numam-dpdk/drivers/net/i40e/i40e_ethdev.c
Harry van Haaren f4a91c38b4 i40e: add extended stats
Add xstats functions to i40e PMD, allowing extended statistics
to be retrieved from the NIC and exposed to the DPDK.

Signed-off-by: Harry van Haaren <harry.van.haaren@intel.com>
Acked-by: Maryam Tahhan <maryam.tahhan@intel.com>
2015-11-03 00:19:05 +01:00

7278 lines
205 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_string_fns.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_alarm.h>
#include <rte_dev.h>
#include <rte_eth_ctrl.h>
#include "i40e_logs.h"
#include "base/i40e_prototype.h"
#include "base/i40e_adminq_cmd.h"
#include "base/i40e_type.h"
#include "base/i40e_register.h"
#include "base/i40e_dcb.h"
#include "i40e_ethdev.h"
#include "i40e_rxtx.h"
#include "i40e_pf.h"
/* Maximun number of MAC addresses */
#define I40E_NUM_MACADDR_MAX 64
#define I40E_CLEAR_PXE_WAIT_MS 200
/* Maximun number of capability elements */
#define I40E_MAX_CAP_ELE_NUM 128
/* Wait count and inteval */
#define I40E_CHK_Q_ENA_COUNT 1000
#define I40E_CHK_Q_ENA_INTERVAL_US 1000
/* Maximun number of VSI */
#define I40E_MAX_NUM_VSIS (384UL)
/* Default queue interrupt throttling time in microseconds */
#define I40E_ITR_INDEX_DEFAULT 0
#define I40E_QUEUE_ITR_INTERVAL_DEFAULT 32 /* 32 us */
#define I40E_QUEUE_ITR_INTERVAL_MAX 8160 /* 8160 us */
#define I40E_PRE_TX_Q_CFG_WAIT_US 10 /* 10 us */
/* Flow control default timer */
#define I40E_DEFAULT_PAUSE_TIME 0xFFFFU
/* Flow control default high water */
#define I40E_DEFAULT_HIGH_WATER (0x1C40/1024)
/* Flow control default low water */
#define I40E_DEFAULT_LOW_WATER (0x1A40/1024)
/* Flow control enable fwd bit */
#define I40E_PRTMAC_FWD_CTRL 0x00000001
/* Receive Packet Buffer size */
#define I40E_RXPBSIZE (968 * 1024)
/* Kilobytes shift */
#define I40E_KILOSHIFT 10
/* Receive Average Packet Size in Byte*/
#define I40E_PACKET_AVERAGE_SIZE 128
/* Mask of PF interrupt causes */
#define I40E_PFINT_ICR0_ENA_MASK ( \
I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | \
I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | \
I40E_PFINT_ICR0_ENA_GRST_MASK | \
I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | \
I40E_PFINT_ICR0_ENA_STORM_DETECT_MASK | \
I40E_PFINT_ICR0_ENA_LINK_STAT_CHANGE_MASK | \
I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | \
I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK | \
I40E_PFINT_ICR0_ENA_VFLR_MASK | \
I40E_PFINT_ICR0_ENA_ADMINQ_MASK)
#define I40E_FLOW_TYPES ( \
(1UL << RTE_ETH_FLOW_FRAG_IPV4) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV4_TCP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV4_UDP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV4_SCTP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV4_OTHER) | \
(1UL << RTE_ETH_FLOW_FRAG_IPV6) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV6_TCP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV6_UDP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV6_SCTP) | \
(1UL << RTE_ETH_FLOW_NONFRAG_IPV6_OTHER) | \
(1UL << RTE_ETH_FLOW_L2_PAYLOAD))
#define I40E_PTP_40GB_INCVAL 0x0199999999ULL
#define I40E_PTP_10GB_INCVAL 0x0333333333ULL
#define I40E_PTP_1GB_INCVAL 0x2000000000ULL
#define I40E_PRTTSYN_TSYNENA 0x80000000
#define I40E_PRTTSYN_TSYNTYPE 0x0e000000
#define I40E_MAX_PERCENT 100
#define I40E_DEFAULT_DCB_APP_NUM 1
#define I40E_DEFAULT_DCB_APP_PRIO 3
static int eth_i40e_dev_init(struct rte_eth_dev *eth_dev);
static int eth_i40e_dev_uninit(struct rte_eth_dev *eth_dev);
static int i40e_dev_configure(struct rte_eth_dev *dev);
static int i40e_dev_start(struct rte_eth_dev *dev);
static void i40e_dev_stop(struct rte_eth_dev *dev);
static void i40e_dev_close(struct rte_eth_dev *dev);
static void i40e_dev_promiscuous_enable(struct rte_eth_dev *dev);
static void i40e_dev_promiscuous_disable(struct rte_eth_dev *dev);
static void i40e_dev_allmulticast_enable(struct rte_eth_dev *dev);
static void i40e_dev_allmulticast_disable(struct rte_eth_dev *dev);
static int i40e_dev_set_link_up(struct rte_eth_dev *dev);
static int i40e_dev_set_link_down(struct rte_eth_dev *dev);
static void i40e_dev_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats);
static int i40e_dev_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstats *xstats, unsigned n);
static void i40e_dev_stats_reset(struct rte_eth_dev *dev);
static void i40e_dev_xstats_reset(struct rte_eth_dev *dev);
static int i40e_dev_queue_stats_mapping_set(struct rte_eth_dev *dev,
uint16_t queue_id,
uint8_t stat_idx,
uint8_t is_rx);
static void i40e_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int i40e_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id,
int on);
static void i40e_vlan_tpid_set(struct rte_eth_dev *dev, uint16_t tpid);
static void i40e_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static void i40e_vlan_strip_queue_set(struct rte_eth_dev *dev,
uint16_t queue,
int on);
static int i40e_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on);
static int i40e_dev_led_on(struct rte_eth_dev *dev);
static int i40e_dev_led_off(struct rte_eth_dev *dev);
static int i40e_flow_ctrl_get(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf);
static int i40e_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf);
static int i40e_priority_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_pfc_conf *pfc_conf);
static void i40e_macaddr_add(struct rte_eth_dev *dev,
struct ether_addr *mac_addr,
uint32_t index,
uint32_t pool);
static void i40e_macaddr_remove(struct rte_eth_dev *dev, uint32_t index);
static int i40e_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int i40e_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int i40e_get_cap(struct i40e_hw *hw);
static int i40e_pf_parameter_init(struct rte_eth_dev *dev);
static int i40e_pf_setup(struct i40e_pf *pf);
static int i40e_dev_rxtx_init(struct i40e_pf *pf);
static int i40e_vmdq_setup(struct rte_eth_dev *dev);
static int i40e_dcb_init_configure(struct rte_eth_dev *dev, bool sw_dcb);
static int i40e_dcb_setup(struct rte_eth_dev *dev);
static void i40e_stat_update_32(struct i40e_hw *hw, uint32_t reg,
bool offset_loaded, uint64_t *offset, uint64_t *stat);
static void i40e_stat_update_48(struct i40e_hw *hw,
uint32_t hireg,
uint32_t loreg,
bool offset_loaded,
uint64_t *offset,
uint64_t *stat);
static void i40e_pf_config_irq0(struct i40e_hw *hw);
static void i40e_dev_interrupt_handler(
__rte_unused struct rte_intr_handle *handle, void *param);
static int i40e_res_pool_init(struct i40e_res_pool_info *pool,
uint32_t base, uint32_t num);
static void i40e_res_pool_destroy(struct i40e_res_pool_info *pool);
static int i40e_res_pool_free(struct i40e_res_pool_info *pool,
uint32_t base);
static int i40e_res_pool_alloc(struct i40e_res_pool_info *pool,
uint16_t num);
static int i40e_dev_init_vlan(struct rte_eth_dev *dev);
static int i40e_veb_release(struct i40e_veb *veb);
static struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf,
struct i40e_vsi *vsi);
static int i40e_pf_config_mq_rx(struct i40e_pf *pf);
static int i40e_vsi_config_double_vlan(struct i40e_vsi *vsi, int on);
static inline int i40e_find_all_vlan_for_mac(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *mv_f,
int num,
struct ether_addr *addr);
static inline int i40e_find_all_mac_for_vlan(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *mv_f,
int num,
uint16_t vlan);
static int i40e_vsi_remove_all_macvlan_filter(struct i40e_vsi *vsi);
static int i40e_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int i40e_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int i40e_dev_udp_tunnel_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel);
static int i40e_dev_udp_tunnel_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel);
static int i40e_ethertype_filter_set(struct i40e_pf *pf,
struct rte_eth_ethertype_filter *filter,
bool add);
static int i40e_ethertype_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg);
static int i40e_dev_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg);
static int i40e_dev_get_dcb_info(struct rte_eth_dev *dev,
struct rte_eth_dcb_info *dcb_info);
static void i40e_configure_registers(struct i40e_hw *hw);
static void i40e_hw_init(struct i40e_hw *hw);
static int i40e_config_qinq(struct i40e_hw *hw, struct i40e_vsi *vsi);
static int i40e_mirror_rule_set(struct rte_eth_dev *dev,
struct rte_eth_mirror_conf *mirror_conf,
uint8_t sw_id, uint8_t on);
static int i40e_mirror_rule_reset(struct rte_eth_dev *dev, uint8_t sw_id);
static int i40e_timesync_enable(struct rte_eth_dev *dev);
static int i40e_timesync_disable(struct rte_eth_dev *dev);
static int i40e_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp,
uint32_t flags);
static int i40e_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp);
static void i40e_read_stats_registers(struct i40e_pf *pf, struct i40e_hw *hw);
static const struct rte_pci_id pci_id_i40e_map[] = {
#define RTE_PCI_DEV_ID_DECL_I40E(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
#include "rte_pci_dev_ids.h"
{ .vendor_id = 0, /* sentinel */ },
};
static const struct eth_dev_ops i40e_eth_dev_ops = {
.dev_configure = i40e_dev_configure,
.dev_start = i40e_dev_start,
.dev_stop = i40e_dev_stop,
.dev_close = i40e_dev_close,
.promiscuous_enable = i40e_dev_promiscuous_enable,
.promiscuous_disable = i40e_dev_promiscuous_disable,
.allmulticast_enable = i40e_dev_allmulticast_enable,
.allmulticast_disable = i40e_dev_allmulticast_disable,
.dev_set_link_up = i40e_dev_set_link_up,
.dev_set_link_down = i40e_dev_set_link_down,
.link_update = i40e_dev_link_update,
.stats_get = i40e_dev_stats_get,
.xstats_get = i40e_dev_xstats_get,
.stats_reset = i40e_dev_stats_reset,
.xstats_reset = i40e_dev_xstats_reset,
.queue_stats_mapping_set = i40e_dev_queue_stats_mapping_set,
.dev_infos_get = i40e_dev_info_get,
.vlan_filter_set = i40e_vlan_filter_set,
.vlan_tpid_set = i40e_vlan_tpid_set,
.vlan_offload_set = i40e_vlan_offload_set,
.vlan_strip_queue_set = i40e_vlan_strip_queue_set,
.vlan_pvid_set = i40e_vlan_pvid_set,
.rx_queue_start = i40e_dev_rx_queue_start,
.rx_queue_stop = i40e_dev_rx_queue_stop,
.tx_queue_start = i40e_dev_tx_queue_start,
.tx_queue_stop = i40e_dev_tx_queue_stop,
.rx_queue_setup = i40e_dev_rx_queue_setup,
.rx_queue_release = i40e_dev_rx_queue_release,
.rx_queue_count = i40e_dev_rx_queue_count,
.rx_descriptor_done = i40e_dev_rx_descriptor_done,
.tx_queue_setup = i40e_dev_tx_queue_setup,
.tx_queue_release = i40e_dev_tx_queue_release,
.dev_led_on = i40e_dev_led_on,
.dev_led_off = i40e_dev_led_off,
.flow_ctrl_get = i40e_flow_ctrl_get,
.flow_ctrl_set = i40e_flow_ctrl_set,
.priority_flow_ctrl_set = i40e_priority_flow_ctrl_set,
.mac_addr_add = i40e_macaddr_add,
.mac_addr_remove = i40e_macaddr_remove,
.reta_update = i40e_dev_rss_reta_update,
.reta_query = i40e_dev_rss_reta_query,
.rss_hash_update = i40e_dev_rss_hash_update,
.rss_hash_conf_get = i40e_dev_rss_hash_conf_get,
.udp_tunnel_add = i40e_dev_udp_tunnel_add,
.udp_tunnel_del = i40e_dev_udp_tunnel_del,
.filter_ctrl = i40e_dev_filter_ctrl,
.rxq_info_get = i40e_rxq_info_get,
.txq_info_get = i40e_txq_info_get,
.mirror_rule_set = i40e_mirror_rule_set,
.mirror_rule_reset = i40e_mirror_rule_reset,
.timesync_enable = i40e_timesync_enable,
.timesync_disable = i40e_timesync_disable,
.timesync_read_rx_timestamp = i40e_timesync_read_rx_timestamp,
.timesync_read_tx_timestamp = i40e_timesync_read_tx_timestamp,
.get_dcb_info = i40e_dev_get_dcb_info,
};
/* store statistics names and its offset in stats structure */
struct rte_i40e_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned offset;
};
static const struct rte_i40e_xstats_name_off rte_i40e_stats_strings[] = {
{"rx_unicast_packets", offsetof(struct i40e_eth_stats, rx_unicast)},
{"rx_multicast_packets", offsetof(struct i40e_eth_stats, rx_multicast)},
{"rx_broadcast_packets", offsetof(struct i40e_eth_stats, rx_broadcast)},
{"rx_dropped", offsetof(struct i40e_eth_stats, rx_discards)},
{"rx_unknown_protocol_packets", offsetof(struct i40e_eth_stats,
rx_unknown_protocol)},
{"tx_unicast_packets", offsetof(struct i40e_eth_stats, tx_unicast)},
{"tx_multicast_packets", offsetof(struct i40e_eth_stats, tx_multicast)},
{"tx_broadcast_packets", offsetof(struct i40e_eth_stats, tx_broadcast)},
