.allmulticast_disable = i40evf_dev_allmulticast_disable,
.link_update = i40evf_dev_link_update,
.stats_get = i40evf_dev_stats_get,
.stats_reset = i40evf_dev_xstats_reset,
.xstats_get = i40evf_dev_xstats_get,
.xstats_get_names = i40evf_dev_xstats_get_names,
.xstats_reset = i40evf_dev_xstats_reset,
.dev_close = i40evf_dev_close,
.dev_reset = i40evf_dev_reset,
.dev_infos_get = i40evf_dev_info_get,
.dev_supported_ptypes_get = i40e_dev_supported_ptypes_get,
.vlan_filter_set = i40evf_vlan_filter_set,
.vlan_offload_set = i40evf_vlan_offload_set,
.rx_queue_start = i40evf_dev_rx_queue_start,
.rx_queue_stop = i40evf_dev_rx_queue_stop,
.tx_queue_start = i40evf_dev_tx_queue_start,
.tx_queue_stop = i40evf_dev_tx_queue_stop,
.rx_queue_setup = i40e_dev_rx_queue_setup,
.rx_queue_release = i40e_dev_rx_queue_release,
.rx_queue_intr_enable = i40evf_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = i40evf_dev_rx_queue_intr_disable,
.rx_descriptor_done = i40e_dev_rx_descriptor_done,
.rx_descriptor_status = i40e_dev_rx_descriptor_status,
.tx_descriptor_status = i40e_dev_tx_descriptor_status,
.tx_queue_setup = i40e_dev_tx_queue_setup,
.tx_queue_release = i40e_dev_tx_queue_release,
.rx_queue_count = i40e_dev_rx_queue_count,
.rxq_info_get = i40e_rxq_info_get,
.txq_info_get = i40e_txq_info_get,
.mac_addr_add = i40evf_add_mac_addr,
.mac_addr_remove = i40evf_del_mac_addr,
.reta_update = i40evf_dev_rss_reta_update,
.reta_query = i40evf_dev_rss_reta_query,
.rss_hash_update = i40evf_dev_rss_hash_update,
.rss_hash_conf_get = i40evf_dev_rss_hash_conf_get,
.mtu_set = i40evf_dev_mtu_set,
.mac_addr_set = i40evf_set_default_mac_addr,
};
/*
* Read data in admin queue to get msg from pf driver
*/
static enum i40evf_aq_result
i40evf_read_pfmsg(struct rte_eth_dev *dev, struct i40evf_arq_msg_info *data)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_arq_event_info event;
enum virtchnl_ops opcode;
enum i40e_status_code retval;
int ret;
enum i40evf_aq_result result = I40EVF_MSG_NON;
event.buf_len = data->buf_len;
event.msg_buf = data->msg;
ret = i40e_clean_arq_element(hw, &event, NULL);
/* Can't read any msg from adminQ */
if (ret) {
if (ret != I40E_ERR_ADMIN_QUEUE_NO_WORK)
result = I40EVF_MSG_ERR;
return result;
}
opcode = (enum virtchnl_ops)rte_le_to_cpu_32(event.desc.cookie_high);
retval = (enum i40e_status_code)rte_le_to_cpu_32(event.desc.cookie_low);
/* pf sys event */
if (opcode == VIRTCHNL_OP_EVENT) {
struct virtchnl_pf_event *vpe =
(struct virtchnl_pf_event *)event.msg_buf;
result = I40EVF_MSG_SYS;
switch (vpe->event) {
case VIRTCHNL_EVENT_LINK_CHANGE:
vf->link_up =
vpe->event_data.link_event.link_status;
vf->link_speed =
vpe->event_data.link_event.link_speed;
vf->pend_msg |= PFMSG_LINK_CHANGE;
PMD_DRV_LOG(INFO, "Link status update:%s",
vf->link_up ? "up" : "down");
break;
case VIRTCHNL_EVENT_RESET_IMPENDING:
vf->vf_reset = true;
vf->pend_msg |= PFMSG_RESET_IMPENDING;
PMD_DRV_LOG(INFO, "vf is reseting");
break;
case VIRTCHNL_EVENT_PF_DRIVER_CLOSE:
vf->dev_closed = true;
vf->pend_msg |= PFMSG_DRIVER_CLOSE;
PMD_DRV_LOG(INFO, "PF driver closed");
break;
default:
PMD_DRV_LOG(ERR, "%s: Unknown event %d from pf",
__func__, vpe->event);
}
} else {
/* async reply msg on command issued by vf previously */
result = I40EVF_MSG_CMD;
/* Actual data length read from PF */
data->msg_len = event.msg_len;
}
data->result = retval;
data->ops = opcode;
return result;
}
/**
* clear current command. Only call in case execute
* _atomic_set_cmd successfully.
*/
static inline void
_clear_cmd(struct i40e_vf *vf)
{
rte_wmb();
vf->pend_cmd = VIRTCHNL_OP_UNKNOWN;
}
/*
* Check there is pending cmd in execution. If none, set new command.
*/
static inline int
_atomic_set_cmd(struct i40e_vf *vf, enum virtchnl_ops ops)
{
int ret = rte_atomic32_cmpset(&vf->pend_cmd,
VIRTCHNL_OP_UNKNOWN, ops);
if (!ret)
PMD_DRV_LOG(ERR, "There is incomplete cmd %d", vf->pend_cmd);
return !ret;
}
#define MAX_TRY_TIMES 200
#define ASQ_DELAY_MS 10
static int
i40evf_execute_vf_cmd(struct rte_eth_dev *dev, struct vf_cmd_info *args)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40evf_arq_msg_info info;
enum i40evf_aq_result ret;
int err, i = 0;
if (_atomic_set_cmd(vf, args->ops))
return -1;
info.msg = args->out_buffer;
info.buf_len = args->out_size;
info.ops = VIRTCHNL_OP_UNKNOWN;
info.result = I40E_SUCCESS;
err = i40e_aq_send_msg_to_pf(hw, args->ops, I40E_SUCCESS,
args->in_args, args->in_args_size, NULL);
if (err) {
PMD_DRV_LOG(ERR, "fail to send cmd %d", args->ops);
_clear_cmd(vf);
return err;
}
switch (args->ops) {
case VIRTCHNL_OP_RESET_VF:
/*no need to process in this function */
err = 0;
break;
case VIRTCHNL_OP_VERSION:
case VIRTCHNL_OP_GET_VF_RESOURCES:
/* for init adminq commands, need to poll the response */
err = -1;
do {
ret = i40evf_read_pfmsg(dev, &info);
vf->cmd_retval = info.result;
if (ret == I40EVF_MSG_CMD) {
err = 0;
break;
} else if (ret == I40EVF_MSG_ERR)
break;
rte_delay_ms(ASQ_DELAY_MS);
/* If don't read msg or read sys event, continue */
} while (i++ < MAX_TRY_TIMES);
_clear_cmd(vf);
break;
default:
/* for other adminq in running time, waiting the cmd done flag */
err = -1;
do {
if (vf->pend_cmd == VIRTCHNL_OP_UNKNOWN) {
err = 0;
break;
}
rte_delay_ms(ASQ_DELAY_MS);
/* If don't read msg or read sys event, continue */
} while (i++ < MAX_TRY_TIMES);
/* If there's no response is received, clear command */
if (i >= MAX_TRY_TIMES) {
PMD_DRV_LOG(WARNING, "No response for %d", args->ops);
_clear_cmd(vf);
}
break;
}
return err | vf->cmd_retval;
}
/*
* Check API version with sync wait until version read or fail from admin queue
*/
static int
i40evf_check_api_version(struct rte_eth_dev *dev)
{
struct virtchnl_version_info version, *pver;
int err;
struct vf_cmd_info args;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
version.major = VIRTCHNL_VERSION_MAJOR;
version.minor = VIRTCHNL_VERSION_MINOR;
args.ops = VIRTCHNL_OP_VERSION;
args.in_args = (uint8_t *)&version;
args.in_args_size = sizeof(version);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err) {
PMD_INIT_LOG(ERR, "fail to execute command OP_VERSION");
return err;
}
pver = (struct virtchnl_version_info *)args.out_buffer;
vf->version_major = pver->major;
vf->version_minor = pver->minor;
if ((vf->version_major == VIRTCHNL_VERSION_MAJOR) &&
(vf->version_minor <= VIRTCHNL_VERSION_MINOR))
PMD_DRV_LOG(INFO, "Peer is Linux PF host");
else {
PMD_INIT_LOG(ERR, "PF/VF API version mismatch:(%u.%u)-(%u.%u)",
vf->version_major, vf->version_minor,
VIRTCHNL_VERSION_MAJOR,
VIRTCHNL_VERSION_MINOR);
