numam-dpdk/drivers/net/bnxt/bnxt_rxtx_vec_sse.c
Lance Richardson 3983583414 net/bnxt: support NEON
Add bnxt vector PMD support using NEON SIMD instructions.
Also update the 20.08 release notes with this information.

Signed-off-by: Lance Richardson <lance.richardson@broadcom.com>
Reviewed-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com>
2020-07-11 06:18:52 +02:00

475 lines
12 KiB
C

// SPDX-License-Identifier: BSD-3-Clause
/* Copyright(c) 2019 Broadcom All rights reserved. */
#include <inttypes.h>
#include <stdbool.h>
#include <rte_bitmap.h>
#include <rte_byteorder.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#if defined(RTE_ARCH_X86)
#include <tmmintrin.h>
#else
#error "bnxt vector pmd: unsupported target."
#endif
#include "bnxt.h"
#include "bnxt_cpr.h"
#include "bnxt_ring.h"
#include "bnxt_rxr.h"
#include "bnxt_rxq.h"
#include "hsi_struct_def_dpdk.h"
#include "bnxt_rxtx_vec_common.h"
#include "bnxt_txq.h"
#include "bnxt_txr.h"
/*
* RX Ring handling
*/
static inline void
bnxt_rxq_rearm(struct bnxt_rx_queue *rxq, struct bnxt_rx_ring_info *rxr)
{
struct rx_prod_pkt_bd *rxbds = &rxr->rx_desc_ring[rxq->rxrearm_start];
struct bnxt_sw_rx_bd *rx_bufs = &rxr->rx_buf_ring[rxq->rxrearm_start];
struct rte_mbuf *mb0, *mb1;
int i;
const __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, 0);
const __m128i addrmask = _mm_set_epi64x(UINT64_MAX, 0);
/* Pull RTE_BNXT_RXQ_REARM_THRESH more mbufs into the software ring */
if (rte_mempool_get_bulk(rxq->mb_pool,
(void *)rx_bufs,
RTE_BNXT_RXQ_REARM_THRESH) < 0) {
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
RTE_BNXT_RXQ_REARM_THRESH;
return;
}
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
for (i = 0; i < RTE_BNXT_RXQ_REARM_THRESH; i += 2, rx_bufs += 2) {
__m128i buf_addr0, buf_addr1;
__m128i rxbd0, rxbd1;
mb0 = rx_bufs[0].mbuf;
mb1 = rx_bufs[1].mbuf;
/* Load address fields from both mbufs */
buf_addr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
buf_addr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
/* Load both rx descriptors (preserving some existing fields) */
rxbd0 = _mm_loadu_si128((__m128i *)(rxbds + 0));
rxbd1 = _mm_loadu_si128((__m128i *)(rxbds + 1));
/* Add default offset to buffer address. */
buf_addr0 = _mm_add_epi64(buf_addr0, hdr_room);
buf_addr1 = _mm_add_epi64(buf_addr1, hdr_room);
/* Clear all fields except address. */
buf_addr0 = _mm_and_si128(buf_addr0, addrmask);
buf_addr1 = _mm_and_si128(buf_addr1, addrmask);
/* Clear address field in descriptor. */
rxbd0 = _mm_andnot_si128(addrmask, rxbd0);
rxbd1 = _mm_andnot_si128(addrmask, rxbd1);
/* Set address field in descriptor. */
rxbd0 = _mm_add_epi64(rxbd0, buf_addr0);
rxbd1 = _mm_add_epi64(rxbd1, buf_addr1);
/* Store descriptors to memory. */
_mm_store_si128((__m128i *)(rxbds++), rxbd0);
_mm_store_si128((__m128i *)(rxbds++), rxbd1);
}
rxq->rxrearm_start += RTE_BNXT_RXQ_REARM_THRESH;
bnxt_db_write(&rxr->rx_db, rxq->rxrearm_start - 1);
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= RTE_BNXT_RXQ_REARM_THRESH;
}
static uint32_t
bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
{
uint32_t l3, pkt_type = 0;
uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
uint32_t flags_type;
vlan = !!(rxcmp1->flags2 &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
t_ipcs = !!(rxcmp1->flags2 &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
ip6 = !!(rxcmp1->flags2 &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
flags_type = rxcmp->flags_type &
rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
if (!t_ipcs && !ip6)
l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
else if (!t_ipcs && ip6)
l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
else if (t_ipcs && !ip6)
l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
else
l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
switch (flags_type) {
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
if (!t_ipcs)
pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
else
pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