{"tx_dropped", offsetof(struct i40e_eth_stats, tx_discards)},
};
static const struct rte_i40e_xstats_name_off rte_i40e_hw_port_strings[] = {
{"tx_link_down_dropped", offsetof(struct i40e_hw_port_stats,
tx_dropped_link_down)},
{"rx_crc_errors", offsetof(struct i40e_hw_port_stats, crc_errors)},
{"rx_illegal_byte_errors", offsetof(struct i40e_hw_port_stats,
illegal_bytes)},
{"rx_error_bytes", offsetof(struct i40e_hw_port_stats, error_bytes)},
{"mac_local_errors", offsetof(struct i40e_hw_port_stats,
mac_local_faults)},
{"mac_remote_errors", offsetof(struct i40e_hw_port_stats,
mac_remote_faults)},
{"rx_length_errors", offsetof(struct i40e_hw_port_stats,
rx_length_errors)},
{"tx_xon_packets", offsetof(struct i40e_hw_port_stats, link_xon_tx)},
{"rx_xon_packets", offsetof(struct i40e_hw_port_stats, link_xon_rx)},
{"tx_xoff_packets", offsetof(struct i40e_hw_port_stats, link_xoff_tx)},
{"rx_xoff_packets", offsetof(struct i40e_hw_port_stats, link_xoff_rx)},
{"rx_size_64_packets", offsetof(struct i40e_hw_port_stats, rx_size_64)},
{"rx_size_65_to_127_packets", offsetof(struct i40e_hw_port_stats,
rx_size_127)},
{"rx_size_128_to_255_packets", offsetof(struct i40e_hw_port_stats,
rx_size_255)},
{"rx_size_256_to_511_packets", offsetof(struct i40e_hw_port_stats,
rx_size_511)},
{"rx_size_512_to_1023_packets", offsetof(struct i40e_hw_port_stats,
rx_size_1023)},
{"rx_size_1024_to_1522_packets", offsetof(struct i40e_hw_port_stats,
rx_size_1522)},
{"rx_size_1523_to_max_packets", offsetof(struct i40e_hw_port_stats,
rx_size_big)},
{"rx_undersized_errors", offsetof(struct i40e_hw_port_stats,
rx_undersize)},
{"rx_oversize_errors", offsetof(struct i40e_hw_port_stats,
rx_oversize)},
{"rx_mac_short_dropped", offsetof(struct i40e_hw_port_stats,
mac_short_packet_dropped)},
{"rx_fragmented_errors", offsetof(struct i40e_hw_port_stats,
rx_fragments)},
{"rx_jabber_errors", offsetof(struct i40e_hw_port_stats, rx_jabber)},
{"tx_size_64_packets", offsetof(struct i40e_hw_port_stats, tx_size_64)},
{"tx_size_65_to_127_packets", offsetof(struct i40e_hw_port_stats,
tx_size_127)},
{"tx_size_128_to_255_packets", offsetof(struct i40e_hw_port_stats,
tx_size_255)},
{"tx_size_256_to_511_packets", offsetof(struct i40e_hw_port_stats,
tx_size_511)},
{"tx_size_512_to_1023_packets", offsetof(struct i40e_hw_port_stats,
tx_size_1023)},
{"tx_size_1024_to_1522_packets", offsetof(struct i40e_hw_port_stats,
tx_size_1522)},
{"tx_size_1523_to_max_packets", offsetof(struct i40e_hw_port_stats,
tx_size_big)},
{"rx_flow_director_atr_match_packets",
offsetof(struct i40e_hw_port_stats, fd_atr_match)},
{"rx_flow_director_sb_match_packets",
offsetof(struct i40e_hw_port_stats, fd_sb_match)},
{"tx_low_power_idle_status", offsetof(struct i40e_hw_port_stats,
tx_lpi_status)},
{"rx_low_power_idle_status", offsetof(struct i40e_hw_port_stats,
rx_lpi_status)},
{"tx_low_power_idle_count", offsetof(struct i40e_hw_port_stats,
tx_lpi_count)},
{"rx_low_power_idle_count", offsetof(struct i40e_hw_port_stats,
rx_lpi_count)},
};
/* Q Stats: 5 stats are exposed for each queue, implemented in xstats_get() */
#define I40E_NB_HW_PORT_Q_STATS (8 * 5)
#define I40E_NB_ETH_XSTATS (sizeof(rte_i40e_stats_strings) / \
sizeof(rte_i40e_stats_strings[0]))
#define I40E_NB_HW_PORT_XSTATS (sizeof(rte_i40e_hw_port_strings) / \
sizeof(rte_i40e_hw_port_strings[0]))
#define I40E_NB_XSTATS (I40E_NB_ETH_XSTATS + I40E_NB_HW_PORT_XSTATS + \
I40E_NB_HW_PORT_Q_STATS)
static struct eth_driver rte_i40e_pmd = {
.pci_drv = {
.name = "rte_i40e_pmd",
.id_table = pci_id_i40e_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
RTE_PCI_DRV_DETACHABLE,
},
.eth_dev_init = eth_i40e_dev_init,
.eth_dev_uninit = eth_i40e_dev_uninit,
.dev_private_size = sizeof(struct i40e_adapter),
};
static inline int
rte_i40e_dev_atomic_read_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = link;
struct rte_eth_link *src = &(dev->data->dev_link);
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
static inline int
rte_i40e_dev_atomic_write_link_status(struct rte_eth_dev *dev,
struct rte_eth_link *link)
{
struct rte_eth_link *dst = &(dev->data->dev_link);
struct rte_eth_link *src = link;
if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
*(uint64_t *)src) == 0)
return -1;
return 0;
}
/*
* Driver initialization routine.
* Invoked once at EAL init time.
* Register itself as the [Poll Mode] Driver of PCI IXGBE devices.
*/
static int
rte_i40e_pmd_init(const char *name __rte_unused,
const char *params __rte_unused)
{
PMD_INIT_FUNC_TRACE();
rte_eth_driver_register(&rte_i40e_pmd);
return 0;
}
static struct rte_driver rte_i40e_driver = {
.type = PMD_PDEV,
.init = rte_i40e_pmd_init,
};
PMD_REGISTER_DRIVER(rte_i40e_driver);
/*
* Initialize registers for flexible payload, which should be set by NVM.
* This should be removed from code once it is fixed in NVM.
*/
#ifndef I40E_GLQF_ORT
#define I40E_GLQF_ORT(_i) (0x00268900 + ((_i) * 4))
#endif
#ifndef I40E_GLQF_PIT
#define I40E_GLQF_PIT(_i) (0x00268C80 + ((_i) * 4))
#endif
static inline void i40e_flex_payload_reg_init(struct i40e_hw *hw)
{
I40E_WRITE_REG(hw, I40E_GLQF_ORT(18), 0x00000030);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(19), 0x00000030);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(26), 0x0000002B);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(30), 0x0000002B);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(33), 0x000000E0);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(34), 0x000000E3);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(35), 0x000000E6);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(20), 0x00000031);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(23), 0x00000031);
I40E_WRITE_REG(hw, I40E_GLQF_ORT(63), 0x0000002D);
/* GLQF_PIT Registers */
I40E_WRITE_REG(hw, I40E_GLQF_PIT(16), 0x00007480);
I40E_WRITE_REG(hw, I40E_GLQF_PIT(17), 0x00007440);
}
#define I40E_FLOW_CONTROL_ETHERTYPE 0x8808
/*
* Add a ethertype filter to drop all flow control frames transmitted
* from VSIs.
*/
static void
i40e_add_tx_flow_control_drop_filter(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
uint16_t flags = I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC |
I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP |
I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TX;
int ret;
ret = i40e_aq_add_rem_control_packet_filter(hw, NULL,
I40E_FLOW_CONTROL_ETHERTYPE, flags,
pf->main_vsi_seid, 0,
TRUE, NULL, NULL);
if (ret)
PMD_INIT_LOG(ERR, "Failed to add filter to drop flow control "
" frames from VSIs.");
}
static int
eth_i40e_dev_init(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev;
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi;
int ret;
uint32_t len;
uint8_t aq_fail = 0;
PMD_INIT_FUNC_TRACE();
dev->dev_ops = &i40e_eth_dev_ops;
dev->rx_pkt_burst = i40e_recv_pkts;
dev->tx_pkt_burst = i40e_xmit_pkts;
/* for secondary processes, we don't initialise any further as primary
* has already done this work. Only check we don't need a different
* RX function */
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
i40e_set_rx_function(dev);
i40e_set_tx_function(dev);
return 0;
}
pci_dev = dev->pci_dev;
pf->adapter = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
pf->adapter->eth_dev = dev;
pf->dev_data = dev->data;
hw->back = I40E_PF_TO_ADAPTER(pf);
hw->hw_addr = (uint8_t *)(pci_dev->mem_resource[0].addr);
if (!hw->hw_addr) {
PMD_INIT_LOG(ERR, "Hardware is not available, "
"as address is NULL");
return -ENODEV;
}
hw->vendor_id = pci_dev->id.vendor_id;
hw->device_id = pci_dev->id.device_id;
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
hw->bus.device = pci_dev->addr.devid;
hw->bus.func = pci_dev->addr.function;
hw->adapter_stopped = 0;
/* Make sure all is clean before doing PF reset */
i40e_clear_hw(hw);
/* Initialize the hardware */
i40e_hw_init(hw);
/* Reset here to make sure all is clean for each PF */
ret = i40e_pf_reset(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to reset pf: %d", ret);
return ret;
}
/* Initialize the shared code (base driver) */
ret = i40e_init_shared_code(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init shared code (base driver): %d", ret);
return ret;
}
/*
* To work around the NVM issue,initialize registers
* for flexible payload by software.
* It should be removed once issues are fixed in NVM.
*/
i40e_flex_payload_reg_init(hw);
/* Initialize the parameters for adminq */
i40e_init_adminq_parameter(hw);
ret = i40e_init_adminq(hw);
if (ret != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to init adminq: %d", ret);
return -EIO;
}
PMD_INIT_LOG(INFO, "FW %d.%d API %d.%d NVM %02d.%02d.%02d eetrack %04x",
hw->aq.fw_maj_ver, hw->aq.fw_min_ver,
hw->aq.api_maj_ver, hw->aq.api_min_ver,
((hw->nvm.version >> 12) & 0xf),
((hw->nvm.version >> 4) & 0xff),
(hw->nvm.version & 0xf), hw->nvm.eetrack);
/* Clear PXE mode */
i40e_clear_pxe_mode(hw);
/*
* On X710, performance number is far from the expectation on recent
* firmware versions. The fix for this issue may not be integrated in
* the following firmware version. So the workaround in software driver
* is needed. It needs to modify the initial values of 3 internal only
* registers. Note that the workaround can be removed when it is fixed
* in firmware in the future.
*/
i40e_configure_registers(hw);
/* Get hw capabilities */
ret = i40e_get_cap(hw);
if (ret != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to get capabilities: %d", ret);
goto err_get_capabilities;
}
/* Initialize parameters for PF */
ret = i40e_pf_parameter_init(dev);
if (ret != 0) {
PMD_INIT_LOG(ERR, "Failed to do parameter init: %d", ret);
goto err_parameter_init;
}
/* Initialize the queue management */
ret = i40e_res_pool_init(&pf->qp_pool, 0, hw->func_caps.num_tx_qp);
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to init queue pool");
goto err_qp_pool_init;
}
ret = i40e_res_pool_init(&pf->msix_pool, 1,
hw->func_caps.num_msix_vectors - 1);
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to init MSIX pool");
goto err_msix_pool_init;
}
/* Initialize lan hmc */
ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
hw->func_caps.num_rx_qp, 0, 0);
if (ret != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to init lan hmc: %d", ret);
goto err_init_lan_hmc;
}
/* Configure lan hmc */
ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
if (ret != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "Failed to configure lan hmc: %d", ret);
goto err_configure_lan_hmc;
}
/* Get and check the mac address */
i40e_get_mac_addr(hw, hw->mac.addr);
if (i40e_validate_mac_addr(hw->mac.addr) != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "mac address is not valid");
ret = -EIO;
goto err_get_mac_addr;
}
/* Copy the permanent MAC address */
ether_addr_copy((struct ether_addr *) hw->mac.addr,
(struct ether_addr *) hw->mac.perm_addr);
/* Disable flow control */
hw->fc.requested_mode = I40E_FC_NONE;
i40e_set_fc(hw, &aq_fail, TRUE);
/* PF setup, which includes VSI setup */
ret = i40e_pf_setup(pf);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to setup pf switch: %d", ret);
goto err_setup_pf_switch;
}
vsi = pf->main_vsi;
/* Disable double vlan by default */
i40e_vsi_config_double_vlan(vsi, FALSE);
if (!vsi->max_macaddrs)
len = ETHER_ADDR_LEN;
else
len = ETHER_ADDR_LEN * vsi->max_macaddrs;
/* Should be after VSI initialized */
dev->data->mac_addrs = rte_zmalloc("i40e", len, 0);
if (!dev->data->mac_addrs) {
PMD_INIT_LOG(ERR, "Failed to allocated memory "
"for storing mac address");
goto err_mac_alloc;
}
ether_addr_copy((struct ether_addr *)hw->mac.perm_addr,
&dev->data->mac_addrs[0]);
/* initialize pf host driver to setup SRIOV resource if applicable */
i40e_pf_host_init(dev);
/* register callback func to eal lib */
rte_intr_callback_register(&(pci_dev->intr_handle),
i40e_dev_interrupt_handler, (void *)dev);
/* configure and enable device interrupt */
i40e_pf_config_irq0(hw);
i40e_pf_enable_irq0(hw);
/* enable uio intr after callback register */
rte_intr_enable(&(pci_dev->intr_handle));
/*
* Add an ethertype filter to drop all flow control frames transmitted
* from VSIs. By doing so, we stop VF from sending out PAUSE or PFC
* frames to wire.