return -1;
}
return 0;
}
static int
i40evf_get_vf_resource(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int err;
struct vf_cmd_info args;
uint32_t caps, len;
args.ops = VIRTCHNL_OP_GET_VF_RESOURCES;
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
if (PF_IS_V11(vf)) {
caps = VIRTCHNL_VF_OFFLOAD_L2 |
VIRTCHNL_VF_OFFLOAD_RSS_AQ |
VIRTCHNL_VF_OFFLOAD_RSS_REG |
VIRTCHNL_VF_OFFLOAD_VLAN |
VIRTCHNL_VF_OFFLOAD_RX_POLLING;
args.in_args = (uint8_t *)&caps;
args.in_args_size = sizeof(caps);
} else {
args.in_args = NULL;
args.in_args_size = 0;
}
err = i40evf_execute_vf_cmd(dev, &args);
if (err) {
PMD_DRV_LOG(ERR, "fail to execute command OP_GET_VF_RESOURCE");
return err;
}
len = sizeof(struct virtchnl_vf_resource) +
I40E_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource);
rte_memcpy(vf->vf_res, args.out_buffer,
RTE_MIN(args.out_size, len));
i40e_vf_parse_hw_config(hw, vf->vf_res);
return 0;
}
static int
i40evf_config_promisc(struct rte_eth_dev *dev,
bool enable_unicast,
bool enable_multicast)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int err;
struct vf_cmd_info args;
struct virtchnl_promisc_info promisc;
promisc.flags = 0;
promisc.vsi_id = vf->vsi_res->vsi_id;
if (enable_unicast)
promisc.flags |= FLAG_VF_UNICAST_PROMISC;
if (enable_multicast)
promisc.flags |= FLAG_VF_MULTICAST_PROMISC;
args.ops = VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE;
args.in_args = (uint8_t *)&promisc;
args.in_args_size = sizeof(promisc);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command "
"CONFIG_PROMISCUOUS_MODE");
return err;
}
static int
i40evf_enable_vlan_strip(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct vf_cmd_info args;
int ret;
memset(&args, 0, sizeof(args));
args.ops = VIRTCHNL_OP_ENABLE_VLAN_STRIPPING;
args.in_args = NULL;
args.in_args_size = 0;
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
ret = i40evf_execute_vf_cmd(dev, &args);
if (ret)
PMD_DRV_LOG(ERR, "Failed to execute command of "
"VIRTCHNL_OP_ENABLE_VLAN_STRIPPING");
return ret;
}
static int
i40evf_disable_vlan_strip(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct vf_cmd_info args;
int ret;
memset(&args, 0, sizeof(args));
args.ops = VIRTCHNL_OP_DISABLE_VLAN_STRIPPING;
args.in_args = NULL;
args.in_args_size = 0;
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
ret = i40evf_execute_vf_cmd(dev, &args);
if (ret)
PMD_DRV_LOG(ERR, "Failed to execute command of "
"VIRTCHNL_OP_DISABLE_VLAN_STRIPPING");
return ret;
}
static void
i40evf_fill_virtchnl_vsi_txq_info(struct virtchnl_txq_info *txq_info,
uint16_t vsi_id,
uint16_t queue_id,
uint16_t nb_txq,
struct i40e_tx_queue *txq)
{
txq_info->vsi_id = vsi_id;
txq_info->queue_id = queue_id;
if (queue_id < nb_txq) {
txq_info->ring_len = txq->nb_tx_desc;
txq_info->dma_ring_addr = txq->tx_ring_phys_addr;
}
}
static void
i40evf_fill_virtchnl_vsi_rxq_info(struct virtchnl_rxq_info *rxq_info,
uint16_t vsi_id,
uint16_t queue_id,
uint16_t nb_rxq,
uint32_t max_pkt_size,
struct i40e_rx_queue *rxq)
{
rxq_info->vsi_id = vsi_id;
rxq_info->queue_id = queue_id;
rxq_info->max_pkt_size = max_pkt_size;
if (queue_id < nb_rxq) {
rxq_info->ring_len = rxq->nb_rx_desc;
rxq_info->dma_ring_addr = rxq->rx_ring_phys_addr;
rxq_info->databuffer_size =
(rte_pktmbuf_data_room_size(rxq->mp) -
RTE_PKTMBUF_HEADROOM);
}
}
static int
i40evf_configure_vsi_queues(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_rx_queue **rxq =
(struct i40e_rx_queue **)dev->data->rx_queues;
struct i40e_tx_queue **txq =
(struct i40e_tx_queue **)dev->data->tx_queues;
struct virtchnl_vsi_queue_config_info *vc_vqci;
struct virtchnl_queue_pair_info *vc_qpi;
struct vf_cmd_info args;
uint16_t i, nb_qp = vf->num_queue_pairs;
const uint32_t size =
I40E_VIRTCHNL_CONFIG_VSI_QUEUES_SIZE(vc_vqci, nb_qp);
uint8_t buff[size];
int ret;
memset(buff, 0, sizeof(buff));
vc_vqci = (struct virtchnl_vsi_queue_config_info *)buff;
vc_vqci->vsi_id = vf->vsi_res->vsi_id;
vc_vqci->num_queue_pairs = nb_qp;
for (i = 0, vc_qpi = vc_vqci->qpair; i < nb_qp; i++, vc_qpi++) {
i40evf_fill_virtchnl_vsi_txq_info(&vc_qpi->txq,
vc_vqci->vsi_id, i, dev->data->nb_tx_queues, txq[i]);
i40evf_fill_virtchnl_vsi_rxq_info(&vc_qpi->rxq,
vc_vqci->vsi_id, i, dev->data->nb_rx_queues,
vf->max_pkt_len, rxq[i]);
}
memset(&args, 0, sizeof(args));
args.ops = VIRTCHNL_OP_CONFIG_VSI_QUEUES;
args.in_args = (uint8_t *)vc_vqci;
args.in_args_size = size;
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
ret = i40evf_execute_vf_cmd(dev, &args);
if (ret)
PMD_DRV_LOG(ERR, "Failed to execute command of "
"VIRTCHNL_OP_CONFIG_VSI_QUEUES");
return ret;
}
static int
i40evf_config_irq_map(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct vf_cmd_info args;
uint8_t cmd_buffer[sizeof(struct virtchnl_irq_map_info) + \
sizeof(struct virtchnl_vector_map)];
struct virtchnl_irq_map_info *map_info;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t vector_id;
int i, err;
if (rte_intr_allow_others(intr_handle))
vector_id = I40EVF_VSI_DEFAULT_MSIX_INTR_LNX;
else
vector_id = I40E_MISC_VEC_ID;
map_info = (struct virtchnl_irq_map_info *)cmd_buffer;
map_info->num_vectors = 1;
map_info->vecmap[0].rxitr_idx = I40E_ITR_INDEX_DEFAULT;
map_info->vecmap[0].vsi_id = vf->vsi_res->vsi_id;
/* Alway use default dynamic MSIX interrupt */
map_info->vecmap[0].vector_id = vector_id;
/* Don't map any tx queue */
map_info->vecmap[0].txq_map = 0;
map_info->vecmap[0].rxq_map = 0;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
map_info->vecmap[0].rxq_map |= 1 << i;
if (rte_intr_dp_is_en(intr_handle))
intr_handle->intr_vec[i] = vector_id;
}
args.ops = VIRTCHNL_OP_CONFIG_IRQ_MAP;
args.in_args = (u8 *)cmd_buffer;
args.in_args_size = sizeof(cmd_buffer);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command OP_ENABLE_QUEUES");
return err;
}
static int
i40evf_switch_queue(struct rte_eth_dev *dev, bool isrx, uint16_t qid,
bool on)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct virtchnl_queue_select queue_select;
int err;
struct vf_cmd_info args;
memset(&queue_select, 0, sizeof(queue_select));
queue_select.vsi_id = vf->vsi_res->vsi_id;
if (isrx)
queue_select.rx_queues |= 1 << qid;
else
queue_select.tx_queues |= 1 << qid;
if (on)
args.ops = VIRTCHNL_OP_ENABLE_QUEUES;
else
args.ops = VIRTCHNL_OP_DISABLE_QUEUES;
args.in_args = (u8 *)&queue_select;
args.in_args_size = sizeof(queue_select);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to switch %s %u %s",
isrx ? "RX" : "TX", qid, on ? "on" : "off");
return err;
}
static int