break;
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
if (!t_ipcs)
pkt_type |= l3 | RTE_PTYPE_L4_TCP;
else
pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
break;
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
if (!t_ipcs)
pkt_type |= l3 | RTE_PTYPE_L4_UDP;
else
pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
break;
case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
pkt_type |= l3;
break;
}
return pkt_type;
}
static void
bnxt_parse_csum(struct rte_mbuf *mbuf, struct rx_pkt_cmpl_hi *rxcmp1)
{
uint32_t flags;
flags = flags2_0xf(rxcmp1);
/* IP Checksum */
if (likely(IS_IP_NONTUNNEL_PKT(flags))) {
if (unlikely(RX_CMP_IP_CS_ERROR(rxcmp1)))
mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
else
mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
} else if (IS_IP_TUNNEL_PKT(flags)) {
if (unlikely(RX_CMP_IP_OUTER_CS_ERROR(rxcmp1) ||
RX_CMP_IP_CS_ERROR(rxcmp1)))
mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
else
mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
} else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1))) {
mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
}
/* L4 Checksum */
if (likely(IS_L4_NONTUNNEL_PKT(flags))) {
if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
else
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
} else if (IS_L4_TUNNEL_PKT(flags)) {
if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
else
mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
} else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
(flags))) {
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
} else {
mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
}
} else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
}
}
uint16_t
bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct bnxt_rx_queue *rxq = rx_queue;
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
uint32_t raw_cons = cpr->cp_raw_cons;
uint32_t cons;
int nb_rx_pkts = 0;
struct rx_pkt_cmpl *rxcmp;
bool evt = false;
const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
const __m128i shuf_msk =
_mm_set_epi8(15, 14, 13, 12, /* rss */
0xFF, 0xFF, /* vlan_tci (zeroes) */
3, 2, /* data_len */
0xFF, 0xFF, 3, 2, /* pkt_len */
0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */
/* If Rx Q was stopped return */
if (unlikely(!rxq->rx_started))
return 0;
if (rxq->rxrearm_nb >= RTE_BNXT_RXQ_REARM_THRESH)
bnxt_rxq_rearm(rxq, rxr);
/* Return no more than RTE_BNXT_MAX_RX_BURST per call. */
nb_pkts = RTE_MIN(nb_pkts, RTE_BNXT_MAX_RX_BURST);
/*
* Make nb_pkts an integer multiple of RTE_BNXT_DESCS_PER_LOOP.
* nb_pkts < RTE_BNXT_DESCS_PER_LOOP, just return no packet
*/
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP);
if (!nb_pkts)
return 0;
/* Handle RX burst request */
while (1) {
cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
break;
if (likely(CMP_TYPE(rxcmp) == RX_PKT_CMPL_TYPE_RX_L2)) {
struct rx_pkt_cmpl_hi *rxcmp1;
uint32_t tmp_raw_cons;
uint16_t cp_cons;
struct rte_mbuf *mbuf;
__m128i mm_rxcmp, pkt_mb;
tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
rxcmp1 = (struct rx_pkt_cmpl_hi *)
&cpr->cp_desc_ring[cp_cons];
if (!CMP_VALID(rxcmp1, tmp_raw_cons,
cpr->cp_ring_struct))
break;
raw_cons = tmp_raw_cons;
cons = rxcmp->opaque;
mbuf = rxr->rx_buf_ring[cons].mbuf;
rte_prefetch0(mbuf);
rxr->rx_buf_ring[cons].mbuf = NULL;
/* Set constant fields from mbuf initializer. */
_mm_store_si128((__m128i *)&mbuf->rearm_data,
mbuf_init);
/* Set mbuf pkt_len, data_len, and rss_hash fields. */
mm_rxcmp = _mm_load_si128((__m128i *)rxcmp);
pkt_mb = _mm_shuffle_epi8(mm_rxcmp, shuf_msk);
_mm_storeu_si128((void *)&mbuf->rx_descriptor_fields1,
pkt_mb);
rte_compiler_barrier();
if (rxcmp->flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID)
mbuf->ol_flags |= PKT_RX_RSS_HASH;
if (rxcmp1->flags2 &
RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
mbuf->vlan_tci = rxcmp1->metadata &
(RX_PKT_CMPL_METADATA_VID_MASK |
RX_PKT_CMPL_METADATA_DE |