*/
i40e_add_tx_flow_control_drop_filter(pf);
/* initialize mirror rule list */
TAILQ_INIT(&pf->mirror_list);
/* Init dcb to sw mode by default */
ret = i40e_dcb_init_configure(dev, TRUE);
if (ret != I40E_SUCCESS) {
PMD_INIT_LOG(INFO, "Failed to init dcb.");
pf->flags &= ~I40E_FLAG_DCB;
}
return 0;
err_mac_alloc:
i40e_vsi_release(pf->main_vsi);
err_setup_pf_switch:
err_get_mac_addr:
err_configure_lan_hmc:
(void)i40e_shutdown_lan_hmc(hw);
err_init_lan_hmc:
i40e_res_pool_destroy(&pf->msix_pool);
err_msix_pool_init:
i40e_res_pool_destroy(&pf->qp_pool);
err_qp_pool_init:
err_parameter_init:
err_get_capabilities:
(void)i40e_shutdown_adminq(hw);
return ret;
}
static int
eth_i40e_dev_uninit(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev;
struct i40e_hw *hw;
struct i40e_filter_control_settings settings;
int ret;
uint8_t aq_fail = 0;
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
pci_dev = dev->pci_dev;
if (hw->adapter_stopped == 0)
i40e_dev_close(dev);
dev->dev_ops = NULL;
dev->rx_pkt_burst = NULL;
dev->tx_pkt_burst = NULL;
/* Disable LLDP */
ret = i40e_aq_stop_lldp(hw, true, NULL);
if (ret != I40E_SUCCESS) /* Its failure can be ignored */
PMD_INIT_LOG(INFO, "Failed to stop lldp");
/* Clear PXE mode */
i40e_clear_pxe_mode(hw);
/* Unconfigure filter control */
memset(&settings, 0, sizeof(settings));
ret = i40e_set_filter_control(hw, &settings);
if (ret)
PMD_INIT_LOG(WARNING, "setup_pf_filter_control failed: %d",
ret);
/* Disable flow control */
hw->fc.requested_mode = I40E_FC_NONE;
i40e_set_fc(hw, &aq_fail, TRUE);
/* uninitialize pf host driver */
i40e_pf_host_uninit(dev);
rte_free(dev->data->mac_addrs);
dev->data->mac_addrs = NULL;
/* disable uio intr before callback unregister */
rte_intr_disable(&(pci_dev->intr_handle));
/* register callback func to eal lib */
rte_intr_callback_unregister(&(pci_dev->intr_handle),
i40e_dev_interrupt_handler, (void *)dev);
return 0;
}
static int
i40e_dev_configure(struct rte_eth_dev *dev)
{
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
int i, ret;
/* Initialize to TRUE. If any of Rx queues doesn't meet the
* bulk allocation or vector Rx preconditions we will reset it.
*/
ad->rx_bulk_alloc_allowed = true;
ad->rx_vec_allowed = true;
ad->tx_simple_allowed = true;
ad->tx_vec_allowed = true;
if (dev->data->dev_conf.fdir_conf.mode == RTE_FDIR_MODE_PERFECT) {
ret = i40e_fdir_setup(pf);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to setup flow director.");
return -ENOTSUP;
}
ret = i40e_fdir_configure(dev);
if (ret < 0) {
PMD_DRV_LOG(ERR, "failed to configure fdir.");
goto err;
}
} else
i40e_fdir_teardown(pf);
ret = i40e_dev_init_vlan(dev);
if (ret < 0)
goto err;
/* VMDQ setup.
* Needs to move VMDQ setting out of i40e_pf_config_mq_rx() as VMDQ and
* RSS setting have different requirements.
* General PMD driver call sequence are NIC init, configure,
* rx/tx_queue_setup and dev_start. In rx/tx_queue_setup() function, it
* will try to lookup the VSI that specific queue belongs to if VMDQ
* applicable. So, VMDQ setting has to be done before
* rx/tx_queue_setup(). This function is good to place vmdq_setup.
* For RSS setting, it will try to calculate actual configured RX queue
* number, which will be available after rx_queue_setup(). dev_start()
* function is good to place RSS setup.
*/
if (mq_mode & ETH_MQ_RX_VMDQ_FLAG) {
ret = i40e_vmdq_setup(dev);
if (ret)
goto err;
}
if (mq_mode & ETH_MQ_RX_DCB_FLAG) {
ret = i40e_dcb_setup(dev);
if (ret) {
PMD_DRV_LOG(ERR, "failed to configure DCB.");
goto err_dcb;
}
}
return 0;
err_dcb:
/* need to release vmdq resource if exists */
for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) {
i40e_vsi_release(pf->vmdq[i].vsi);
pf->vmdq[i].vsi = NULL;
}
rte_free(pf->vmdq);
pf->vmdq = NULL;
err:
/* need to release fdir resource if exists */
i40e_fdir_teardown(pf);
return ret;
}
void
i40e_vsi_queues_unbind_intr(struct i40e_vsi *vsi)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t msix_vect = vsi->msix_intr;
uint16_t i;
for (i = 0; i < vsi->nb_qps; i++) {
I40E_WRITE_REG(hw, I40E_QINT_TQCTL(vsi->base_queue + i), 0);
I40E_WRITE_REG(hw, I40E_QINT_RQCTL(vsi->base_queue + i), 0);
rte_wmb();
}
if (vsi->type != I40E_VSI_SRIOV) {
I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(msix_vect - 1), 0);
I40E_WRITE_REG(hw, I40E_PFINT_ITRN(I40E_ITR_INDEX_DEFAULT,
msix_vect - 1), 0);
} else {
uint32_t reg;
reg = (hw->func_caps.num_msix_vectors_vf - 1) *
vsi->user_param + (msix_vect - 1);
I40E_WRITE_REG(hw, I40E_VPINT_LNKLSTN(reg), 0);
}
I40E_WRITE_FLUSH(hw);
}
static inline uint16_t
i40e_calc_itr_interval(int16_t interval)
{
if (interval < 0 || interval > I40E_QUEUE_ITR_INTERVAL_MAX)
interval = I40E_QUEUE_ITR_INTERVAL_DEFAULT;
/* Convert to hardware count, as writing each 1 represents 2 us */
return (interval/2);
}
void
i40e_vsi_queues_bind_intr(struct i40e_vsi *vsi)
{
uint32_t val;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t msix_vect = vsi->msix_intr;
int i;
for (i = 0; i < vsi->nb_qps; i++)
I40E_WRITE_REG(hw, I40E_QINT_TQCTL(vsi->base_queue + i), 0);
/* Bind all RX queues to allocated MSIX interrupt */
for (i = 0; i < vsi->nb_qps; i++) {
val = (msix_vect << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
I40E_QINT_RQCTL_ITR_INDX_MASK |
((vsi->base_queue + i + 1) <<
I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
(0 << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT) |
I40E_QINT_RQCTL_CAUSE_ENA_MASK;
if (i == vsi->nb_qps - 1)
val |= I40E_QINT_RQCTL_NEXTQ_INDX_MASK;
I40E_WRITE_REG(hw, I40E_QINT_RQCTL(vsi->base_queue + i), val);
}
/* Write first RX queue to Link list register as the head element */
if (vsi->type != I40E_VSI_SRIOV) {
uint16_t interval =
i40e_calc_itr_interval(RTE_LIBRTE_I40E_ITR_INTERVAL);
I40E_WRITE_REG(hw, I40E_PFINT_LNKLSTN(msix_vect - 1),
(vsi->base_queue <<
I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT) |
(0x0 << I40E_PFINT_LNKLSTN_FIRSTQ_TYPE_SHIFT));
I40E_WRITE_REG(hw, I40E_PFINT_ITRN(I40E_ITR_INDEX_DEFAULT,
msix_vect - 1), interval);
#ifndef I40E_GLINT_CTL
#define I40E_GLINT_CTL 0x0003F800
#define I40E_GLINT_CTL_DIS_AUTOMASK_N_MASK 0x4
#endif
/* Disable auto-mask on enabling of all none-zero interrupt */
I40E_WRITE_REG(hw, I40E_GLINT_CTL,
I40E_GLINT_CTL_DIS_AUTOMASK_N_MASK);
} else {
uint32_t reg;
/* num_msix_vectors_vf needs to minus irq0 */
reg = (hw->func_caps.num_msix_vectors_vf - 1) *
vsi->user_param + (msix_vect - 1);
I40E_WRITE_REG(hw, I40E_VPINT_LNKLSTN(reg), (vsi->base_queue <<
I40E_VPINT_LNKLSTN_FIRSTQ_INDX_SHIFT) |
(0x0 << I40E_VPINT_LNKLSTN_FIRSTQ_TYPE_SHIFT));
}
I40E_WRITE_FLUSH(hw);
}
static void
i40e_vsi_enable_queues_intr(struct i40e_vsi *vsi)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
uint16_t interval = i40e_calc_itr_interval(\
RTE_LIBRTE_I40E_ITR_INTERVAL);
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(vsi->msix_intr - 1),
I40E_PFINT_DYN_CTLN_INTENA_MASK |
I40E_PFINT_DYN_CTLN_CLEARPBA_MASK |
(0 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
(interval << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT));
}
static void
i40e_vsi_disable_queues_intr(struct i40e_vsi *vsi)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTLN(vsi->msix_intr - 1), 0);
}
static inline uint8_t
i40e_parse_link_speed(uint16_t eth_link_speed)
{
uint8_t link_speed = I40E_LINK_SPEED_UNKNOWN;
switch (eth_link_speed) {
case ETH_LINK_SPEED_40G:
link_speed = I40E_LINK_SPEED_40GB;
break;
case ETH_LINK_SPEED_20G:
link_speed = I40E_LINK_SPEED_20GB;
break;
case ETH_LINK_SPEED_10G:
link_speed = I40E_LINK_SPEED_10GB;
break;
case ETH_LINK_SPEED_1000:
link_speed = I40E_LINK_SPEED_1GB;
break;
case ETH_LINK_SPEED_100:
link_speed = I40E_LINK_SPEED_100MB;
break;
}
return link_speed;
}
static int
i40e_phy_conf_link(struct i40e_hw *hw, uint8_t abilities, uint8_t force_speed)
{
enum i40e_status_code status;
struct i40e_aq_get_phy_abilities_resp phy_ab;
struct i40e_aq_set_phy_config phy_conf;
const uint8_t mask = I40E_AQ_PHY_FLAG_PAUSE_TX |
I40E_AQ_PHY_FLAG_PAUSE_RX |
I40E_AQ_PHY_FLAG_LOW_POWER;
const uint8_t advt = I40E_LINK_SPEED_40GB |
I40E_LINK_SPEED_10GB |
I40E_LINK_SPEED_1GB |
I40E_LINK_SPEED_100MB;
int ret = -ENOTSUP;
/* Skip it on 40G interfaces, as a workaround for the link issue */
if (i40e_is_40G_device(hw->device_id))
return I40E_SUCCESS;
status = i40e_aq_get_phy_capabilities(hw, false, false, &phy_ab,
NULL);
if (status)
return ret;
memset(&phy_conf, 0, sizeof(phy_conf));
/* bits 0-2 use the values from get_phy_abilities_resp */
abilities &= ~mask;
abilities |= phy_ab.abilities & mask;
/* update ablities and speed */
if (abilities & I40E_AQ_PHY_AN_ENABLED)
phy_conf.link_speed = advt;
else
phy_conf.link_speed = force_speed;
phy_conf.abilities = abilities;
/* use get_phy_abilities_resp value for the rest */
phy_conf.phy_type = phy_ab.phy_type;
phy_conf.eee_capability = phy_ab.eee_capability;
phy_conf.eeer = phy_ab.eeer_val;
phy_conf.low_power_ctrl = phy_ab.d3_lpan;
PMD_DRV_LOG(DEBUG, "\tCurrent: abilities %x, link_speed %x",
phy_ab.abilities, phy_ab.link_speed);
PMD_DRV_LOG(DEBUG, "\tConfig: abilities %x, link_speed %x",
phy_conf.abilities, phy_conf.link_speed);
status = i40e_aq_set_phy_config(hw, &phy_conf, NULL);
if (status)
return ret;
return I40E_SUCCESS;
}
static int
i40e_apply_link_speed(struct rte_eth_dev *dev)
{
uint8_t speed;
uint8_t abilities = 0;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_conf *conf = &dev->data->dev_conf;
speed = i40e_parse_link_speed(conf->link_speed);
abilities |= I40E_AQ_PHY_ENABLE_ATOMIC_LINK;
if (conf->link_speed == ETH_LINK_SPEED_AUTONEG)
abilities |= I40E_AQ_PHY_AN_ENABLED;
else
abilities |= I40E_AQ_PHY_LINK_ENABLED;
return i40e_phy_conf_link(hw, abilities, speed);
}
static int
i40e_dev_start(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *main_vsi = pf->main_vsi;