i40evf_start_queues(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *dev_data = dev->data;
int i;
struct i40e_rx_queue *rxq;
struct i40e_tx_queue *txq;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev_data->rx_queues[i];
if (rxq->rx_deferred_start)
continue;
if (i40evf_dev_rx_queue_start(dev, i) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
return -1;
}
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev_data->tx_queues[i];
if (txq->tx_deferred_start)
continue;
if (i40evf_dev_tx_queue_start(dev, i) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
return -1;
}
}
return 0;
}
static int
i40evf_stop_queues(struct rte_eth_dev *dev)
{
int i;
/* Stop TX queues first */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (i40evf_dev_tx_queue_stop(dev, i) != 0) {
PMD_DRV_LOG(ERR, "Fail to stop queue %u", i);
return -1;
}
}
/* Then stop RX queues */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (i40evf_dev_rx_queue_stop(dev, i) != 0) {
PMD_DRV_LOG(ERR, "Fail to stop queue %u", i);
return -1;
}
}
return 0;
}
static int
i40evf_add_mac_addr(struct rte_eth_dev *dev,
struct ether_addr *addr,
__rte_unused uint32_t index,
__rte_unused uint32_t pool)
{
struct virtchnl_ether_addr_list *list;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint8_t cmd_buffer[sizeof(struct virtchnl_ether_addr_list) + \
sizeof(struct virtchnl_ether_addr)];
int err;
struct vf_cmd_info args;
if (is_zero_ether_addr(addr)) {
PMD_DRV_LOG(ERR, "Invalid mac:%x:%x:%x:%x:%x:%x",
addr->addr_bytes[0], addr->addr_bytes[1],
addr->addr_bytes[2], addr->addr_bytes[3],
addr->addr_bytes[4], addr->addr_bytes[5]);
return I40E_ERR_INVALID_MAC_ADDR;
}
list = (struct virtchnl_ether_addr_list *)cmd_buffer;
list->vsi_id = vf->vsi_res->vsi_id;
list->num_elements = 1;
rte_memcpy(list->list[0].addr, addr->addr_bytes,
sizeof(addr->addr_bytes));
args.ops = VIRTCHNL_OP_ADD_ETH_ADDR;
args.in_args = cmd_buffer;
args.in_args_size = sizeof(cmd_buffer);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command "
"OP_ADD_ETHER_ADDRESS");
else
vf->vsi.mac_num++;
return err;
}
static void
i40evf_del_mac_addr_by_addr(struct rte_eth_dev *dev,
struct ether_addr *addr)
{
struct virtchnl_ether_addr_list *list;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint8_t cmd_buffer[sizeof(struct virtchnl_ether_addr_list) + \
sizeof(struct virtchnl_ether_addr)];
int err;
struct vf_cmd_info args;
if (i40e_validate_mac_addr(addr->addr_bytes) != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Invalid mac:%x-%x-%x-%x-%x-%x",
addr->addr_bytes[0], addr->addr_bytes[1],
addr->addr_bytes[2], addr->addr_bytes[3],
addr->addr_bytes[4], addr->addr_bytes[5]);
return;
}
list = (struct virtchnl_ether_addr_list *)cmd_buffer;
list->vsi_id = vf->vsi_res->vsi_id;
list->num_elements = 1;
rte_memcpy(list->list[0].addr, addr->addr_bytes,
sizeof(addr->addr_bytes));
args.ops = VIRTCHNL_OP_DEL_ETH_ADDR;
args.in_args = cmd_buffer;
args.in_args_size = sizeof(cmd_buffer);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command "
"OP_DEL_ETHER_ADDRESS");
else
vf->vsi.mac_num--;
return;
}
static void
i40evf_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
{
struct rte_eth_dev_data *data = dev->data;
struct ether_addr *addr;
addr = &data->mac_addrs[index];
i40evf_del_mac_addr_by_addr(dev, addr);
}
static int
i40evf_query_stats(struct rte_eth_dev *dev, struct i40e_eth_stats **pstats)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct virtchnl_queue_select q_stats;
int err;
struct vf_cmd_info args;
memset(&q_stats, 0, sizeof(q_stats));
q_stats.vsi_id = vf->vsi_res->vsi_id;
args.ops = VIRTCHNL_OP_GET_STATS;
args.in_args = (u8 *)&q_stats;
args.in_args_size = sizeof(q_stats);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err) {
PMD_DRV_LOG(ERR, "fail to execute command OP_GET_STATS");
*pstats = NULL;
return err;
}
*pstats = (struct i40e_eth_stats *)args.out_buffer;
return 0;
}
static void
i40evf_stat_update_48(uint64_t *offset,
uint64_t *stat)
{
if (*stat >= *offset)
*stat = *stat - *offset;
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << I40E_48_BIT_WIDTH)) - *offset);
*stat &= I40E_48_BIT_MASK;
}
static void
i40evf_stat_update_32(uint64_t *offset,
uint64_t *stat)
{
if (*stat >= *offset)
*stat = (uint64_t)(*stat - *offset);
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << I40E_32_BIT_WIDTH)) - *offset);
}
static void
i40evf_update_stats(struct i40e_vsi *vsi,
struct i40e_eth_stats *nes)
{
struct i40e_eth_stats *oes = &vsi->eth_stats_offset;
i40evf_stat_update_48(&oes->rx_bytes,
&nes->rx_bytes);
i40evf_stat_update_48(&oes->rx_unicast,
&nes->rx_unicast);
i40evf_stat_update_48(&oes->rx_multicast,
&nes->rx_multicast);
i40evf_stat_update_48(&oes->rx_broadcast,
&nes->rx_broadcast);
i40evf_stat_update_32(&oes->rx_discards,
&nes->rx_discards);
i40evf_stat_update_32(&oes->rx_unknown_protocol,
&nes->rx_unknown_protocol);
i40evf_stat_update_48(&oes->tx_bytes,
&nes->tx_bytes);
i40evf_stat_update_48(&oes->tx_unicast,
&nes->tx_unicast);
i40evf_stat_update_48(&oes->tx_multicast,
&nes->tx_multicast);
i40evf_stat_update_48(&oes->tx_broadcast,
&nes->tx_broadcast);
i40evf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
i40evf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
}
static void
i40evf_dev_xstats_reset(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_eth_stats *pstats = NULL;
/* read stat values to clear hardware registers */
i40evf_query_stats(dev, &pstats);
/* set stats offset base on current values */
vf->vsi.eth_stats_offset = *pstats;
}
static int i40evf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
__rte_unused unsigned limit)
{
unsigned i;
if (xstats_names != NULL)
for (i = 0; i < I40EVF_NB_XSTATS; i++) {
snprintf(xstats_names[i].name,
sizeof(xstats_names[i].name),
"%s", rte_i40evf_stats_strings[i].name);
}
return I40EVF_NB_XSTATS;
}
static int i40evf_dev_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned n)
{
int ret;
unsigned i;
struct i40e_eth_stats *pstats = NULL;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_vsi *vsi = &vf->vsi;
if (n < I40EVF_NB_XSTATS)
return I40EVF_NB_XSTATS;
ret = i40evf_query_stats(dev, &pstats);
if (ret != 0)
return 0;
if (!xstats)
return 0;
i40evf_update_stats(vsi, pstats);
/* loop over xstats array and values from pstats */
for (i = 0; i < I40EVF_NB_XSTATS; i++) {
xstats[i].id = i;
xstats[i].value = *(uint64_t *)(((char *)pstats) +
rte_i40evf_stats_strings[i].offset);
}
return I40EVF_NB_XSTATS;
}
static int
i40evf_add_vlan(struct rte_eth_dev *dev, uint16_t vlanid)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct virtchnl_vlan_filter_list *vlan_list;
