numam-dpdk/lib/librte_net/net_crc_neon.c
Mairtin o Loingsigh ef94569cf9 net: add CRC implementation runtime selection
This patch adds support for run-time selection of the optimal
architecture-specific CRC path, based on the supported instruction set(s)
of the CPU.

The compiler option checks have been moved from the C files to the meson
script. The rte_cpu_get_flag_enabled function is called automatically by
the library at process initialization time to determine which
instructions the CPU supports, with the most optimal supported CRC path
ultimately selected.

Signed-off-by: Mairtin o Loingsigh <mairtin.oloingsigh@intel.com>
Signed-off-by: David Coyle <david.coyle@intel.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Reviewed-by: Jasvinder Singh <jasvinder.singh@intel.com>
Reviewed-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
2020-10-13 19:26:03 +02:00

260 lines
6.8 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Cavium, Inc
*/
#include <string.h>
#include <rte_common.h>
#include <rte_branch_prediction.h>
#include <rte_net_crc.h>
#include <rte_vect.h>
#include <rte_cpuflags.h>
#include "net_crc.h"
/** PMULL CRC computation context structure */
struct crc_pmull_ctx {
uint64x2_t rk1_rk2;
uint64x2_t rk5_rk6;
uint64x2_t rk7_rk8;
};
struct crc_pmull_ctx crc32_eth_pmull __rte_aligned(16);
struct crc_pmull_ctx crc16_ccitt_pmull __rte_aligned(16);
/**
* @brief Performs one folding round
*
* Logically function operates as follows:
* DATA = READ_NEXT_16BYTES();
* F1 = LSB8(FOLD)
* F2 = MSB8(FOLD)
* T1 = CLMUL(F1, RK1)
* T2 = CLMUL(F2, RK2)
* FOLD = XOR(T1, T2, DATA)
*
* @param data_block 16 byte data block
* @param precomp precomputed rk1 constant
* @param fold running 16 byte folded data
*
* @return New 16 byte folded data
*/
static inline uint64x2_t
crcr32_folding_round(uint64x2_t data_block, uint64x2_t precomp,
uint64x2_t fold)
{
uint64x2_t tmp0 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(fold), 1),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 0)));
uint64x2_t tmp1 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(fold), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 1)));
return veorq_u64(tmp1, veorq_u64(data_block, tmp0));
}
/**
* Performs reduction from 128 bits to 64 bits
*
* @param data128 128 bits data to be reduced
* @param precomp rk5 and rk6 precomputed constants
*
* @return data reduced to 64 bits
*/
static inline uint64x2_t
crcr32_reduce_128_to_64(uint64x2_t data128,
uint64x2_t precomp)
{
uint64x2_t tmp0, tmp1, tmp2;
/* 64b fold */
tmp0 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(data128), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 0)));
tmp1 = vshift_bytes_right(data128, 8);
tmp0 = veorq_u64(tmp0, tmp1);
/* 32b fold */
tmp2 = vshift_bytes_left(tmp0, 4);
tmp1 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(tmp2), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 1)));
return veorq_u64(tmp1, tmp0);
}
/**
* Performs Barret's reduction from 64 bits to 32 bits
*
* @param data64 64 bits data to be reduced
* @param precomp rk7 precomputed constant
*
* @return data reduced to 32 bits
*/
static inline uint32_t
crcr32_reduce_64_to_32(uint64x2_t data64,
uint64x2_t precomp)
{
static uint32_t mask1[4] __rte_aligned(16) = {
0xffffffff, 0xffffffff, 0x00000000, 0x00000000
};
static uint32_t mask2[4] __rte_aligned(16) = {
0x00000000, 0xffffffff, 0xffffffff, 0xffffffff
};
uint64x2_t tmp0, tmp1, tmp2;
tmp0 = vandq_u64(data64, vld1q_u64((uint64_t *)mask2));
tmp1 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(tmp0), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 0)));
tmp1 = veorq_u64(tmp1, tmp0);
tmp1 = vandq_u64(tmp1, vld1q_u64((uint64_t *)mask1));