int ret, i;
hw->adapter_stopped = 0;
if ((dev->data->dev_conf.link_duplex != ETH_LINK_AUTONEG_DUPLEX) &&
(dev->data->dev_conf.link_duplex != ETH_LINK_FULL_DUPLEX)) {
PMD_INIT_LOG(ERR, "Invalid link_duplex (%hu) for port %hhu",
dev->data->dev_conf.link_duplex,
dev->data->port_id);
return -EINVAL;
}
/* Initialize VSI */
ret = i40e_dev_rxtx_init(pf);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to init rx/tx queues");
goto err_up;
}
/* Map queues with MSIX interrupt */
i40e_vsi_queues_bind_intr(main_vsi);
i40e_vsi_enable_queues_intr(main_vsi);
/* Map VMDQ VSI queues with MSIX interrupt */
for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) {
i40e_vsi_queues_bind_intr(pf->vmdq[i].vsi);
i40e_vsi_enable_queues_intr(pf->vmdq[i].vsi);
}
/* enable FDIR MSIX interrupt */
if (pf->fdir.fdir_vsi) {
i40e_vsi_queues_bind_intr(pf->fdir.fdir_vsi);
i40e_vsi_enable_queues_intr(pf->fdir.fdir_vsi);
}
/* Enable all queues which have been configured */
ret = i40e_dev_switch_queues(pf, TRUE);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to enable VSI");
goto err_up;
}
/* Enable receiving broadcast packets */
ret = i40e_aq_set_vsi_broadcast(hw, main_vsi->seid, true, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(INFO, "fail to set vsi broadcast");
for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) {
ret = i40e_aq_set_vsi_broadcast(hw, pf->vmdq[i].vsi->seid,
true, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(INFO, "fail to set vsi broadcast");
}
/* Apply link configure */
ret = i40e_apply_link_speed(dev);
if (I40E_SUCCESS != ret) {
PMD_DRV_LOG(ERR, "Fail to apply link setting");
goto err_up;
}
return I40E_SUCCESS;
err_up:
i40e_dev_switch_queues(pf, FALSE);
i40e_dev_clear_queues(dev);
return ret;
}
static void
i40e_dev_stop(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_vsi *main_vsi = pf->main_vsi;
struct i40e_mirror_rule *p_mirror;
int i;
/* Disable all queues */
i40e_dev_switch_queues(pf, FALSE);
/* un-map queues with interrupt registers */
i40e_vsi_disable_queues_intr(main_vsi);
i40e_vsi_queues_unbind_intr(main_vsi);
for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) {
i40e_vsi_disable_queues_intr(pf->vmdq[i].vsi);
i40e_vsi_queues_unbind_intr(pf->vmdq[i].vsi);
}
if (pf->fdir.fdir_vsi) {
i40e_vsi_queues_bind_intr(pf->fdir.fdir_vsi);
i40e_vsi_enable_queues_intr(pf->fdir.fdir_vsi);
}
/* Clear all queues and release memory */
i40e_dev_clear_queues(dev);
/* Set link down */
i40e_dev_set_link_down(dev);
/* Remove all mirror rules */
while ((p_mirror = TAILQ_FIRST(&pf->mirror_list))) {
TAILQ_REMOVE(&pf->mirror_list, p_mirror, rules);
rte_free(p_mirror);
}
pf->nb_mirror_rule = 0;
}
static void
i40e_dev_close(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
int i;
PMD_INIT_FUNC_TRACE();
i40e_dev_stop(dev);
hw->adapter_stopped = 1;
i40e_dev_free_queues(dev);
/* Disable interrupt */
i40e_pf_disable_irq0(hw);
rte_intr_disable(&(dev->pci_dev->intr_handle));
/* shutdown and destroy the HMC */
i40e_shutdown_lan_hmc(hw);
/* release all the existing VSIs and VEBs */
i40e_fdir_teardown(pf);
i40e_vsi_release(pf->main_vsi);
for (i = 0; i < pf->nb_cfg_vmdq_vsi; i++) {
i40e_vsi_release(pf->vmdq[i].vsi);
pf->vmdq[i].vsi = NULL;
}
rte_free(pf->vmdq);
pf->vmdq = NULL;
/* shutdown the adminq */
i40e_aq_queue_shutdown(hw, true);
i40e_shutdown_adminq(hw);
i40e_res_pool_destroy(&pf->qp_pool);
i40e_res_pool_destroy(&pf->msix_pool);
/* force a PF reset to clean anything leftover */
reg = I40E_READ_REG(hw, I40E_PFGEN_CTRL);
I40E_WRITE_REG(hw, I40E_PFGEN_CTRL,
(reg | I40E_PFGEN_CTRL_PFSWR_MASK));
I40E_WRITE_FLUSH(hw);
}
static void
i40e_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
int status;
status = i40e_aq_set_vsi_unicast_promiscuous(hw, vsi->seid,
true, NULL);
if (status != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to enable unicast promiscuous");
status = i40e_aq_set_vsi_multicast_promiscuous(hw, vsi->seid,
TRUE, NULL);
if (status != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to enable multicast promiscuous");
}
static void
i40e_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
int status;
status = i40e_aq_set_vsi_unicast_promiscuous(hw, vsi->seid,
false, NULL);
if (status != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to disable unicast promiscuous");
status = i40e_aq_set_vsi_multicast_promiscuous(hw, vsi->seid,
false, NULL);
if (status != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to disable multicast promiscuous");
}
static void
i40e_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
int ret;
ret = i40e_aq_set_vsi_multicast_promiscuous(hw, vsi->seid, TRUE, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to enable multicast promiscuous");
}
static void
i40e_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
int ret;
if (dev->data->promiscuous == 1)
return; /* must remain in all_multicast mode */
ret = i40e_aq_set_vsi_multicast_promiscuous(hw,
vsi->seid, FALSE, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to disable multicast promiscuous");
}
/*
* Set device link up.
*/
static int
i40e_dev_set_link_up(struct rte_eth_dev *dev)
{
/* re-apply link speed setting */
return i40e_apply_link_speed(dev);
}
/*
* Set device link down.
*/
static int
i40e_dev_set_link_down(__rte_unused struct rte_eth_dev *dev)
{
uint8_t speed = I40E_LINK_SPEED_UNKNOWN;
uint8_t abilities = I40E_AQ_PHY_ENABLE_ATOMIC_LINK;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
return i40e_phy_conf_link(hw, abilities, speed);
}
int
i40e_dev_link_update(struct rte_eth_dev *dev,
int wait_to_complete)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_REPEAT_TIME 10 /* 1s (10 * 100ms) in total */
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_link_status link_status;
struct rte_eth_link link, old;
int status;
unsigned rep_cnt = MAX_REPEAT_TIME;
memset(&link, 0, sizeof(link));
memset(&old, 0, sizeof(old));
memset(&link_status, 0, sizeof(link_status));
rte_i40e_dev_atomic_read_link_status(dev, &old);
do {
/* Get link status information from hardware */
status = i40e_aq_get_link_info(hw, false, &link_status, NULL);
if (status != I40E_SUCCESS) {
link.link_speed = ETH_LINK_SPEED_100;
link.link_duplex = ETH_LINK_FULL_DUPLEX;
PMD_DRV_LOG(ERR, "Failed to get link info");
goto out;
}
link.link_status = link_status.link_info & I40E_AQ_LINK_UP;
if (!wait_to_complete)
break;
rte_delay_ms(CHECK_INTERVAL);
} while (!link.link_status && rep_cnt--);
if (!link.link_status)
goto out;
/* i40e uses full duplex only */
link.link_duplex = ETH_LINK_FULL_DUPLEX;
/* Parse the link status */
switch (link_status.link_speed) {
case I40E_LINK_SPEED_100MB:
link.link_speed = ETH_LINK_SPEED_100;
break;
case I40E_LINK_SPEED_1GB:
link.link_speed = ETH_LINK_SPEED_1000;
break;
case I40E_LINK_SPEED_10GB:
link.link_speed = ETH_LINK_SPEED_10G;
break;
case I40E_LINK_SPEED_20GB:
link.link_speed = ETH_LINK_SPEED_20G;
break;
case I40E_LINK_SPEED_40GB:
link.link_speed = ETH_LINK_SPEED_40G;
break;
default:
link.link_speed = ETH_LINK_SPEED_100;
break;
}
out:
rte_i40e_dev_atomic_write_link_status(dev, &link);
if (link.link_status == old.link_status)
return -1;
return 0;
}
/* Get all the statistics of a VSI */
void
i40e_update_vsi_stats(struct i40e_vsi *vsi)
{
struct i40e_eth_stats *oes = &vsi->eth_stats_offset;
struct i40e_eth_stats *nes = &vsi->eth_stats;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int idx = rte_le_to_cpu_16(vsi->info.stat_counter_idx);
i40e_stat_update_48(hw, I40E_GLV_GORCH(idx), I40E_GLV_GORCL(idx),
vsi->offset_loaded, &oes->rx_bytes,
&nes->rx_bytes);
i40e_stat_update_48(hw, I40E_GLV_UPRCH(idx), I40E_GLV_UPRCL(idx),
vsi->offset_loaded, &oes->rx_unicast,
&nes->rx_unicast);
i40e_stat_update_48(hw, I40E_GLV_MPRCH(idx), I40E_GLV_MPRCL(idx),
vsi->offset_loaded, &oes->rx_multicast,
&nes->rx_multicast);
i40e_stat_update_48(hw, I40E_GLV_BPRCH(idx), I40E_GLV_BPRCL(idx),
vsi->offset_loaded, &oes->rx_broadcast,
&nes->rx_broadcast);
i40e_stat_update_32(hw, I40E_GLV_RDPC(idx), vsi->offset_loaded,
&oes->rx_discards, &nes->rx_discards);
/* GLV_REPC not supported */
/* GLV_RMPC not supported */
i40e_stat_update_32(hw, I40E_GLV_RUPP(idx), vsi->offset_loaded,
&oes->rx_unknown_protocol,
&nes->rx_unknown_protocol);
i40e_stat_update_48(hw, I40E_GLV_GOTCH(idx), I40E_GLV_GOTCL(idx),
vsi->offset_loaded, &oes->tx_bytes,
&nes->tx_bytes);
i40e_stat_update_48(hw, I40E_GLV_UPTCH(idx), I40E_GLV_UPTCL(idx),
vsi->offset_loaded, &oes->tx_unicast,
&nes->tx_unicast);
i40e_stat_update_48(hw, I40E_GLV_MPTCH(idx), I40E_GLV_MPTCL(idx),
vsi->offset_loaded, &oes->tx_multicast,
&nes->tx_multicast);
i40e_stat_update_48(hw, I40E_GLV_BPTCH(idx), I40E_GLV_BPTCL(idx),
vsi->offset_loaded, &oes->tx_broadcast,
&nes->tx_broadcast);
/* GLV_TDPC not supported */
i40e_stat_update_32(hw, I40E_GLV_TEPC(idx), vsi->offset_loaded,
&oes->tx_errors, &nes->tx_errors);
vsi->offset_loaded = true;
PMD_DRV_LOG(DEBUG, "***************** VSI[%u] stats start *******************",
vsi->vsi_id);
PMD_DRV_LOG(DEBUG, "rx_bytes: %"PRIu64"", nes->rx_bytes);
PMD_DRV_LOG(DEBUG, "rx_unicast: %"PRIu64"", nes->rx_unicast);
PMD_DRV_LOG(DEBUG, "rx_multicast: %"PRIu64"", nes->rx_multicast);
PMD_DRV_LOG(DEBUG, "rx_broadcast: %"PRIu64"", nes->rx_broadcast);
PMD_DRV_LOG(DEBUG, "rx_discards: %"PRIu64"", nes->rx_discards);
PMD_DRV_LOG(DEBUG, "rx_unknown_protocol: %"PRIu64"",
nes->rx_unknown_protocol);
PMD_DRV_LOG(DEBUG, "tx_bytes: %"PRIu64"", nes->tx_bytes);
PMD_DRV_LOG(DEBUG, "tx_unicast: %"PRIu64"", nes->tx_unicast);
PMD_DRV_LOG(DEBUG, "tx_multicast: %"PRIu64"", nes->tx_multicast);
PMD_DRV_LOG(DEBUG, "tx_broadcast: %"PRIu64"", nes->tx_broadcast);
PMD_DRV_LOG(DEBUG, "tx_discards: %"PRIu64"", nes->tx_discards);
PMD_DRV_LOG(DEBUG, "tx_errors: %"PRIu64"", nes->tx_errors);