uint8_t cmd_buffer[sizeof(struct virtchnl_vlan_filter_list) +
sizeof(uint16_t)];
int err;
struct vf_cmd_info args;
vlan_list = (struct virtchnl_vlan_filter_list *)cmd_buffer;
vlan_list->vsi_id = vf->vsi_res->vsi_id;
vlan_list->num_elements = 1;
vlan_list->vlan_id[0] = vlanid;
args.ops = VIRTCHNL_OP_ADD_VLAN;
args.in_args = (u8 *)&cmd_buffer;
args.in_args_size = sizeof(cmd_buffer);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command OP_ADD_VLAN");
return err;
}
static int
i40evf_del_vlan(struct rte_eth_dev *dev, uint16_t vlanid)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct virtchnl_vlan_filter_list *vlan_list;
uint8_t cmd_buffer[sizeof(struct virtchnl_vlan_filter_list) +
sizeof(uint16_t)];
int err;
struct vf_cmd_info args;
vlan_list = (struct virtchnl_vlan_filter_list *)cmd_buffer;
vlan_list->vsi_id = vf->vsi_res->vsi_id;
vlan_list->num_elements = 1;
vlan_list->vlan_id[0] = vlanid;
args.ops = VIRTCHNL_OP_DEL_VLAN;
args.in_args = (u8 *)&cmd_buffer;
args.in_args_size = sizeof(cmd_buffer);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command OP_DEL_VLAN");
return err;
}
static const struct rte_pci_id pci_id_i40evf_map[] = {
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_VF) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_VF_HV) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_X722_A0_VF) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_X722_VF) },
{ .vendor_id = 0, /* sentinel */ },
};
static inline int
i40evf_dev_atomic_write_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = &(dev->data->dev_link);
struct rte_eth_link *src = link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
/* Disable IRQ0 */
static inline void
i40evf_disable_irq0(struct i40e_hw *hw)
{
/* Disable all interrupt types */
I40E_WRITE_REG(hw, I40E_VFINT_ICR0_ENA1, 0);
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01,
I40E_VFINT_DYN_CTL01_ITR_INDX_MASK);
I40EVF_WRITE_FLUSH(hw);
}
/* Enable IRQ0 */
static inline void
i40evf_enable_irq0(struct i40e_hw *hw)
{
/* Enable admin queue interrupt trigger */
uint32_t val;
i40evf_disable_irq0(hw);
val = I40E_READ_REG(hw, I40E_VFINT_ICR0_ENA1);
val |= I40E_VFINT_ICR0_ENA1_ADMINQ_MASK |
I40E_VFINT_ICR0_ENA1_LINK_STAT_CHANGE_MASK;
I40E_WRITE_REG(hw, I40E_VFINT_ICR0_ENA1, val);
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01,
I40E_VFINT_DYN_CTL01_INTENA_MASK |
I40E_VFINT_DYN_CTL01_CLEARPBA_MASK |
I40E_VFINT_DYN_CTL01_ITR_INDX_MASK);
I40EVF_WRITE_FLUSH(hw);
}
static int
i40evf_reset_vf(struct i40e_hw *hw)
{
int i, reset;
if (i40e_vf_reset(hw) != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "Reset VF NIC failed");
return -1;
}
/**
* After issuing vf reset command to pf, pf won't necessarily
* reset vf, it depends on what state it exactly is. If it's not
* initialized yet, it won't have vf reset since it's in a certain
* state. If not, it will try to reset. Even vf is reset, pf will
* set I40E_VFGEN_RSTAT to COMPLETE first, then wait 10ms and set
* it to ACTIVE. In this duration, vf may not catch the moment that
* COMPLETE is set. So, for vf, we'll try to wait a long time.
*/
rte_delay_ms(200);
for (i = 0; i < MAX_RESET_WAIT_CNT; i++) {
reset = rd32(hw, I40E_VFGEN_RSTAT) &
I40E_VFGEN_RSTAT_VFR_STATE_MASK;
reset = reset >> I40E_VFGEN_RSTAT_VFR_STATE_SHIFT;
if (VIRTCHNL_VFR_COMPLETED == reset || VIRTCHNL_VFR_VFACTIVE == reset)
break;
else
rte_delay_ms(50);
}
if (i >= MAX_RESET_WAIT_CNT) {
PMD_INIT_LOG(ERR, "Reset VF NIC failed");
return -1;
}
return 0;
}
static int
i40evf_init_vf(struct rte_eth_dev *dev)
{
int i, err, bufsz;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint16_t interval =
i40e_calc_itr_interval(I40E_QUEUE_ITR_INTERVAL_MAX);
vf->adapter = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
vf->dev_data = dev->data;
err = i40e_set_mac_type(hw);
if (err) {
PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
goto err;
}
i40e_init_adminq_parameter(hw);
err = i40e_init_adminq(hw);
if (err) {
PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
goto err;
}
/* Reset VF and wait until it's complete */
if (i40evf_reset_vf(hw)) {
PMD_INIT_LOG(ERR, "reset NIC failed");
goto err_aq;
}
/* VF reset, shutdown admin queue and initialize again */
if (i40e_shutdown_adminq(hw) != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "i40e_shutdown_adminq failed");
goto err;
}
i40e_init_adminq_parameter(hw);
if (i40e_init_adminq(hw) != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "init_adminq failed");
goto err;
}
vf->aq_resp = rte_zmalloc("vf_aq_resp", I40E_AQ_BUF_SZ, 0);
if (!vf->aq_resp) {
PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
goto err_aq;
}
if (i40evf_check_api_version(dev) != 0) {
PMD_INIT_LOG(ERR, "check_api version failed");
goto err_api;
}
bufsz = sizeof(struct virtchnl_vf_resource) +
(I40E_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
if (!vf->vf_res) {
PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
goto err_api;
}
if (i40evf_get_vf_resource(dev) != 0) {
PMD_INIT_LOG(ERR, "i40evf_get_vf_config failed");
goto err_alloc;
}
/* got VF config message back from PF, now we can parse it */
for (i = 0; i < vf->vf_res->num_vsis; i++) {
if (vf->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
vf->vsi_res = &vf->vf_res->vsi_res[i];
}
if (!vf->vsi_res) {
PMD_INIT_LOG(ERR, "no LAN VSI found");
goto err_alloc;
}
if (hw->mac.type == I40E_MAC_X722_VF)
vf->flags = I40E_FLAG_RSS_AQ_CAPABLE;
vf->vsi.vsi_id = vf->vsi_res->vsi_id;
switch (vf->vsi_res->vsi_type) {
case VIRTCHNL_VSI_SRIOV:
vf->vsi.type = I40E_VSI_SRIOV;
break;
default:
vf->vsi.type = I40E_VSI_TYPE_UNKNOWN;
break;
}
vf->vsi.nb_qps = vf->vsi_res->num_queue_pairs;
vf->vsi.adapter = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
/* Store the MAC address configured by host, or generate random one */
if (is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
vf->flags |= I40E_FLAG_VF_MAC_BY_PF;
else
eth_random_addr(hw->mac.addr); /* Generate a random one */
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01,
(I40E_ITR_INDEX_DEFAULT <<
I40E_VFINT_DYN_CTL0_ITR_INDX_SHIFT) |
(interval <<
I40E_VFINT_DYN_CTL0_INTERVAL_SHIFT));
I40EVF_WRITE_FLUSH(hw);
return 0;
err_alloc:
rte_free(vf->vf_res);
vf->vsi_res = NULL;
err_api:
rte_free(vf->aq_resp);
err_aq:
i40e_shutdown_adminq(hw); /* ignore error */
err:
return -1;
}
static int
i40evf_uninit_vf(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (hw->adapter_stopped == 0)
i40evf_dev_close(dev);