RX_PKT_CMPL_METADATA_PRI_MASK);
mbuf->ol_flags |=
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
}
bnxt_parse_csum(mbuf, rxcmp1);
mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
rx_pkts[nb_rx_pkts++] = mbuf;
} else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
evt =
bnxt_event_hwrm_resp_handler(rxq->bp,
(struct cmpl_base *)rxcmp);
}
raw_cons = NEXT_RAW_CMP(raw_cons);
if (nb_rx_pkts == nb_pkts || evt)
break;
}
rxr->rx_prod = RING_ADV(rxr->rx_ring_struct, rxr->rx_prod, nb_rx_pkts);
rxq->rxrearm_nb += nb_rx_pkts;
cpr->cp_raw_cons = raw_cons;
cpr->valid = !!(cpr->cp_raw_cons & cpr->cp_ring_struct->ring_size);
if (nb_rx_pkts || evt)
bnxt_db_cq(cpr);
return nb_rx_pkts;
}
static void
bnxt_tx_cmp_vec(struct bnxt_tx_queue *txq, int nr_pkts)
{
struct bnxt_tx_ring_info *txr = txq->tx_ring;
struct rte_mbuf **free = txq->free;
uint16_t cons = txr->tx_cons;
unsigned int blk = 0;
while (nr_pkts--) {
struct bnxt_sw_tx_bd *tx_buf;
struct rte_mbuf *mbuf;
tx_buf = &txr->tx_buf_ring[cons];
cons = RING_NEXT(txr->tx_ring_struct, cons);
mbuf = rte_pktmbuf_prefree_seg(tx_buf->mbuf);
tx_buf->mbuf = NULL;
if (blk && mbuf->pool != free[0]->pool) {
rte_mempool_put_bulk(free[0]->pool, (void **)free, blk);
blk = 0;
}
free[blk++] = mbuf;
}
if (blk)
rte_mempool_put_bulk(free[0]->pool, (void **)free, blk);
txr->tx_cons = cons;
}
static void
bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
{
struct bnxt_cp_ring_info *cpr = txq->cp_ring;
uint32_t raw_cons = cpr->cp_raw_cons;
uint32_t cons;
uint32_t nb_tx_pkts = 0;
struct tx_cmpl *txcmp;
struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
uint32_t ring_mask = cp_ring_struct->ring_mask;
do {
cons = RING_CMPL(ring_mask, raw_cons);
txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
if (!CMP_VALID(txcmp, raw_cons, cp_ring_struct))
break;
if (likely(CMP_TYPE(txcmp) == TX_CMPL_TYPE_TX_L2))
nb_tx_pkts += txcmp->opaque;
else
RTE_LOG_DP(ERR, PMD,
"Unhandled CMP type %02x\n",
CMP_TYPE(txcmp));
raw_cons = NEXT_RAW_CMP(raw_cons);
} while (nb_tx_pkts < ring_mask);
cpr->valid = !!(raw_cons & cp_ring_struct->ring_size);
if (nb_tx_pkts) {
bnxt_tx_cmp_vec(txq, nb_tx_pkts);
cpr->cp_raw_cons = raw_cons;
bnxt_db_cq(cpr);
}
}
static uint16_t
bnxt_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct bnxt_tx_queue *txq = tx_queue;
struct bnxt_tx_ring_info *txr = txq->tx_ring;
uint16_t prod = txr->tx_prod;
struct rte_mbuf *tx_mbuf;
struct tx_bd_long *txbd = NULL;
struct bnxt_sw_tx_bd *tx_buf;
uint16_t to_send;
nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
if (unlikely(nb_pkts == 0))
return 0;
/* Handle TX burst request */
to_send = nb_pkts;
while (to_send) {
tx_mbuf = *tx_pkts++;
rte_prefetch0(tx_mbuf);
tx_buf = &txr->tx_buf_ring[prod];
tx_buf->mbuf = tx_mbuf;
tx_buf->nr_bds = 1;
txbd = &txr->tx_desc_ring[prod];
txbd->address = tx_mbuf->buf_iova + tx_mbuf->data_off;
txbd->len = tx_mbuf->data_len;
txbd->flags_type = bnxt_xmit_flags_len(tx_mbuf->data_len,
TX_BD_FLAGS_NOCMPL);
prod = RING_NEXT(txr->tx_ring_struct, prod);
to_send--;
}
/* Request a completion for last packet in burst */
if (txbd) {
txbd->opaque = nb_pkts;
txbd->flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
}
rte_compiler_barrier();
bnxt_db_write(&txr->tx_db, prod);
txr->tx_prod = prod;
return nb_pkts;
}
uint16_t
bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
int nb_sent = 0;
struct bnxt_tx_queue *txq = tx_queue;
/* Tx queue was stopped; wait for it to be restarted */
if (unlikely(!txq->tx_started)) {
PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
return 0;
}
/* Handle TX completions */
if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
bnxt_handle_tx_cp_vec(txq);
while (nb_pkts) {
uint16_t ret, num;
num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
ret = bnxt_xmit_fixed_burst_vec(tx_queue,
&tx_pkts[nb_sent],
num);
nb_sent += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_sent;
}
int __rte_cold
bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq)
{
return bnxt_rxq_vec_setup_common(rxq);
}