PMD_DRV_LOG(DEBUG, "***************** VSI[%u] stats end *******************",
vsi->vsi_id);
}
static void
i40e_read_stats_registers(struct i40e_pf *pf, struct i40e_hw *hw)
{
unsigned int i;
struct i40e_hw_port_stats *ns = &pf->stats; /* new stats */
struct i40e_hw_port_stats *os = &pf->stats_offset; /* old stats */
/* Get statistics of struct i40e_eth_stats */
i40e_stat_update_48(hw, I40E_GLPRT_GORCH(hw->port),
I40E_GLPRT_GORCL(hw->port),
pf->offset_loaded, &os->eth.rx_bytes,
&ns->eth.rx_bytes);
i40e_stat_update_48(hw, I40E_GLPRT_UPRCH(hw->port),
I40E_GLPRT_UPRCL(hw->port),
pf->offset_loaded, &os->eth.rx_unicast,
&ns->eth.rx_unicast);
i40e_stat_update_48(hw, I40E_GLPRT_MPRCH(hw->port),
I40E_GLPRT_MPRCL(hw->port),
pf->offset_loaded, &os->eth.rx_multicast,
&ns->eth.rx_multicast);
i40e_stat_update_48(hw, I40E_GLPRT_BPRCH(hw->port),
I40E_GLPRT_BPRCL(hw->port),
pf->offset_loaded, &os->eth.rx_broadcast,
&ns->eth.rx_broadcast);
i40e_stat_update_32(hw, I40E_GLPRT_RDPC(hw->port),
pf->offset_loaded, &os->eth.rx_discards,
&ns->eth.rx_discards);
/* GLPRT_REPC not supported */
/* GLPRT_RMPC not supported */
i40e_stat_update_32(hw, I40E_GLPRT_RUPP(hw->port),
pf->offset_loaded,
&os->eth.rx_unknown_protocol,
&ns->eth.rx_unknown_protocol);
i40e_stat_update_48(hw, I40E_GLPRT_GOTCH(hw->port),
I40E_GLPRT_GOTCL(hw->port),
pf->offset_loaded, &os->eth.tx_bytes,
&ns->eth.tx_bytes);
i40e_stat_update_48(hw, I40E_GLPRT_UPTCH(hw->port),
I40E_GLPRT_UPTCL(hw->port),
pf->offset_loaded, &os->eth.tx_unicast,
&ns->eth.tx_unicast);
i40e_stat_update_48(hw, I40E_GLPRT_MPTCH(hw->port),
I40E_GLPRT_MPTCL(hw->port),
pf->offset_loaded, &os->eth.tx_multicast,
&ns->eth.tx_multicast);
i40e_stat_update_48(hw, I40E_GLPRT_BPTCH(hw->port),
I40E_GLPRT_BPTCL(hw->port),
pf->offset_loaded, &os->eth.tx_broadcast,
&ns->eth.tx_broadcast);
/* GLPRT_TEPC not supported */
/* additional port specific stats */
i40e_stat_update_32(hw, I40E_GLPRT_TDOLD(hw->port),
pf->offset_loaded, &os->tx_dropped_link_down,
&ns->tx_dropped_link_down);
i40e_stat_update_32(hw, I40E_GLPRT_CRCERRS(hw->port),
pf->offset_loaded, &os->crc_errors,
&ns->crc_errors);
i40e_stat_update_32(hw, I40E_GLPRT_ILLERRC(hw->port),
pf->offset_loaded, &os->illegal_bytes,
&ns->illegal_bytes);
/* GLPRT_ERRBC not supported */
i40e_stat_update_32(hw, I40E_GLPRT_MLFC(hw->port),
pf->offset_loaded, &os->mac_local_faults,
&ns->mac_local_faults);
i40e_stat_update_32(hw, I40E_GLPRT_MRFC(hw->port),
pf->offset_loaded, &os->mac_remote_faults,
&ns->mac_remote_faults);
i40e_stat_update_32(hw, I40E_GLPRT_RLEC(hw->port),
pf->offset_loaded, &os->rx_length_errors,
&ns->rx_length_errors);
i40e_stat_update_32(hw, I40E_GLPRT_LXONRXC(hw->port),
pf->offset_loaded, &os->link_xon_rx,
&ns->link_xon_rx);
i40e_stat_update_32(hw, I40E_GLPRT_LXOFFRXC(hw->port),
pf->offset_loaded, &os->link_xoff_rx,
&ns->link_xoff_rx);
for (i = 0; i < 8; i++) {
i40e_stat_update_32(hw, I40E_GLPRT_PXONRXC(hw->port, i),
pf->offset_loaded,
&os->priority_xon_rx[i],
&ns->priority_xon_rx[i]);
i40e_stat_update_32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i),
pf->offset_loaded,
&os->priority_xoff_rx[i],
&ns->priority_xoff_rx[i]);
}
i40e_stat_update_32(hw, I40E_GLPRT_LXONTXC(hw->port),
pf->offset_loaded, &os->link_xon_tx,
&ns->link_xon_tx);
i40e_stat_update_32(hw, I40E_GLPRT_LXOFFTXC(hw->port),
pf->offset_loaded, &os->link_xoff_tx,
&ns->link_xoff_tx);
for (i = 0; i < 8; i++) {
i40e_stat_update_32(hw, I40E_GLPRT_PXONTXC(hw->port, i),
pf->offset_loaded,
&os->priority_xon_tx[i],
&ns->priority_xon_tx[i]);
i40e_stat_update_32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i),
pf->offset_loaded,
&os->priority_xoff_tx[i],
&ns->priority_xoff_tx[i]);
i40e_stat_update_32(hw, I40E_GLPRT_RXON2OFFCNT(hw->port, i),
pf->offset_loaded,
&os->priority_xon_2_xoff[i],
&ns->priority_xon_2_xoff[i]);
}
i40e_stat_update_48(hw, I40E_GLPRT_PRC64H(hw->port),
I40E_GLPRT_PRC64L(hw->port),
pf->offset_loaded, &os->rx_size_64,
&ns->rx_size_64);
i40e_stat_update_48(hw, I40E_GLPRT_PRC127H(hw->port),
I40E_GLPRT_PRC127L(hw->port),
pf->offset_loaded, &os->rx_size_127,
&ns->rx_size_127);
i40e_stat_update_48(hw, I40E_GLPRT_PRC255H(hw->port),
I40E_GLPRT_PRC255L(hw->port),
pf->offset_loaded, &os->rx_size_255,
&ns->rx_size_255);
i40e_stat_update_48(hw, I40E_GLPRT_PRC511H(hw->port),
I40E_GLPRT_PRC511L(hw->port),
pf->offset_loaded, &os->rx_size_511,
&ns->rx_size_511);
i40e_stat_update_48(hw, I40E_GLPRT_PRC1023H(hw->port),
I40E_GLPRT_PRC1023L(hw->port),
pf->offset_loaded, &os->rx_size_1023,
&ns->rx_size_1023);
i40e_stat_update_48(hw, I40E_GLPRT_PRC1522H(hw->port),
I40E_GLPRT_PRC1522L(hw->port),
pf->offset_loaded, &os->rx_size_1522,
&ns->rx_size_1522);
i40e_stat_update_48(hw, I40E_GLPRT_PRC9522H(hw->port),
I40E_GLPRT_PRC9522L(hw->port),
pf->offset_loaded, &os->rx_size_big,
&ns->rx_size_big);
i40e_stat_update_32(hw, I40E_GLPRT_RUC(hw->port),
pf->offset_loaded, &os->rx_undersize,
&ns->rx_undersize);
i40e_stat_update_32(hw, I40E_GLPRT_RFC(hw->port),
pf->offset_loaded, &os->rx_fragments,
&ns->rx_fragments);
i40e_stat_update_32(hw, I40E_GLPRT_ROC(hw->port),
pf->offset_loaded, &os->rx_oversize,
&ns->rx_oversize);
i40e_stat_update_32(hw, I40E_GLPRT_RJC(hw->port),
pf->offset_loaded, &os->rx_jabber,
&ns->rx_jabber);
i40e_stat_update_48(hw, I40E_GLPRT_PTC64H(hw->port),
I40E_GLPRT_PTC64L(hw->port),
pf->offset_loaded, &os->tx_size_64,
&ns->tx_size_64);
i40e_stat_update_48(hw, I40E_GLPRT_PTC127H(hw->port),
I40E_GLPRT_PTC127L(hw->port),
pf->offset_loaded, &os->tx_size_127,
&ns->tx_size_127);
i40e_stat_update_48(hw, I40E_GLPRT_PTC255H(hw->port),
I40E_GLPRT_PTC255L(hw->port),
pf->offset_loaded, &os->tx_size_255,
&ns->tx_size_255);
i40e_stat_update_48(hw, I40E_GLPRT_PTC511H(hw->port),
I40E_GLPRT_PTC511L(hw->port),
pf->offset_loaded, &os->tx_size_511,
&ns->tx_size_511);
i40e_stat_update_48(hw, I40E_GLPRT_PTC1023H(hw->port),
I40E_GLPRT_PTC1023L(hw->port),
pf->offset_loaded, &os->tx_size_1023,
&ns->tx_size_1023);
i40e_stat_update_48(hw, I40E_GLPRT_PTC1522H(hw->port),
I40E_GLPRT_PTC1522L(hw->port),
pf->offset_loaded, &os->tx_size_1522,
&ns->tx_size_1522);
i40e_stat_update_48(hw, I40E_GLPRT_PTC9522H(hw->port),
I40E_GLPRT_PTC9522L(hw->port),
pf->offset_loaded, &os->tx_size_big,
&ns->tx_size_big);
i40e_stat_update_32(hw, I40E_GLQF_PCNT(pf->fdir.match_counter_index),
pf->offset_loaded,
&os->fd_sb_match, &ns->fd_sb_match);
/* GLPRT_MSPDC not supported */
/* GLPRT_XEC not supported */
pf->offset_loaded = true;
if (pf->main_vsi)
i40e_update_vsi_stats(pf->main_vsi);
}
/* Get all statistics of a port */
static void
i40e_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_hw_port_stats *ns = &pf->stats; /* new stats */
unsigned i;
/* call read registers - updates values, now write them to struct */
i40e_read_stats_registers(pf, hw);
stats->ipackets = ns->eth.rx_unicast + ns->eth.rx_multicast +
ns->eth.rx_broadcast;
stats->opackets = ns->eth.tx_unicast + ns->eth.tx_multicast +
ns->eth.tx_broadcast;
stats->ibytes = ns->eth.rx_bytes;
stats->obytes = ns->eth.tx_bytes;
stats->oerrors = ns->eth.tx_errors;
stats->imcasts = ns->eth.rx_multicast;
stats->fdirmatch = ns->fd_sb_match;
/* Rx Errors */
stats->ibadcrc = ns->crc_errors;
stats->ibadlen = ns->rx_length_errors + ns->rx_undersize +
ns->rx_oversize + ns->rx_fragments + ns->rx_jabber;
stats->imissed = ns->eth.rx_discards;
stats->ierrors = stats->ibadcrc + stats->ibadlen + stats->imissed;
PMD_DRV_LOG(DEBUG, "***************** PF stats start *******************");
PMD_DRV_LOG(DEBUG, "rx_bytes: %"PRIu64"", ns->eth.rx_bytes);
PMD_DRV_LOG(DEBUG, "rx_unicast: %"PRIu64"", ns->eth.rx_unicast);
PMD_DRV_LOG(DEBUG, "rx_multicast: %"PRIu64"", ns->eth.rx_multicast);
PMD_DRV_LOG(DEBUG, "rx_broadcast: %"PRIu64"", ns->eth.rx_broadcast);
PMD_DRV_LOG(DEBUG, "rx_discards: %"PRIu64"", ns->eth.rx_discards);
PMD_DRV_LOG(DEBUG, "rx_unknown_protocol: %"PRIu64"",
ns->eth.rx_unknown_protocol);
PMD_DRV_LOG(DEBUG, "tx_bytes: %"PRIu64"", ns->eth.tx_bytes);
PMD_DRV_LOG(DEBUG, "tx_unicast: %"PRIu64"", ns->eth.tx_unicast);
PMD_DRV_LOG(DEBUG, "tx_multicast: %"PRIu64"", ns->eth.tx_multicast);
PMD_DRV_LOG(DEBUG, "tx_broadcast: %"PRIu64"", ns->eth.tx_broadcast);
PMD_DRV_LOG(DEBUG, "tx_discards: %"PRIu64"", ns->eth.tx_discards);
PMD_DRV_LOG(DEBUG, "tx_errors: %"PRIu64"", ns->eth.tx_errors);
PMD_DRV_LOG(DEBUG, "tx_dropped_link_down: %"PRIu64"",
ns->tx_dropped_link_down);
PMD_DRV_LOG(DEBUG, "crc_errors: %"PRIu64"", ns->crc_errors);
PMD_DRV_LOG(DEBUG, "illegal_bytes: %"PRIu64"",
ns->illegal_bytes);
PMD_DRV_LOG(DEBUG, "error_bytes: %"PRIu64"", ns->error_bytes);
PMD_DRV_LOG(DEBUG, "mac_local_faults: %"PRIu64"",
ns->mac_local_faults);
PMD_DRV_LOG(DEBUG, "mac_remote_faults: %"PRIu64"",
ns->mac_remote_faults);
PMD_DRV_LOG(DEBUG, "rx_length_errors: %"PRIu64"",
ns->rx_length_errors);
PMD_DRV_LOG(DEBUG, "link_xon_rx: %"PRIu64"", ns->link_xon_rx);
PMD_DRV_LOG(DEBUG, "link_xoff_rx: %"PRIu64"", ns->link_xoff_rx);
for (i = 0; i < 8; i++) {
PMD_DRV_LOG(DEBUG, "priority_xon_rx[%d]: %"PRIu64"",
i, ns->priority_xon_rx[i]);
PMD_DRV_LOG(DEBUG, "priority_xoff_rx[%d]: %"PRIu64"",
i, ns->priority_xoff_rx[i]);
}
PMD_DRV_LOG(DEBUG, "link_xon_tx: %"PRIu64"", ns->link_xon_tx);
PMD_DRV_LOG(DEBUG, "link_xoff_tx: %"PRIu64"", ns->link_xoff_tx);
for (i = 0; i < 8; i++) {
PMD_DRV_LOG(DEBUG, "priority_xon_tx[%d]: %"PRIu64"",
i, ns->priority_xon_tx[i]);
PMD_DRV_LOG(DEBUG, "priority_xoff_tx[%d]: %"PRIu64"",
i, ns->priority_xoff_tx[i]);
PMD_DRV_LOG(DEBUG, "priority_xon_2_xoff[%d]: %"PRIu64"",
i, ns->priority_xon_2_xoff[i]);
}
PMD_DRV_LOG(DEBUG, "rx_size_64: %"PRIu64"", ns->rx_size_64);
PMD_DRV_LOG(DEBUG, "rx_size_127: %"PRIu64"", ns->rx_size_127);
PMD_DRV_LOG(DEBUG, "rx_size_255: %"PRIu64"", ns->rx_size_255);
PMD_DRV_LOG(DEBUG, "rx_size_511: %"PRIu64"", ns->rx_size_511);
PMD_DRV_LOG(DEBUG, "rx_size_1023: %"PRIu64"", ns->rx_size_1023);