rte_free(vf->vf_res);
vf->vf_res = NULL;
rte_free(vf->aq_resp);
vf->aq_resp = NULL;
return 0;
}
static void
i40evf_handle_pf_event(struct rte_eth_dev *dev, uint8_t *msg,
__rte_unused uint16_t msglen)
{
struct virtchnl_pf_event *pf_msg =
(struct virtchnl_pf_event *)msg;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
switch (pf_msg->event) {
case VIRTCHNL_EVENT_RESET_IMPENDING:
PMD_DRV_LOG(DEBUG, "VIRTCHNL_EVENT_RESET_IMPENDING event");
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
NULL, NULL);
break;
case VIRTCHNL_EVENT_LINK_CHANGE:
PMD_DRV_LOG(DEBUG, "VIRTCHNL_EVENT_LINK_CHANGE event");
vf->link_up = pf_msg->event_data.link_event.link_status;
vf->link_speed = pf_msg->event_data.link_event.link_speed;
break;
case VIRTCHNL_EVENT_PF_DRIVER_CLOSE:
PMD_DRV_LOG(DEBUG, "VIRTCHNL_EVENT_PF_DRIVER_CLOSE event");
break;
default:
PMD_DRV_LOG(ERR, " unknown event received %u", pf_msg->event);
break;
}
}
static void
i40evf_handle_aq_msg(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_arq_event_info info;
uint16_t pending, aq_opc;
enum virtchnl_ops msg_opc;
enum i40e_status_code msg_ret;
int ret;
info.buf_len = I40E_AQ_BUF_SZ;
if (!vf->aq_resp) {
PMD_DRV_LOG(ERR, "Buffer for adminq resp should not be NULL");
return;
}
info.msg_buf = vf->aq_resp;
pending = 1;
while (pending) {
ret = i40e_clean_arq_element(hw, &info, &pending);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(INFO, "Failed to read msg from AdminQ,"
"ret: %d", ret);
break;
}
aq_opc = rte_le_to_cpu_16(info.desc.opcode);
/* For the message sent from pf to vf, opcode is stored in
* cookie_high of struct i40e_aq_desc, while return error code
* are stored in cookie_low, Which is done by
* i40e_aq_send_msg_to_vf in PF driver.*/
msg_opc = (enum virtchnl_ops)rte_le_to_cpu_32(
info.desc.cookie_high);
msg_ret = (enum i40e_status_code)rte_le_to_cpu_32(
info.desc.cookie_low);
switch (aq_opc) {
case i40e_aqc_opc_send_msg_to_vf:
if (msg_opc == VIRTCHNL_OP_EVENT)
/* process event*/
i40evf_handle_pf_event(dev, info.msg_buf,
info.msg_len);
else {
/* read message and it's expected one */
if (msg_opc == vf->pend_cmd) {
vf->cmd_retval = msg_ret;
/* prevent compiler reordering */
rte_compiler_barrier();
_clear_cmd(vf);
} else
PMD_DRV_LOG(ERR, "command mismatch,"
"expect %u, get %u",
vf->pend_cmd, msg_opc);
PMD_DRV_LOG(DEBUG, "adminq response is received,"
" opcode = %d", msg_opc);
}
break;
default:
PMD_DRV_LOG(ERR, "Request %u is not supported yet",
aq_opc);
break;
}
}
}
/**
* Interrupt handler triggered by NIC for handling
* specific interrupt. Only adminq interrupt is processed in VF.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
i40evf_dev_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t icr0;
i40evf_disable_irq0(hw);
/* read out interrupt causes */
icr0 = I40E_READ_REG(hw, I40E_VFINT_ICR01);
/* No interrupt event indicated */
if (!(icr0 & I40E_VFINT_ICR01_INTEVENT_MASK)) {
PMD_DRV_LOG(DEBUG, "No interrupt event, nothing to do");
goto done;
}
if (icr0 & I40E_VFINT_ICR01_ADMINQ_MASK) {
PMD_DRV_LOG(DEBUG, "ICR01_ADMINQ is reported");
i40evf_handle_aq_msg(dev);
}
/* Link Status Change interrupt */
if (icr0 & I40E_VFINT_ICR01_LINK_STAT_CHANGE_MASK)
PMD_DRV_LOG(DEBUG, "LINK_STAT_CHANGE is reported,"
" do nothing");
done:
i40evf_enable_irq0(hw);
rte_intr_enable(dev->intr_handle);
}
static int
i40evf_dev_init(struct rte_eth_dev *eth_dev)
{
struct i40e_hw *hw
= I40E_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
PMD_INIT_FUNC_TRACE();
/* assign ops func pointer */
eth_dev->dev_ops = &i40evf_eth_dev_ops;
eth_dev->rx_pkt_burst = &i40e_recv_pkts;
eth_dev->tx_pkt_burst = &i40e_xmit_pkts;
/*
* For secondary processes, we don't initialise any further as primary
* has already done this work.
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
i40e_set_rx_function(eth_dev);
i40e_set_tx_function(eth_dev);
return 0;
}
i40e_set_default_ptype_table(eth_dev);
i40e_set_default_pctype_table(eth_dev);
rte_eth_copy_pci_info(eth_dev, pci_dev);
eth_dev->data->dev_flags |= RTE_ETH_DEV_DETACHABLE;
hw->vendor_id = pci_dev->id.vendor_id;
hw->device_id = pci_dev->id.device_id;
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
hw->bus.device = pci_dev->addr.devid;
hw->bus.func = pci_dev->addr.function;
hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
hw->adapter_stopped = 0;
if(i40evf_init_vf(eth_dev) != 0) {
PMD_INIT_LOG(ERR, "Init vf failed");
return -1;
}
/* register callback func to eal lib */
rte_intr_callback_register(&pci_dev->intr_handle,
i40evf_dev_interrupt_handler, (void *)eth_dev);
/* enable uio intr after callback register */
rte_intr_enable(&pci_dev->intr_handle);
/* configure and enable device interrupt */
i40evf_enable_irq0(hw);
/* copy mac addr */
eth_dev->data->mac_addrs = rte_zmalloc("i40evf_mac",
ETHER_ADDR_LEN * I40E_NUM_MACADDR_MAX,
0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
" store MAC addresses",
ETHER_ADDR_LEN * I40E_NUM_MACADDR_MAX);
return -ENOMEM;
}
ether_addr_copy((struct ether_addr *)hw->mac.addr,
&eth_dev->data->mac_addrs[0]);
return 0;
}
static int
i40evf_dev_uninit(struct rte_eth_dev *eth_dev)
{
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
if (i40evf_uninit_vf(eth_dev) != 0) {
PMD_INIT_LOG(ERR, "i40evf_uninit_vf failed");
return -1;
}
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
return 0;
}
static int eth_i40evf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct i40e_adapter), i40evf_dev_init);
}
static int eth_i40evf_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, i40evf_dev_uninit);
}
/*
* virtual function driver struct
*/
static struct rte_pci_driver rte_i40evf_pmd = {
.id_table = pci_id_i40evf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = eth_i40evf_pci_probe,
.remove = eth_i40evf_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_i40e_vf, rte_i40evf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_i40e_vf, pci_id_i40evf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_i40e_vf, "* igb_uio | vfio-pci");
static int
i40evf_dev_configure(struct rte_eth_dev *dev)
{
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct rte_eth_conf *conf = &dev->data->dev_conf;
struct i40e_vf *vf;
/* Initialize to TRUE. If any of Rx queues doesn't meet the bulk
* allocation or vector Rx preconditions we will reset it.
*/
ad->rx_bulk_alloc_allowed = true;
ad->rx_vec_allowed = true;
ad->tx_simple_allowed = true;
ad->tx_vec_allowed = true;
/* For non-DPDK PF drivers, VF has no ability to disable HW
* CRC strip, and is implicitly enabled by the PF.