tmp2 = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(tmp1), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(precomp), 1)));
tmp2 = veorq_u64(tmp2, tmp1);
tmp2 = veorq_u64(tmp2, tmp0);
return vgetq_lane_u32(vreinterpretq_u32_u64(tmp2), 2);
}
static inline uint32_t
crc32_eth_calc_pmull(
const uint8_t *data,
uint32_t data_len,
uint32_t crc,
const struct crc_pmull_ctx *params)
{
uint64x2_t temp, fold, k;
uint32_t n;
/* Get CRC init value */
temp = vreinterpretq_u64_u32(vsetq_lane_u32(crc, vmovq_n_u32(0), 0));
/**
* Folding all data into single 16 byte data block
* Assumes: fold holds first 16 bytes of data
*/
if (unlikely(data_len < 32)) {
if (unlikely(data_len == 16)) {
/* 16 bytes */
fold = vld1q_u64((const uint64_t *)data);
fold = veorq_u64(fold, temp);
goto reduction_128_64;
}
if (unlikely(data_len < 16)) {
/* 0 to 15 bytes */
uint8_t buffer[16] __rte_aligned(16);
memset(buffer, 0, sizeof(buffer));
memcpy(buffer, data, data_len);
fold = vld1q_u64((uint64_t *)buffer);
fold = veorq_u64(fold, temp);
if (unlikely(data_len < 4)) {
fold = vshift_bytes_left(fold, 8 - data_len);
goto barret_reduction;
}
fold = vshift_bytes_left(fold, 16 - data_len);
goto reduction_128_64;
}
/* 17 to 31 bytes */
fold = vld1q_u64((const uint64_t *)data);
fold = veorq_u64(fold, temp);
n = 16;
k = params->rk1_rk2;
goto partial_bytes;
}
/** At least 32 bytes in the buffer */
/** Apply CRC initial value */
fold = vld1q_u64((const uint64_t *)data);
fold = veorq_u64(fold, temp);
/** Main folding loop - the last 16 bytes is processed separately */
k = params->rk1_rk2;
for (n = 16; (n + 16) <= data_len; n += 16) {
temp = vld1q_u64((const uint64_t *)&data[n]);
fold = crcr32_folding_round(temp, k, fold);
}
partial_bytes:
if (likely(n < data_len)) {
uint64x2_t last16, a, b, mask;
uint32_t rem = data_len & 15;
last16 = vld1q_u64((const uint64_t *)&data[data_len - 16]);
a = vshift_bytes_left(fold, 16 - rem);
b = vshift_bytes_right(fold, rem);
mask = vshift_bytes_left(vdupq_n_u64(-1), 16 - rem);
b = vorrq_u64(b, vandq_u64(mask, last16));
/* k = rk1 & rk2 */
temp = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(a), 1),
vgetq_lane_p64(vreinterpretq_p64_u64(k), 0)));
fold = vreinterpretq_u64_p128(vmull_p64(
vgetq_lane_p64(vreinterpretq_p64_u64(a), 0),
vgetq_lane_p64(vreinterpretq_p64_u64(k), 1)));
fold = veorq_u64(fold, temp);
fold = veorq_u64(fold, b);
}
/** Reduction 128 -> 32 Assumes: fold holds 128bit folded data */
reduction_128_64:
k = params->rk5_rk6;
fold = crcr32_reduce_128_to_64(fold, k);
barret_reduction:
k = params->rk7_rk8;
n = crcr32_reduce_64_to_32(fold, k);
return n;
}
void
rte_net_crc_neon_init(void)
{
/* Initialize CRC16 data */
uint64_t ccitt_k1_k2[2] = {0x189aeLLU, 0x8e10LLU};
uint64_t ccitt_k5_k6[2] = {0x189aeLLU, 0x114aaLLU};
uint64_t ccitt_k7_k8[2] = {0x11c581910LLU, 0x10811LLU};
/* Initialize CRC32 data */
uint64_t eth_k1_k2[2] = {0xccaa009eLLU, 0x1751997d0LLU};
uint64_t eth_k5_k6[2] = {0xccaa009eLLU, 0x163cd6124LLU};
uint64_t eth_k7_k8[2] = {0x1f7011640LLU, 0x1db710641LLU};
/** Save the params in context structure */
crc16_ccitt_pmull.rk1_rk2 = vld1q_u64(ccitt_k1_k2);
crc16_ccitt_pmull.rk5_rk6 = vld1q_u64(ccitt_k5_k6);
crc16_ccitt_pmull.rk7_rk8 = vld1q_u64(ccitt_k7_k8);
/** Save the params in context structure */
crc32_eth_pmull.rk1_rk2 = vld1q_u64(eth_k1_k2);
crc32_eth_pmull.rk5_rk6 = vld1q_u64(eth_k5_k6);
crc32_eth_pmull.rk7_rk8 = vld1q_u64(eth_k7_k8);
}
uint32_t
rte_crc16_ccitt_neon_handler(const uint8_t *data, uint32_t data_len)
{
return (uint16_t)~crc32_eth_calc_pmull(data,
data_len,
0xffff,
&crc16_ccitt_pmull);
}
uint32_t
rte_crc32_eth_neon_handler(const uint8_t *data, uint32_t data_len)
{
return ~crc32_eth_calc_pmull(data,
data_len,
0xffffffffUL,
&crc32_eth_pmull);
}