PMD_DRV_LOG(DEBUG, "rx_size_1522: %"PRIu64"", ns->rx_size_1522);
PMD_DRV_LOG(DEBUG, "rx_size_big: %"PRIu64"", ns->rx_size_big);
PMD_DRV_LOG(DEBUG, "rx_undersize: %"PRIu64"", ns->rx_undersize);
PMD_DRV_LOG(DEBUG, "rx_fragments: %"PRIu64"", ns->rx_fragments);
PMD_DRV_LOG(DEBUG, "rx_oversize: %"PRIu64"", ns->rx_oversize);
PMD_DRV_LOG(DEBUG, "rx_jabber: %"PRIu64"", ns->rx_jabber);
PMD_DRV_LOG(DEBUG, "tx_size_64: %"PRIu64"", ns->tx_size_64);
PMD_DRV_LOG(DEBUG, "tx_size_127: %"PRIu64"", ns->tx_size_127);
PMD_DRV_LOG(DEBUG, "tx_size_255: %"PRIu64"", ns->tx_size_255);
PMD_DRV_LOG(DEBUG, "tx_size_511: %"PRIu64"", ns->tx_size_511);
PMD_DRV_LOG(DEBUG, "tx_size_1023: %"PRIu64"", ns->tx_size_1023);
PMD_DRV_LOG(DEBUG, "tx_size_1522: %"PRIu64"", ns->tx_size_1522);
PMD_DRV_LOG(DEBUG, "tx_size_big: %"PRIu64"", ns->tx_size_big);
PMD_DRV_LOG(DEBUG, "mac_short_packet_dropped: %"PRIu64"",
ns->mac_short_packet_dropped);
PMD_DRV_LOG(DEBUG, "checksum_error: %"PRIu64"",
ns->checksum_error);
PMD_DRV_LOG(DEBUG, "fdir_match: %"PRIu64"", ns->fd_sb_match);
PMD_DRV_LOG(DEBUG, "***************** PF stats end ********************");
}
static void
i40e_dev_xstats_reset(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_hw_port_stats *hw_stats = &pf->stats;
/* The hw registers are cleared on read */
pf->offset_loaded = false;
i40e_read_stats_registers(pf, hw);
/* reset software counters */
memset(hw_stats, 0, sizeof(*hw_stats));
}
static int
i40e_dev_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstats *xstats,
unsigned n)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
unsigned i, count = 0;
struct i40e_hw_port_stats *hw_stats = &pf->stats;
if (n < I40E_NB_XSTATS)
return I40E_NB_XSTATS;
i40e_read_stats_registers(pf, hw);
/* Reset */
if (xstats == NULL)
return 0;
/* Get stats from i40e_eth_stats struct */
for (i = 0; i < I40E_NB_ETH_XSTATS; i++) {
snprintf(xstats[count].name, sizeof(xstats[count].name),
"%s", rte_i40e_stats_strings[i].name);
xstats[count].value = *(uint64_t *)(((char *)&hw_stats->eth) +
rte_i40e_stats_strings[i].offset);
count++;
}
/* Get individiual stats from i40e_hw_port struct */
for (i = 0; i < I40E_NB_HW_PORT_XSTATS; i++) {
snprintf(xstats[count].name, sizeof(xstats[count].name),
"%s", rte_i40e_hw_port_strings[i].name);
xstats[count].value = *(uint64_t *)(((char *)hw_stats) +
rte_i40e_hw_port_strings[i].offset);
count++;
}
/* Get per-queue stats from i40e_hw_port struct */
for (i = 0; i < 8; i++) {
snprintf(xstats[count].name, sizeof(xstats[count].name),
"rx_q%u_xon_priority_packets", i);
xstats[count].value = *(uint64_t *)(((char *)hw_stats) +
offsetof(struct i40e_hw_port_stats,
priority_xon_rx[i]));
count++;
snprintf(xstats[count].name, sizeof(xstats[count].name),
"rx_q%u_xoff_priority_packets", i);
xstats[count].value = *(uint64_t *)(((char *)hw_stats) +
offsetof(struct i40e_hw_port_stats,
priority_xoff_rx[i]));
count++;
snprintf(xstats[count].name, sizeof(xstats[count].name),
"tx_q%u_xon_priority_packets", i);
xstats[count].value = *(uint64_t *)(((char *)hw_stats) +
offsetof(struct i40e_hw_port_stats,
priority_xon_tx[i]));
count++;
snprintf(xstats[count].name, sizeof(xstats[count].name),
"tx_q%u_xoff_priority_packets", i);
xstats[count].value = *(uint64_t *)(((char *)hw_stats) +
offsetof(struct i40e_hw_port_stats,
priority_xoff_tx[i]));
count++;
snprintf(xstats[count].name, sizeof(xstats[count].name),
"xx_q%u_xon_to_xoff_priority_packets", i);
xstats[count].value = *(uint64_t *)(((char *)hw_stats) +
offsetof(struct i40e_hw_port_stats,
priority_xon_2_xoff[i]));
count++;
}
return I40E_NB_XSTATS;
}
/* Reset the statistics */
static void
i40e_dev_stats_reset(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
/* It results in reloading the start point of each counter */
pf->offset_loaded = false;
}
static int
i40e_dev_queue_stats_mapping_set(__rte_unused struct rte_eth_dev *dev,
__rte_unused uint16_t queue_id,
__rte_unused uint8_t stat_idx,
__rte_unused uint8_t is_rx)
{
PMD_INIT_FUNC_TRACE();
return -ENOSYS;
}
static void
i40e_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
dev_info->max_rx_queues = vsi->nb_qps;
dev_info->max_tx_queues = vsi->nb_qps;
dev_info->min_rx_bufsize = I40E_BUF_SIZE_MIN;
dev_info->max_rx_pktlen = I40E_FRAME_SIZE_MAX;
dev_info->max_mac_addrs = vsi->max_macaddrs;
dev_info->max_vfs = dev->pci_dev->max_vfs;
dev_info->rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_QINQ_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM;
dev_info->tx_offload_capa =
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_QINQ_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO;
dev_info->hash_key_size = (I40E_PFQF_HKEY_MAX_INDEX + 1) *
sizeof(uint32_t);
dev_info->reta_size = pf->hash_lut_size;
dev_info->flow_type_rss_offloads = I40E_RSS_OFFLOAD_ALL;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = I40E_DEFAULT_RX_PTHRESH,
.hthresh = I40E_DEFAULT_RX_HTHRESH,
.wthresh = I40E_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = I40E_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = I40E_DEFAULT_TX_PTHRESH,
.hthresh = I40E_DEFAULT_TX_HTHRESH,
.wthresh = I40E_DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = I40E_DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = I40E_DEFAULT_TX_RSBIT_THRESH,
.txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
ETH_TXQ_FLAGS_NOOFFLOADS,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = I40E_MAX_RING_DESC,
.nb_min = I40E_MIN_RING_DESC,
.nb_align = I40E_ALIGN_RING_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = I40E_MAX_RING_DESC,
.nb_min = I40E_MIN_RING_DESC,
.nb_align = I40E_ALIGN_RING_DESC,
};
if (pf->flags & I40E_FLAG_VMDQ) {
dev_info->max_vmdq_pools = pf->max_nb_vmdq_vsi;
dev_info->vmdq_queue_base = dev_info->max_rx_queues;
dev_info->vmdq_queue_num = pf->vmdq_nb_qps *
pf->max_nb_vmdq_vsi;
dev_info->vmdq_pool_base = I40E_VMDQ_POOL_BASE;
dev_info->max_rx_queues += dev_info->vmdq_queue_num;
dev_info->max_tx_queues += dev_info->vmdq_queue_num;
}
}
static int
i40e_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
PMD_INIT_FUNC_TRACE();
if (on)
return i40e_vsi_add_vlan(vsi, vlan_id);
else
return i40e_vsi_delete_vlan(vsi, vlan_id);
}
static void
i40e_vlan_tpid_set(__rte_unused struct rte_eth_dev *dev,
__rte_unused uint16_t tpid)
{
PMD_INIT_FUNC_TRACE();
}
static void
i40e_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
if (mask & ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
if (dev->data->dev_conf.rxmode.hw_vlan_strip)
i40e_vsi_config_vlan_stripping(vsi, TRUE);
else
i40e_vsi_config_vlan_stripping(vsi, FALSE);
}
if (mask & ETH_VLAN_EXTEND_MASK) {
if (dev->data->dev_conf.rxmode.hw_vlan_extend)
i40e_vsi_config_double_vlan(vsi, TRUE);
else
i40e_vsi_config_double_vlan(vsi, FALSE);
}
}
static void
i40e_vlan_strip_queue_set(__rte_unused struct rte_eth_dev *dev,
__rte_unused uint16_t queue,
__rte_unused int on)
{
PMD_INIT_FUNC_TRACE();
}
static int
i40e_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
struct rte_eth_dev_data *data = I40E_VSI_TO_DEV_DATA(vsi);
struct i40e_vsi_vlan_pvid_info info;
memset(&info, 0, sizeof(info));
info.on = on;
if (info.on)
info.config.pvid = pvid;
else {
info.config.reject.tagged =
data->dev_conf.txmode.hw_vlan_reject_tagged;
info.config.reject.untagged =
data->dev_conf.txmode.hw_vlan_reject_untagged;
}
return i40e_vsi_vlan_pvid_set(vsi, &info);
}
static int
i40e_dev_led_on(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t mode = i40e_led_get(hw);
if (mode == 0)
i40e_led_set(hw, 0xf, true); /* 0xf means led always true */
return 0;
}
static int
i40e_dev_led_off(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t mode = i40e_led_get(hw);
if (mode != 0)
i40e_led_set(hw, 0, false);
return 0;
}
static int
i40e_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
fc_conf->pause_time = pf->fc_conf.pause_time;
fc_conf->high_water = pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS];
fc_conf->low_water = pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS];
/* Return current mode according to actual setting*/
switch (hw->fc.current_mode) {
case I40E_FC_FULL:
fc_conf->mode = RTE_FC_FULL;
break;
case I40E_FC_TX_PAUSE:
fc_conf->mode = RTE_FC_TX_PAUSE;
break;
case I40E_FC_RX_PAUSE:
fc_conf->mode = RTE_FC_RX_PAUSE;
break;
case I40E_FC_NONE:
default:
fc_conf->mode = RTE_FC_NONE;
};
return 0;
}
static int
i40e_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
{
uint32_t mflcn_reg, fctrl_reg, reg;
uint32_t max_high_water;
uint8_t i, aq_failure;
int err;
struct i40e_hw *hw;
struct i40e_pf *pf;
enum i40e_fc_mode rte_fcmode_2_i40e_fcmode[] = {
[RTE_FC_NONE] = I40E_FC_NONE,
[RTE_FC_RX_PAUSE] = I40E_FC_RX_PAUSE,
[RTE_FC_TX_PAUSE] = I40E_FC_TX_PAUSE,
[RTE_FC_FULL] = I40E_FC_FULL
};
/* high_water field in the rte_eth_fc_conf using the kilobytes unit */
max_high_water = I40E_RXPBSIZE >> I40E_KILOSHIFT;
if ((fc_conf->high_water > max_high_water) ||
(fc_conf->high_water < fc_conf->low_water)) {
PMD_INIT_LOG(ERR, "Invalid high/low water setup value in KB, "
"High_water must <= %d.", max_high_water);
return -EINVAL;
}
hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
hw->fc.requested_mode = rte_fcmode_2_i40e_fcmode[fc_conf->mode];
pf->fc_conf.pause_time = fc_conf->pause_time;
pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS] = fc_conf->high_water;
pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS] = fc_conf->low_water;
PMD_INIT_FUNC_TRACE();
/* All the link flow control related enable/disable register
* configuration is handle by the F/W
*/
err = i40e_set_fc(hw, &aq_failure, true);
if (err < 0)
return -ENOSYS;
if (i40e_is_40G_device(hw->device_id)) {
/* Configure flow control refresh threshold,
* the value for stat_tx_pause_refresh_timer[8]
* is used for global pause operation.