*/
if (!conf->rxmode.hw_strip_crc) {
vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
if ((vf->version_major == VIRTCHNL_VERSION_MAJOR) &&
(vf->version_minor <= VIRTCHNL_VERSION_MINOR)) {
/* Peer is running non-DPDK PF driver. */
PMD_INIT_LOG(ERR, "VF can't disable HW CRC Strip");
return -EINVAL;
}
}
return i40evf_init_vlan(dev);
}
static int
i40evf_init_vlan(struct rte_eth_dev *dev)
{
/* Apply vlan offload setting */
i40evf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
return I40E_SUCCESS;
}
static void
i40evf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
/* Vlan stripping setting */
if (mask & ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
if (dev_conf->rxmode.hw_vlan_strip)
i40evf_enable_vlan_strip(dev);
else
i40evf_disable_vlan_strip(dev);
}
}
static int
i40evf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct i40e_rx_queue *rxq;
int err = 0;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (rx_queue_id < dev->data->nb_rx_queues) {
rxq = dev->data->rx_queues[rx_queue_id];
err = i40e_alloc_rx_queue_mbufs(rxq);
if (err) {
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
return err;
}
rte_wmb();
/* Init the RX tail register. */
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
I40EVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
err = i40evf_switch_queue(dev, TRUE, rx_queue_id, TRUE);
if (err)
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
rx_queue_id);
else
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
}
return err;
}
static int
i40evf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct i40e_rx_queue *rxq;
int err;
if (rx_queue_id < dev->data->nb_rx_queues) {
rxq = dev->data->rx_queues[rx_queue_id];
err = i40evf_switch_queue(dev, TRUE, rx_queue_id, FALSE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
rx_queue_id);
return err;
}
i40e_rx_queue_release_mbufs(rxq);
i40e_reset_rx_queue(rxq);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
}
return 0;
}
static int
i40evf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
int err = 0;
PMD_INIT_FUNC_TRACE();
if (tx_queue_id < dev->data->nb_tx_queues) {
/* Ready to switch the queue on */
err = i40evf_switch_queue(dev, FALSE, tx_queue_id, TRUE);
if (err)
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
tx_queue_id);
else
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
}
return err;
}
static int
i40evf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct i40e_tx_queue *txq;
int err;
if (tx_queue_id < dev->data->nb_tx_queues) {
txq = dev->data->tx_queues[tx_queue_id];
err = i40evf_switch_queue(dev, FALSE, tx_queue_id, FALSE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
tx_queue_id);
return err;
}
i40e_tx_queue_release_mbufs(txq);
i40e_reset_tx_queue(txq);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
}
return 0;
}
static int
i40evf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
int ret;
if (on)
ret = i40evf_add_vlan(dev, vlan_id);
else
ret = i40evf_del_vlan(dev,vlan_id);
return ret;
}
static int
i40evf_rxq_init(struct rte_eth_dev *dev, struct i40e_rx_queue *rxq)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_dev_data *dev_data = dev->data;
struct rte_pktmbuf_pool_private *mbp_priv;
uint16_t buf_size, len;
rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL1(rxq->queue_id);
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
I40EVF_WRITE_FLUSH(hw);
/* Calculate the maximum packet length allowed */
mbp_priv = rte_mempool_get_priv(rxq->mp);
buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
rxq->hs_mode = i40e_header_split_none;
rxq->rx_hdr_len = 0;
rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
len = rxq->rx_buf_len * I40E_MAX_CHAINED_RX_BUFFERS;
rxq->max_pkt_len = RTE_MIN(len,
dev_data->dev_conf.rxmode.max_rx_pkt_len);
/**
* Check if the jumbo frame and maximum packet length are set correctly
*/
if (dev_data->dev_conf.rxmode.jumbo_frame == 1) {
if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u, as jumbo "
"frame is enabled", (uint32_t)ETHER_MAX_LEN,
(uint32_t)I40E_FRAME_SIZE_MAX);
return I40E_ERR_CONFIG;
}
} else {
if (rxq->max_pkt_len < ETHER_MIN_LEN ||
rxq->max_pkt_len > ETHER_MAX_LEN) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u, as jumbo "
"frame is disabled", (uint32_t)ETHER_MIN_LEN,
(uint32_t)ETHER_MAX_LEN);
return I40E_ERR_CONFIG;
}
}
if (dev_data->dev_conf.rxmode.enable_scatter ||
(rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
dev_data->scattered_rx = 1;
}
return 0;
}
static int
i40evf_rx_init(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint16_t i;
int ret = I40E_SUCCESS;
struct i40e_rx_queue **rxq =
(struct i40e_rx_queue **)dev->data->rx_queues;
i40evf_config_rss(vf);
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (!rxq[i] || !rxq[i]->q_set)
continue;
ret = i40evf_rxq_init(dev, rxq[i]);
if (ret != I40E_SUCCESS)
break;
}
if (ret == I40E_SUCCESS)
i40e_set_rx_function(dev);
return ret;
}
static void
i40evf_tx_init(struct rte_eth_dev *dev)
{
uint16_t i;
struct i40e_tx_queue **txq =
(struct i40e_tx_queue **)dev->data->tx_queues;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
for (i = 0; i < dev->data->nb_tx_queues; i++)
txq[i]->qtx_tail = hw->hw_addr + I40E_QTX_TAIL1(i);
i40e_set_tx_function(dev);
}
static inline void
i40evf_enable_queues_intr(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
if (!rte_intr_allow_others(intr_handle)) {
I40E_WRITE_REG(hw,
I40E_VFINT_DYN_CTL01,
I40E_VFINT_DYN_CTL01_INTENA_MASK |
I40E_VFINT_DYN_CTL01_CLEARPBA_MASK |
I40E_VFINT_DYN_CTL01_ITR_INDX_MASK);
I40EVF_WRITE_FLUSH(hw);
return;
}
I40EVF_WRITE_FLUSH(hw);
}
static inline void
i40evf_disable_queues_intr(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
if (!rte_intr_allow_others(intr_handle)) {
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01,
I40E_VFINT_DYN_CTL01_ITR_INDX_MASK);
I40EVF_WRITE_FLUSH(hw);
return;
}
I40EVF_WRITE_FLUSH(hw);
}
static int
i40evf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t interval =
i40e_calc_itr_interval(RTE_LIBRTE_I40E_ITR_INTERVAL);
uint16_t msix_intr;
msix_intr = intr_handle->intr_vec[queue_id];
if (msix_intr == I40E_MISC_VEC_ID)
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01,
I40E_VFINT_DYN_CTL01_INTENA_MASK |
I40E_VFINT_DYN_CTL01_CLEARPBA_MASK |
(0 << I40E_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
(interval <<
I40E_VFINT_DYN_CTL01_INTERVAL_SHIFT));
else
I40E_WRITE_REG(hw,
I40E_VFINT_DYN_CTLN1(msix_intr -
I40E_RX_VEC_START),
I40E_VFINT_DYN_CTLN1_INTENA_MASK |
I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
(0 << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
(interval <<
I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
I40EVF_WRITE_FLUSH(hw);
rte_intr_enable(&pci_dev->intr_handle);
return 0;
}
static int
i40evf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t msix_intr;
msix_intr = intr_handle->intr_vec[queue_id];
if (msix_intr == I40E_MISC_VEC_ID)
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01, 0);
else
I40E_WRITE_REG(hw,
I40E_VFINT_DYN_CTLN1(msix_intr -
I40E_RX_VEC_START),
0);
I40EVF_WRITE_FLUSH(hw);
return 0;
}
static void
i40evf_add_del_all_mac_addr(struct rte_eth_dev *dev, bool add)
{
struct virtchnl_ether_addr_list *list;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int err, i, j;
int next_begin = 0;
int begin = 0;
uint32_t len;
struct ether_addr *addr;
struct vf_cmd_info args;
do {
j = 0;
len = sizeof(struct virtchnl_ether_addr_list);
for (i = begin; i < I40E_NUM_MACADDR_MAX; i++, next_begin++) {
if (is_zero_ether_addr(&dev->data->mac_addrs[i]))
continue;
len += sizeof(struct virtchnl_ether_addr);
if (len >= I40E_AQ_BUF_SZ) {
next_begin = i + 1;
break;
}
}
list = rte_zmalloc("i40evf_del_mac_buffer", len, 0);
if (!list) {
PMD_DRV_LOG(ERR, "fail to allocate memory");
return;
}