*/
I40E_WRITE_REG(hw,
I40E_PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(8),
pf->fc_conf.pause_time);
/* configure the timer value included in transmitted pause
* frame,
* the value for stat_tx_pause_quanta[8] is used for global
* pause operation
*/
I40E_WRITE_REG(hw, I40E_PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(8),
pf->fc_conf.pause_time);
fctrl_reg = I40E_READ_REG(hw,
I40E_PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL);
if (fc_conf->mac_ctrl_frame_fwd != 0)
fctrl_reg |= I40E_PRTMAC_FWD_CTRL;
else
fctrl_reg &= ~I40E_PRTMAC_FWD_CTRL;
I40E_WRITE_REG(hw, I40E_PRTMAC_HSEC_CTL_RX_FORWARD_CONTROL,
fctrl_reg);
} else {
/* Configure pause time (2 TCs per register) */
reg = (uint32_t)pf->fc_conf.pause_time * (uint32_t)0x00010001;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS / 2; i++)
I40E_WRITE_REG(hw, I40E_PRTDCB_FCTTVN(i), reg);
/* Configure flow control refresh threshold value */
I40E_WRITE_REG(hw, I40E_PRTDCB_FCRTV,
pf->fc_conf.pause_time / 2);
mflcn_reg = I40E_READ_REG(hw, I40E_PRTDCB_MFLCN);
/* set or clear MFLCN.PMCF & MFLCN.DPF bits
*depending on configuration
*/
if (fc_conf->mac_ctrl_frame_fwd != 0) {
mflcn_reg |= I40E_PRTDCB_MFLCN_PMCF_MASK;
mflcn_reg &= ~I40E_PRTDCB_MFLCN_DPF_MASK;
} else {
mflcn_reg &= ~I40E_PRTDCB_MFLCN_PMCF_MASK;
mflcn_reg |= I40E_PRTDCB_MFLCN_DPF_MASK;
}
I40E_WRITE_REG(hw, I40E_PRTDCB_MFLCN, mflcn_reg);
}
/* config the water marker both based on the packets and bytes */
I40E_WRITE_REG(hw, I40E_GLRPB_PHW,
(pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS]
<< I40E_KILOSHIFT) / I40E_PACKET_AVERAGE_SIZE);
I40E_WRITE_REG(hw, I40E_GLRPB_PLW,
(pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS]
<< I40E_KILOSHIFT) / I40E_PACKET_AVERAGE_SIZE);
I40E_WRITE_REG(hw, I40E_GLRPB_GHW,
pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS]
<< I40E_KILOSHIFT);
I40E_WRITE_REG(hw, I40E_GLRPB_GLW,
pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS]
<< I40E_KILOSHIFT);
I40E_WRITE_FLUSH(hw);
return 0;
}
static int
i40e_priority_flow_ctrl_set(__rte_unused struct rte_eth_dev *dev,
__rte_unused struct rte_eth_pfc_conf *pfc_conf)
{
PMD_INIT_FUNC_TRACE();
return -ENOSYS;
}
/* Add a MAC address, and update filters */
static void
i40e_macaddr_add(struct rte_eth_dev *dev,
struct ether_addr *mac_addr,
__rte_unused uint32_t index,
uint32_t pool)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_mac_filter_info mac_filter;
struct i40e_vsi *vsi;
int ret;
/* If VMDQ not enabled or configured, return */
if (pool != 0 && (!(pf->flags | I40E_FLAG_VMDQ) || !pf->nb_cfg_vmdq_vsi)) {
PMD_DRV_LOG(ERR, "VMDQ not %s, can't set mac to pool %u",
pf->flags | I40E_FLAG_VMDQ ? "configured" : "enabled",
pool);
return;
}
if (pool > pf->nb_cfg_vmdq_vsi) {
PMD_DRV_LOG(ERR, "Pool number %u invalid. Max pool is %u",
pool, pf->nb_cfg_vmdq_vsi);
return;
}
(void)rte_memcpy(&mac_filter.mac_addr, mac_addr, ETHER_ADDR_LEN);
mac_filter.filter_type = RTE_MACVLAN_PERFECT_MATCH;
if (pool == 0)
vsi = pf->main_vsi;
else
vsi = pf->vmdq[pool - 1].vsi;
ret = i40e_vsi_add_mac(vsi, &mac_filter);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add MACVLAN filter");
return;
}
}
/* Remove a MAC address, and update filters */
static void
i40e_macaddr_remove(struct rte_eth_dev *dev, uint32_t index)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_vsi *vsi;
struct rte_eth_dev_data *data = dev->data;
struct ether_addr *macaddr;
int ret;
uint32_t i;
uint64_t pool_sel;
macaddr = &(data->mac_addrs[index]);
pool_sel = dev->data->mac_pool_sel[index];
for (i = 0; i < sizeof(pool_sel) * CHAR_BIT; i++) {
if (pool_sel & (1ULL << i)) {
if (i == 0)
vsi = pf->main_vsi;
else {
/* No VMDQ pool enabled or configured */
if (!(pf->flags | I40E_FLAG_VMDQ) ||
(i > pf->nb_cfg_vmdq_vsi)) {
PMD_DRV_LOG(ERR, "No VMDQ pool enabled"
"/configured");
return;
}
vsi = pf->vmdq[i - 1].vsi;
}
ret = i40e_vsi_delete_mac(vsi, macaddr);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to remove MACVLAN filter");
return;
}
}
}
}
/* Set perfect match or hash match of MAC and VLAN for a VF */
static int
i40e_vf_mac_filter_set(struct i40e_pf *pf,
struct rte_eth_mac_filter *filter,
bool add)
{
struct i40e_hw *hw;
struct i40e_mac_filter_info mac_filter;
struct ether_addr old_mac;
struct ether_addr *new_mac;
struct i40e_pf_vf *vf = NULL;
uint16_t vf_id;
int ret;
if (pf == NULL) {
PMD_DRV_LOG(ERR, "Invalid PF argument.");
return -EINVAL;
}
hw = I40E_PF_TO_HW(pf);
if (filter == NULL) {
PMD_DRV_LOG(ERR, "Invalid mac filter argument.");
return -EINVAL;
}
new_mac = &filter->mac_addr;
if (is_zero_ether_addr(new_mac)) {
PMD_DRV_LOG(ERR, "Invalid ethernet address.");
return -EINVAL;
}
vf_id = filter->dst_id;
if (vf_id > pf->vf_num - 1 || !pf->vfs) {
PMD_DRV_LOG(ERR, "Invalid argument.");
return -EINVAL;
}
vf = &pf->vfs[vf_id];
if (add && is_same_ether_addr(new_mac, &(pf->dev_addr))) {
PMD_DRV_LOG(INFO, "Ignore adding permanent MAC address.");
return -EINVAL;
}
if (add) {
(void)rte_memcpy(&old_mac, hw->mac.addr, ETHER_ADDR_LEN);
(void)rte_memcpy(hw->mac.addr, new_mac->addr_bytes,
ETHER_ADDR_LEN);
(void)rte_memcpy(&mac_filter.mac_addr, &filter->mac_addr,
ETHER_ADDR_LEN);
mac_filter.filter_type = filter->filter_type;
ret = i40e_vsi_add_mac(vf->vsi, &mac_filter);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add MAC filter.");
return -1;
}
ether_addr_copy(new_mac, &pf->dev_addr);
} else {
(void)rte_memcpy(hw->mac.addr, hw->mac.perm_addr,
ETHER_ADDR_LEN);
ret = i40e_vsi_delete_mac(vf->vsi, &filter->mac_addr);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to delete MAC filter.");
return -1;
}
/* Clear device address as it has been removed */
if (is_same_ether_addr(&(pf->dev_addr), new_mac))
memset(&pf->dev_addr, 0, sizeof(struct ether_addr));
}
return 0;
}
/* MAC filter handle */
static int
i40e_mac_filter_handle(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
void *arg)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct rte_eth_mac_filter *filter;
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
int ret = I40E_NOT_SUPPORTED;
filter = (struct rte_eth_mac_filter *)(arg);
switch (filter_op) {
case RTE_ETH_FILTER_NOP:
ret = I40E_SUCCESS;
break;
case RTE_ETH_FILTER_ADD:
i40e_pf_disable_irq0(hw);
if (filter->is_vf)
ret = i40e_vf_mac_filter_set(pf, filter, 1);
i40e_pf_enable_irq0(hw);
break;
case RTE_ETH_FILTER_DELETE:
i40e_pf_disable_irq0(hw);
if (filter->is_vf)
ret = i40e_vf_mac_filter_set(pf, filter, 0);
i40e_pf_enable_irq0(hw);
break;
default:
PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
ret = I40E_ERR_PARAM;
break;
}
return ret;
}
static int
i40e_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t lut, l;
uint16_t i, j, lut_size = pf->hash_lut_size;
uint16_t idx, shift;
uint8_t mask;
if (reta_size != lut_size ||
reta_size > ETH_RSS_RETA_SIZE_512) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)\n", reta_size, lut_size);
return -EINVAL;
}
for (i = 0; i < reta_size; i += I40E_4_BIT_WIDTH) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
I40E_4_BIT_MASK);
if (!mask)
continue;
if (mask == I40E_4_BIT_MASK)
l = 0;
else
l = I40E_READ_REG(hw, I40E_PFQF_HLUT(i >> 2));
for (j = 0, lut = 0; j < I40E_4_BIT_WIDTH; j++) {
if (mask & (0x1 << j))
lut |= reta_conf[idx].reta[shift + j] <<
(CHAR_BIT * j);
else
lut |= l & (I40E_8_BIT_MASK << (CHAR_BIT * j));
}
I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i >> 2), lut);
}
return 0;
}
static int
i40e_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t lut;
uint16_t i, j, lut_size = pf->hash_lut_size;
uint16_t idx, shift;
uint8_t mask;
if (reta_size != lut_size ||
reta_size > ETH_RSS_RETA_SIZE_512) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number hardware can supported "
"(%d)\n", reta_size, lut_size);
return -EINVAL;
}
for (i = 0; i < reta_size; i += I40E_4_BIT_WIDTH) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
mask = (uint8_t)((reta_conf[idx].mask >> shift) &
I40E_4_BIT_MASK);
if (!mask)
continue;
lut = I40E_READ_REG(hw, I40E_PFQF_HLUT(i >> 2));
for (j = 0; j < I40E_4_BIT_WIDTH; j++) {
if (mask & (0x1 << j))
reta_conf[idx].reta[shift + j] = ((lut >>
(CHAR_BIT * j)) & I40E_8_BIT_MASK);
}
}
return 0;
}
/**
* i40e_allocate_dma_mem_d - specific memory alloc for shared code (base driver)
* @hw: pointer to the HW structure
* @mem: pointer to mem struct to fill out
* @size: size of memory requested
* @alignment: what to align the allocation to
**/
enum i40e_status_code
i40e_allocate_dma_mem_d(__attribute__((unused)) struct i40e_hw *hw,
struct i40e_dma_mem *mem,
u64 size,
u32 alignment)
{
static uint64_t id = 0;
const struct rte_memzone *mz = NULL;
char z_name[RTE_MEMZONE_NAMESIZE];
if (!mem)
return I40E_ERR_PARAM;
id++;
snprintf(z_name, sizeof(z_name), "i40e_dma_%"PRIu64, id);
#ifdef RTE_LIBRTE_XEN_DOM0
mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
alignment, RTE_PGSIZE_2M);
#else
mz = rte_memzone_reserve_aligned(z_name, size, SOCKET_ID_ANY, 0,
alignment);
#endif
if (!mz)
return I40E_ERR_NO_MEMORY;
mem->id = id;
mem->size = size;
mem->va = mz->addr;
#ifdef RTE_LIBRTE_XEN_DOM0
mem->pa = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr);
#else
mem->pa = mz->phys_addr;
#endif
return I40E_SUCCESS;
}
/**
* i40e_free_dma_mem_d - specific memory free for shared code (base driver)
* @hw: pointer to the HW structure
* @mem: ptr to mem struct to free
**/
enum i40e_status_code
i40e_free_dma_mem_d(__attribute__((unused)) struct i40e_hw *hw,
struct i40e_dma_mem *mem)
{
if (!mem || !mem->va)
return I40E_ERR_PARAM;
mem->va = NULL;
mem->pa = (u64)0;
return I40E_SUCCESS;
}
/**
* i40e_allocate_virt_mem_d - specific memory alloc for shared code (base driver)
* @hw: pointer to the HW structure
* @mem: pointer to mem struct to fill out
* @size: size of memory requested
**/
enum i40e_status_code
i40e_allocate_virt_mem_d(__attribute__((unused)) struct i40e_hw *hw,
struct i40e_virt_mem *mem,
u32 size)
{
if (!mem)
return I40E_ERR_PARAM;
mem->size = size;
mem->va = rte_zmalloc("i40e", size, 0);
if (mem->va)
return I40E_SUCCESS;
else
return I40E_ERR_NO_MEMORY;
}
/**
* i40e_free_virt_mem_d - specific memory free for shared code (base driver)
* @hw: pointer to the HW structure
* @mem: pointer to mem struct to free
**/
enum i40e_status_code
i40e_free_virt_mem_d(__attribute__((unused)) struct i40e_hw *hw,
struct i40e_virt_mem *mem)
{
if (!mem)
return I40E_ERR_PARAM;
rte_free(mem->va);
mem->va = NULL;
return I40E_SUCCESS;
}
void
i40e_init_spinlock_d(struct i40e_spinlock *sp)
{
rte_spinlock_init(&sp->spinlock);
}
void
i40e_acquire_spinlock_d(struct i40e_spinlock *sp)
{
rte_spinlock_lock(&sp->spinlock);
}
void
i40e_release_spinlock_d(struct i40e_spinlock *sp)
{
rte_spinlock_unlock(&sp->spinlock);
}
void
i40e_destroy_spinlock_d(__attribute__((unused)) struct i40e_spinlock *sp)
{
return;
}
/**
* Get the hardware capabilities, which will be parsed
* and saved into struct i40e_hw.