for (i = begin; i < next_begin; i++) {
addr = &dev->data->mac_addrs[i];
if (is_zero_ether_addr(addr))
continue;
rte_memcpy(list->list[j].addr, addr->addr_bytes,
sizeof(addr->addr_bytes));
PMD_DRV_LOG(DEBUG, "add/rm mac:%x:%x:%x:%x:%x:%x",
addr->addr_bytes[0], addr->addr_bytes[1],
addr->addr_bytes[2], addr->addr_bytes[3],
addr->addr_bytes[4], addr->addr_bytes[5]);
j++;
}
list->vsi_id = vf->vsi_res->vsi_id;
list->num_elements = j;
args.ops = add ? VIRTCHNL_OP_ADD_ETH_ADDR :
VIRTCHNL_OP_DEL_ETH_ADDR;
args.in_args = (uint8_t *)list;
args.in_args_size = len;
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err) {
PMD_DRV_LOG(ERR, "fail to execute command %s",
add ? "OP_ADD_ETHER_ADDRESS" :
"OP_DEL_ETHER_ADDRESS");
} else {
if (add)
vf->vsi.mac_num++;
else
vf->vsi.mac_num--;
}
rte_free(list);
begin = next_begin;
} while (begin < I40E_NUM_MACADDR_MAX);
}
static int
i40evf_dev_start(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t intr_vector = 0;
PMD_INIT_FUNC_TRACE();
hw->adapter_stopped = 0;
vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
dev->data->nb_tx_queues);
/* check and configure queue intr-vector mapping */
if (dev->data->dev_conf.intr_conf.rxq != 0) {
intr_vector = dev->data->nb_rx_queues;
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -1;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (!intr_handle->intr_vec) {
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
" intr_vec", dev->data->nb_rx_queues);
return -ENOMEM;
}
}
if (i40evf_rx_init(dev) != 0){
PMD_DRV_LOG(ERR, "failed to do RX init");
return -1;
}
i40evf_tx_init(dev);
if (i40evf_configure_vsi_queues(dev) != 0) {
PMD_DRV_LOG(ERR, "configure queues failed");
goto err_queue;
}
if (i40evf_config_irq_map(dev)) {
PMD_DRV_LOG(ERR, "config_irq_map failed");
goto err_queue;
}
/* Set all mac addrs */
i40evf_add_del_all_mac_addr(dev, TRUE);
if (i40evf_start_queues(dev) != 0) {
PMD_DRV_LOG(ERR, "enable queues failed");
goto err_mac;
}
i40evf_enable_queues_intr(dev);
return 0;
err_mac:
i40evf_add_del_all_mac_addr(dev, FALSE);
err_queue:
return -1;
}
static void
i40evf_dev_stop(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (hw->adapter_stopped == 1)
return;
i40evf_stop_queues(dev);
i40evf_disable_queues_intr(dev);
i40e_dev_clear_queues(dev);
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
/* remove all mac addrs */
i40evf_add_del_all_mac_addr(dev, FALSE);
hw->adapter_stopped = 1;
}
static int
i40evf_dev_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
struct rte_eth_link new_link;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
/*
* DPDK pf host provide interfacet to acquire link status
* while Linux driver does not
*/
/* Linux driver PF host */
switch (vf->link_speed) {
case I40E_LINK_SPEED_100MB:
new_link.link_speed = ETH_SPEED_NUM_100M;
break;
case I40E_LINK_SPEED_1GB:
new_link.link_speed = ETH_SPEED_NUM_1G;
break;
case I40E_LINK_SPEED_10GB:
new_link.link_speed = ETH_SPEED_NUM_10G;
break;
case I40E_LINK_SPEED_20GB:
new_link.link_speed = ETH_SPEED_NUM_20G;
break;
case I40E_LINK_SPEED_25GB:
new_link.link_speed = ETH_SPEED_NUM_25G;
break;
case I40E_LINK_SPEED_40GB:
new_link.link_speed = ETH_SPEED_NUM_40G;
break;
default:
new_link.link_speed = ETH_SPEED_NUM_100M;
break;
}
/* full duplex only */
new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
new_link.link_status = vf->link_up ? ETH_LINK_UP :
ETH_LINK_DOWN;
new_link.link_autoneg =
dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED;
i40evf_dev_atomic_write_link_status(dev, &new_link);
return 0;
}
static void
i40evf_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int ret;
/* If enabled, just return */
if (vf->promisc_unicast_enabled)
return;
ret = i40evf_config_promisc(dev, 1, vf->promisc_multicast_enabled);
if (ret == 0)
vf->promisc_unicast_enabled = TRUE;
}
static void
i40evf_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int ret;
/* If disabled, just return */
if (!vf->promisc_unicast_enabled)
return;
ret = i40evf_config_promisc(dev, 0, vf->promisc_multicast_enabled);
if (ret == 0)
vf->promisc_unicast_enabled = FALSE;
}
static void
i40evf_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int ret;
/* If enabled, just return */
if (vf->promisc_multicast_enabled)
return;
ret = i40evf_config_promisc(dev, vf->promisc_unicast_enabled, 1);
if (ret == 0)
vf->promisc_multicast_enabled = TRUE;
}
static void
i40evf_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int ret;
/* If enabled, just return */
if (!vf->promisc_multicast_enabled)
return;
ret = i40evf_config_promisc(dev, vf->promisc_unicast_enabled, 0);
if (ret == 0)
vf->promisc_multicast_enabled = FALSE;
}
static void
i40evf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
memset(dev_info, 0, sizeof(*dev_info));
dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
dev_info->min_rx_bufsize = I40E_BUF_SIZE_MIN;
dev_info->max_rx_pktlen = I40E_FRAME_SIZE_MAX;
dev_info->hash_key_size = (I40E_VFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t);
dev_info->reta_size = ETH_RSS_RETA_SIZE_64;
dev_info->flow_type_rss_offloads = vf->adapter->flow_types_mask;
dev_info->max_mac_addrs = I40E_NUM_MACADDR_MAX;
dev_info->rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_QINQ_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM;
dev_info->tx_offload_capa =
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_QINQ_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = I40E_DEFAULT_RX_PTHRESH,
.hthresh = I40E_DEFAULT_RX_HTHRESH,
.wthresh = I40E_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = I40E_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = I40E_DEFAULT_TX_PTHRESH,
.hthresh = I40E_DEFAULT_TX_HTHRESH,
.wthresh = I40E_DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = I40E_DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = I40E_DEFAULT_TX_RSBIT_THRESH,
.txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
ETH_TXQ_FLAGS_NOOFFLOADS,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = I40E_MAX_RING_DESC,
.nb_min = I40E_MIN_RING_DESC,
.nb_align = I40E_ALIGN_RING_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = I40E_MAX_RING_DESC,
.nb_min = I40E_MIN_RING_DESC,
.nb_align = I40E_ALIGN_RING_DESC,
};
}
static int
i40evf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
int ret;
struct i40e_eth_stats *pstats = NULL;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_vsi *vsi = &vf->vsi;
ret = i40evf_query_stats(dev, &pstats);
if (ret == 0) {
i40evf_update_stats(vsi, pstats);
stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
pstats->rx_broadcast;
stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
pstats->tx_unicast;
stats->imissed = pstats->rx_discards;
stats->oerrors = pstats->tx_errors + pstats->tx_discards;
stats->ibytes = pstats->rx_bytes;
stats->obytes = pstats->tx_bytes;
} else {
PMD_DRV_LOG(ERR, "Get statistics failed");
}
return ret;
}
static void
i40evf_dev_close(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
i40evf_dev_stop(dev);
i40e_dev_free_queues(dev);
i40evf_reset_vf(hw);
i40e_shutdown_adminq(hw);
/* disable uio intr before callback unregister */
rte_intr_disable(intr_handle);
/* unregister callback func from eal lib */
rte_intr_callback_unregister(intr_handle,
i40evf_dev_interrupt_handler, dev);
i40evf_disable_irq0(hw);
}
/*
* Reset VF device only to re-initialize resources in PMD layer
*/
static int
i40evf_dev_reset(struct rte_eth_dev *dev)
{
int ret;
ret = i40evf_dev_uninit(dev);
if (ret)
return ret;
ret = i40evf_dev_init(dev);
return ret;
}
static int
i40evf_get_rss_lut(struct i40e_vsi *vsi, uint8_t *lut, uint16_t lut_size)
{
struct i40e_vf *vf = I40E_VSI_TO_VF(vsi);
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int ret;
if (!lut)
return -EINVAL;
if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
ret = i40e_aq_get_rss_lut(hw, vsi->vsi_id, FALSE,
lut, lut_size);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to get RSS lookup table");
return ret;
}
} else {
uint32_t *lut_dw = (uint32_t *)lut;
uint16_t i, lut_size_dw = lut_size / 4;
for (i = 0; i < lut_size_dw; i++)
lut_dw[i] = I40E_READ_REG(hw, I40E_VFQF_HLUT(i));
}
return 0;
}
static int
i40evf_set_rss_lut(struct i40e_vsi *vsi, uint8_t *lut, uint16_t lut_size)
{
struct i40e_vf *vf;
struct i40e_hw *hw;
int ret;
if (!vsi || !lut)
return -EINVAL;
vf = I40E_VSI_TO_VF(vsi);
hw = I40E_VSI_TO_HW(vsi);
if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
ret = i40e_aq_set_rss_lut(hw, vsi->vsi_id, FALSE,
lut, lut_size);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to set RSS lookup table");
return ret;
}
} else {
uint32_t *lut_dw = (uint32_t *)lut;
uint16_t i, lut_size_dw = lut_size / 4;
for (i = 0; i < lut_size_dw; i++)
I40E_WRITE_REG(hw, I40E_VFQF_HLUT(i), lut_dw[i]);
I40EVF_WRITE_FLUSH(hw);
}
return 0;
}
static int
i40evf_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint8_t *lut;
uint16_t i, idx, shift;
int ret;
if (reta_size != ETH_RSS_RETA_SIZE_64) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number of hardware can "
"support (%d)", reta_size, ETH_RSS_RETA_SIZE_64);
return -EINVAL;
}
lut = rte_zmalloc("i40e_rss_lut", reta_size, 0);
if (!lut) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
ret = i40evf_get_rss_lut(&vf->vsi, lut, reta_size);
if (ret)
goto out;
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
lut[i] = reta_conf[idx].reta[shift];
}
ret = i40evf_set_rss_lut(&vf->vsi, lut, reta_size);
out:
rte_free(lut);
return ret;
}
static int
i40evf_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint16_t i, idx, shift;
uint8_t *lut;
int ret;
if (reta_size != ETH_RSS_RETA_SIZE_64) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number of hardware can "
"support (%d)", reta_size, ETH_RSS_RETA_SIZE_64);
return -EINVAL;
}
lut = rte_zmalloc("i40e_rss_lut", reta_size, 0);
if (!lut) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
ret = i40evf_get_rss_lut(&vf->vsi, lut, reta_size);
if (ret)
goto out;
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
reta_conf[idx].reta[shift] = lut[i];
}
out:
rte_free(lut);
return ret;
}
static int
i40evf_set_rss_key(struct i40e_vsi *vsi, uint8_t *key, uint8_t key_len)
{
struct i40e_vf *vf = I40E_VSI_TO_VF(vsi);
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int ret = 0;
if (!key || key_len == 0) {
PMD_DRV_LOG(DEBUG, "No key to be configured");
return 0;
} else if (key_len != (I40E_VFQF_HKEY_MAX_INDEX + 1) *
sizeof(uint32_t)) {
PMD_DRV_LOG(ERR, "Invalid key length %u", key_len);
return -EINVAL;
}
if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
struct i40e_aqc_get_set_rss_key_data *key_dw =
(struct i40e_aqc_get_set_rss_key_data *)key;
ret = i40e_aq_set_rss_key(hw, vsi->vsi_id, key_dw);
if (ret)
PMD_INIT_LOG(ERR, "Failed to configure RSS key "
"via AQ");
} else {
uint32_t *hash_key = (uint32_t *)key;
uint16_t i;
for (i = 0; i <= I40E_VFQF_HKEY_MAX_INDEX; i++)
i40e_write_rx_ctl(hw, I40E_VFQF_HKEY(i), hash_key[i]);
I40EVF_WRITE_FLUSH(hw);
}
return ret;
}
static int
i40evf_get_rss_key(struct i40e_vsi *vsi, uint8_t *key, uint8_t *key_len)
{
struct i40e_vf *vf = I40E_VSI_TO_VF(vsi);
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int ret;
if (!key || !key_len)
return -EINVAL;
if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
ret = i40e_aq_get_rss_key(hw, vsi->vsi_id,
(struct i40e_aqc_get_set_rss_key_data *)key);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to get RSS key via AQ");
return ret;
}
} else {
uint32_t *key_dw = (uint32_t *)key;
uint16_t i;
for (i = 0; i <= I40E_VFQF_HKEY_MAX_INDEX; i++)
key_dw[i] = i40e_read_rx_ctl(hw, I40E_VFQF_HKEY(i));
}
*key_len = (I40E_VFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t);
return 0;
}
static int
i40evf_hw_rss_hash_set(struct i40e_vf *vf, struct rte_eth_rss_conf *rss_conf)
{
struct i40e_hw *hw = I40E_VF_TO_HW(vf);
uint64_t hena;
int ret;
ret = i40evf_set_rss_key(&vf->vsi, rss_conf->rss_key,
rss_conf->rss_key_len);
if (ret)
return ret;
hena = i40e_config_hena(vf->adapter, rss_conf->rss_hf);
i40e_write_rx_ctl(hw, I40E_VFQF_HENA(0), (uint32_t)hena);
i40e_write_rx_ctl(hw, I40E_VFQF_HENA(1), (uint32_t)(hena >> 32));
I40EVF_WRITE_FLUSH(hw);
return 0;
}
static void
i40evf_disable_rss(struct i40e_vf *vf)
{
struct i40e_hw *hw = I40E_VF_TO_HW(vf);
i40e_write_rx_ctl(hw, I40E_VFQF_HENA(0), 0);
i40e_write_rx_ctl(hw, I40E_VFQF_HENA(1), 0);
I40EVF_WRITE_FLUSH(hw);
}
static int
i40evf_config_rss(struct i40e_vf *vf)
{
struct i40e_hw *hw = I40E_VF_TO_HW(vf);
struct rte_eth_rss_conf rss_conf;
uint32_t i, j, lut = 0, nb_q = (I40E_VFQF_HLUT_MAX_INDEX + 1) * 4;
uint16_t num;
if (vf->dev_data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
i40evf_disable_rss(vf);
PMD_DRV_LOG(DEBUG, "RSS not configured");
return 0;
}
num = RTE_MIN(vf->dev_data->nb_rx_queues, I40E_MAX_QP_NUM_PER_VF);
/* Fill out the look up table */
for (i = 0, j = 0; i < nb_q; i++, j++) {
if (j >= num)
j = 0;
lut = (lut << 8) | j;
if ((i & 3) == 3)
I40E_WRITE_REG(hw, I40E_VFQF_HLUT(i >> 2), lut);
}
rss_conf = vf->dev_data->dev_conf.rx_adv_conf.rss_conf;
if ((rss_conf.rss_hf & vf->adapter->flow_types_mask) == 0) {
i40evf_disable_rss(vf);
PMD_DRV_LOG(DEBUG, "No hash flag is set");
return 0;
}
if (rss_conf.rss_key == NULL || rss_conf.rss_key_len <
(I40E_VFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t)) {
/* Calculate the default hash key */
for (i = 0; i <= I40E_VFQF_HKEY_MAX_INDEX; i++)
rss_key_default[i] = (uint32_t)rte_rand();
rss_conf.rss_key = (uint8_t *)rss_key_default;
rss_conf.rss_key_len = (I40E_VFQF_HKEY_MAX_INDEX + 1) *
sizeof(uint32_t);
}
return i40evf_hw_rss_hash_set(vf, &rss_conf);
}
static int
i40evf_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t rss_hf = rss_conf->rss_hf & vf->adapter->flow_types_mask;
uint64_t hena;
hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(0));
hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(1))) << 32;
if (!(hena & vf->adapter->pctypes_mask)) { /* RSS disabled */
if (rss_hf != 0) /* Enable RSS */
return -EINVAL;
return 0;
}
/* RSS enabled */
if (rss_hf == 0) /* Disable RSS */
return -EINVAL;
return i40evf_hw_rss_hash_set(vf, rss_conf);
}
static int
i40evf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t hena;
i40evf_get_rss_key(&vf->vsi, rss_conf->rss_key,
&rss_conf->rss_key_len);
hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(0));
hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(1))) << 32;
rss_conf->rss_hf = i40e_parse_hena(vf->adapter, hena);
return 0;
}
static int
i40evf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct rte_eth_dev_data *dev_data = vf->dev_data;
uint32_t frame_size = mtu + I40E_ETH_OVERHEAD;
int ret = 0;
/* check if mtu is within the allowed range */
if ((mtu < ETHER_MIN_MTU) || (frame_size > I40E_FRAME_SIZE_MAX))
return -EINVAL;
/* mtu setting is forbidden if port is start */
if (dev_data->dev_started) {
PMD_DRV_LOG(ERR, "port %d must be stopped before configuration",
dev_data->port_id);
return -EBUSY;
}
if (frame_size > ETHER_MAX_LEN)
dev_data->dev_conf.rxmode.jumbo_frame = 1;
else
dev_data->dev_conf.rxmode.jumbo_frame = 0;
dev_data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
return ret;
}
static void
i40evf_set_default_mac_addr(struct rte_eth_dev *dev,
struct ether_addr *mac_addr)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
if (!is_valid_assigned_ether_addr(mac_addr)) {
PMD_DRV_LOG(ERR, "Tried to set invalid MAC address.");
return;
}
if (is_same_ether_addr(mac_addr, dev->data->mac_addrs))
return;
if (vf->flags & I40E_FLAG_VF_MAC_BY_PF)
return;
i40evf_del_mac_addr_by_addr(dev, dev->data->mac_addrs);
i40evf_add_mac_addr(dev, mac_addr, 0, 0);
}