*/
static int
i40e_get_cap(struct i40e_hw *hw)
{
struct i40e_aqc_list_capabilities_element_resp *buf;
uint16_t len, size = 0;
int ret;
/* Calculate a huge enough buff for saving response data temporarily */
len = sizeof(struct i40e_aqc_list_capabilities_element_resp) *
I40E_MAX_CAP_ELE_NUM;
buf = rte_zmalloc("i40e", len, 0);
if (!buf) {
PMD_DRV_LOG(ERR, "Failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
/* Get, parse the capabilities and save it to hw */
ret = i40e_aq_discover_capabilities(hw, buf, len, &size,
i40e_aqc_opc_list_func_capabilities, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to discover capabilities");
/* Free the temporary buffer after being used */
rte_free(buf);
return ret;
}
static int
i40e_pf_parameter_init(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
uint16_t sum_queues = 0, sum_vsis, left_queues;
/* First check if FW support SRIOV */
if (dev->pci_dev->max_vfs && !hw->func_caps.sr_iov_1_1) {
PMD_INIT_LOG(ERR, "HW configuration doesn't support SRIOV");
return -EINVAL;
}
/* Add the parameter init for LFC */
pf->fc_conf.pause_time = I40E_DEFAULT_PAUSE_TIME;
pf->fc_conf.high_water[I40E_MAX_TRAFFIC_CLASS] = I40E_DEFAULT_HIGH_WATER;
pf->fc_conf.low_water[I40E_MAX_TRAFFIC_CLASS] = I40E_DEFAULT_LOW_WATER;
pf->flags = I40E_FLAG_HEADER_SPLIT_DISABLED;
pf->max_num_vsi = RTE_MIN(hw->func_caps.num_vsis, I40E_MAX_NUM_VSIS);
PMD_INIT_LOG(INFO, "Max supported VSIs:%u", pf->max_num_vsi);
/* Allocate queues for pf */
if (hw->func_caps.rss) {
pf->flags |= I40E_FLAG_RSS;
pf->lan_nb_qps = RTE_MIN(hw->func_caps.num_tx_qp,
(uint32_t)(1 << hw->func_caps.rss_table_entry_width));
pf->lan_nb_qps = i40e_align_floor(pf->lan_nb_qps);
} else
pf->lan_nb_qps = 1;
sum_queues = pf->lan_nb_qps;
/* Default VSI is not counted in */
sum_vsis = 0;
PMD_INIT_LOG(INFO, "PF queue pairs:%u", pf->lan_nb_qps);
if (hw->func_caps.sr_iov_1_1 && dev->pci_dev->max_vfs) {
pf->flags |= I40E_FLAG_SRIOV;
pf->vf_nb_qps = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF;
if (dev->pci_dev->max_vfs > hw->func_caps.num_vfs) {
PMD_INIT_LOG(ERR, "Config VF number %u, "
"max supported %u.",
dev->pci_dev->max_vfs,
hw->func_caps.num_vfs);
return -EINVAL;
}
if (pf->vf_nb_qps > I40E_MAX_QP_NUM_PER_VF) {
PMD_INIT_LOG(ERR, "FVL VF queue %u, "
"max support %u queues.",
pf->vf_nb_qps, I40E_MAX_QP_NUM_PER_VF);
return -EINVAL;
}
pf->vf_num = dev->pci_dev->max_vfs;
sum_queues += pf->vf_nb_qps * pf->vf_num;
sum_vsis += pf->vf_num;
PMD_INIT_LOG(INFO, "Max VF num:%u each has queue pairs:%u",
pf->vf_num, pf->vf_nb_qps);
} else
pf->vf_num = 0;
if (hw->func_caps.vmdq) {
pf->flags |= I40E_FLAG_VMDQ;
pf->vmdq_nb_qps = RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM;
pf->max_nb_vmdq_vsi = 1;
/*
* If VMDQ available, assume a single VSI can be created. Will adjust
* later.
*/
sum_queues += pf->vmdq_nb_qps * pf->max_nb_vmdq_vsi;
sum_vsis += pf->max_nb_vmdq_vsi;
} else {
pf->vmdq_nb_qps = 0;
pf->max_nb_vmdq_vsi = 0;
}
pf->nb_cfg_vmdq_vsi = 0;
if (hw->func_caps.fd) {
pf->flags |= I40E_FLAG_FDIR;
pf->fdir_nb_qps = I40E_DEFAULT_QP_NUM_FDIR;
/**
* Each flow director consumes one VSI and one queue,
* but can't calculate out predictably here.
*/
}
if (hw->func_caps.dcb)
pf->flags |= I40E_FLAG_DCB;
if (sum_vsis > pf->max_num_vsi ||
sum_queues > hw->func_caps.num_rx_qp) {
PMD_INIT_LOG(ERR, "VSI/QUEUE setting can't be satisfied");
PMD_INIT_LOG(ERR, "Max VSIs: %u, asked:%u",
pf->max_num_vsi, sum_vsis);
PMD_INIT_LOG(ERR, "Total queue pairs:%u, asked:%u",
hw->func_caps.num_rx_qp, sum_queues);
return -EINVAL;
}
/* Adjust VMDQ setting to support as many VMs as possible */
if (pf->flags & I40E_FLAG_VMDQ) {
left_queues = hw->func_caps.num_rx_qp - sum_queues;
pf->max_nb_vmdq_vsi += RTE_MIN(left_queues / pf->vmdq_nb_qps,
pf->max_num_vsi - sum_vsis);
/* Limit the max VMDQ number that rte_ether that can support */
pf->max_nb_vmdq_vsi = RTE_MIN(pf->max_nb_vmdq_vsi,
ETH_64_POOLS - 1);
PMD_INIT_LOG(INFO, "Max VMDQ VSI num:%u",
pf->max_nb_vmdq_vsi);
PMD_INIT_LOG(INFO, "VMDQ queue pairs:%u", pf->vmdq_nb_qps);
}
/* Each VSI occupy 1 MSIX interrupt at least, plus IRQ0 for misc intr
* cause */
if (sum_vsis > hw->func_caps.num_msix_vectors - 1) {
PMD_INIT_LOG(ERR, "Too many VSIs(%u), MSIX intr(%u) not enough",
sum_vsis, hw->func_caps.num_msix_vectors);
return -EINVAL;
}
return I40E_SUCCESS;
}
static int
i40e_pf_get_switch_config(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_aqc_get_switch_config_resp *switch_config;
struct i40e_aqc_switch_config_element_resp *element;
uint16_t start_seid = 0, num_reported;
int ret;
switch_config = (struct i40e_aqc_get_switch_config_resp *)\
rte_zmalloc("i40e", I40E_AQ_LARGE_BUF, 0);
if (!switch_config) {
PMD_DRV_LOG(ERR, "Failed to allocated memory");
return -ENOMEM;
}
/* Get the switch configurations */
ret = i40e_aq_get_switch_config(hw, switch_config,
I40E_AQ_LARGE_BUF, &start_seid, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to get switch configurations");
goto fail;
}
num_reported = rte_le_to_cpu_16(switch_config->header.num_reported);
if (num_reported != 1) { /* The number should be 1 */
PMD_DRV_LOG(ERR, "Wrong number of switch config reported");
goto fail;
}
/* Parse the switch configuration elements */
element = &(switch_config->element[0]);
if (element->element_type == I40E_SWITCH_ELEMENT_TYPE_VSI) {
pf->mac_seid = rte_le_to_cpu_16(element->uplink_seid);
pf->main_vsi_seid = rte_le_to_cpu_16(element->seid);
} else
PMD_DRV_LOG(INFO, "Unknown element type");
fail:
rte_free(switch_config);
return ret;
}
static int
i40e_res_pool_init (struct i40e_res_pool_info *pool, uint32_t base,
uint32_t num)
{
struct pool_entry *entry;
if (pool == NULL || num == 0)
return -EINVAL;
entry = rte_zmalloc("i40e", sizeof(*entry), 0);
if (entry == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for resource pool");
return -ENOMEM;
}
/* queue heap initialize */
pool->num_free = num;
pool->num_alloc = 0;
pool->base = base;
LIST_INIT(&pool->alloc_list);
LIST_INIT(&pool->free_list);
/* Initialize element */
entry->base = 0;
entry->len = num;
LIST_INSERT_HEAD(&pool->free_list, entry, next);
return 0;
}
static void
i40e_res_pool_destroy(struct i40e_res_pool_info *pool)
{
struct pool_entry *entry;
if (pool == NULL)
return;
LIST_FOREACH(entry, &pool->alloc_list, next) {
LIST_REMOVE(entry, next);
rte_free(entry);
}
LIST_FOREACH(entry, &pool->free_list, next) {
LIST_REMOVE(entry, next);
rte_free(entry);
}
pool->num_free = 0;
pool->num_alloc = 0;
pool->base = 0;
LIST_INIT(&pool->alloc_list);
LIST_INIT(&pool->free_list);
}
static int
i40e_res_pool_free(struct i40e_res_pool_info *pool,
uint32_t base)
{
struct pool_entry *entry, *next, *prev, *valid_entry = NULL;
uint32_t pool_offset;
int insert;
if (pool == NULL) {
PMD_DRV_LOG(ERR, "Invalid parameter");
return -EINVAL;
}
pool_offset = base - pool->base;
/* Lookup in alloc list */
LIST_FOREACH(entry, &pool->alloc_list, next) {
if (entry->base == pool_offset) {
valid_entry = entry;
LIST_REMOVE(entry, next);
break;
}
}
/* Not find, return */
if (valid_entry == NULL) {
PMD_DRV_LOG(ERR, "Failed to find entry");
return -EINVAL;
}
/**
* Found it, move it to free list and try to merge.
* In order to make merge easier, always sort it by qbase.
* Find adjacent prev and last entries.
*/
prev = next = NULL;
LIST_FOREACH(entry, &pool->free_list, next) {
if (entry->base > valid_entry->base) {
next = entry;
break;
}
prev = entry;
}
insert = 0;
/* Try to merge with next one*/
if (next != NULL) {
/* Merge with next one */
if (valid_entry->base + valid_entry->len == next->base) {
next->base = valid_entry->base;
next->len += valid_entry->len;
rte_free(valid_entry);
valid_entry = next;
insert = 1;
}
}
if (prev != NULL) {
/* Merge with previous one */
if (prev->base + prev->len == valid_entry->base) {
prev->len += valid_entry->len;
/* If it merge with next one, remove next node */
if (insert == 1) {
LIST_REMOVE(valid_entry, next);
rte_free(valid_entry);
} else {
rte_free(valid_entry);
insert = 1;
}
}
}
/* Not find any entry to merge, insert */
if (insert == 0) {
if (prev != NULL)
LIST_INSERT_AFTER(prev, valid_entry, next);
else if (next != NULL)
LIST_INSERT_BEFORE(next, valid_entry, next);
else /* It's empty list, insert to head */
LIST_INSERT_HEAD(&pool->free_list, valid_entry, next);
}
pool->num_free += valid_entry->len;
pool->num_alloc -= valid_entry->len;
return 0;
}
static int
i40e_res_pool_alloc(struct i40e_res_pool_info *pool,
uint16_t num)
{
struct pool_entry *entry, *valid_entry;
if (pool == NULL || num == 0) {
PMD_DRV_LOG(ERR, "Invalid parameter");
return -EINVAL;
}
if (pool->num_free < num) {
PMD_DRV_LOG(ERR, "No resource. ask:%u, available:%u",
num, pool->num_free);
return -ENOMEM;
}
valid_entry = NULL;
/* Lookup in free list and find most fit one */
LIST_FOREACH(entry, &pool->free_list, next) {
if (entry->len >= num) {
/* Find best one */
if (entry->len == num) {
valid_entry = entry;
break;
}
if (valid_entry == NULL || valid_entry->len > entry->len)
valid_entry = entry;
}
}
/* Not find one to satisfy the request, return */
if (valid_entry == NULL) {
PMD_DRV_LOG(ERR, "No valid entry found");
return -ENOMEM;
}
/**
* The entry have equal queue number as requested,
* remove it from alloc_list.
*/
if (valid_entry->len == num) {
LIST_REMOVE(valid_entry, next);
} else {
/**
* The entry have more numbers than requested,
* create a new entry for alloc_list and minus its
* queue base and number in free_list.
*/
entry = rte_zmalloc("res_pool", sizeof(*entry), 0);
if (entry == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for "
"resource pool");
return -ENOMEM;
}
entry->base = valid_entry->base;
entry->len = num;
valid_entry->base += num;
valid_entry->len -= num;
valid_entry = entry;
}
/* Insert it into alloc list, not sorted */
LIST_INSERT_HEAD(&pool->alloc_list, valid_entry, next);
pool->num_free -= valid_entry->len;
pool->num_alloc += valid_entry->len;
return (valid_entry->base + pool->base);
}
/**
* bitmap_is_subset - Check whether src2 is subset of src1
**/
static inline int
bitmap_is_subset(uint8_t src1, uint8_t src2)
{
return !((src1 ^ src2) & src2);
}
static int
validate_tcmap_parameter(struct i40e_vsi *vsi, uint8_t enabled_tcmap)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
/* If DCB is not supported, only default TC is supported */
if (!hw->func_caps.dcb && enabled_tcmap != I40E_DEFAULT_TCMAP) {
PMD_DRV_LOG(ERR, "DCB is not enabled, only TC0 is supported");
return -EINVAL;
}
if (!bitmap_is_subset(hw->func_caps.enabled_tcmap, enabled_tcmap)) {
PMD_DRV_LOG(ERR, "Enabled TC map 0x%x not applicable to "
"HW support 0x%x", hw->func_caps.enabled_tcmap,
enabled_tcmap);
return -EINVAL;
}
return I40E_SUCCESS;
}
int
i40e_vsi_vlan_pvid_set(struct i40e_vsi *vsi,
struct i40e_vsi_vlan_pvid_info *info)
{
struct i40e_hw *hw;
struct i40e_vsi_context ctxt;
uint8_t vlan_flags = 0;
int ret;
if (vsi == NULL || info == NULL) {
PMD_DRV_LOG(ERR, "invalid parameters");
return I40E_ERR_PARAM;
}
if (info->on) {
vsi->info.pvid = info->config.pvid;
/**
* If insert pvid is enabled, only tagged pkts are
* allowed to be sent out.
*/
vlan_flags |= I40E_AQ_VSI_PVLAN_INSERT_PVID |
I40E_AQ_VSI_PVLAN_MODE_TAGGED;
} else {
vsi->info.pvid = 0;
if (info->config.reject.tagged == 0)
vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_TAGGED;
if (info->config.reject.untagged == 0)
vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_UNTAGGED;
}
vsi->info.port_vlan_flags &= ~(I40E_AQ_VSI_PVLAN_INSERT_PVID |
I40E_AQ_VSI_PVLAN_MODE_MASK);
vsi->info.port_vlan_flags |= vlan_flags;
vsi->info.valid_sections =
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID);
memset(&ctxt, 0, sizeof(ctxt));
(void)rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
ctxt.seid = vsi->seid;
hw = I40E_VSI_TO_HW(vsi);
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to update VSI params");
return ret;
}
static int
i40e_vsi_update_tc_bandwidth(struct i40e_vsi *vsi, uint8_t enabled_tcmap)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int i, ret;
struct i40e_aqc_configure_vsi_tc_bw_data tc_bw_data;
ret = validate_tcmap_parameter(vsi, enabled_tcmap);
if (ret != I40E_SUCCESS)
return ret;
if (!vsi->seid) {
PMD_DRV_LOG(ERR, "seid not valid");
return -EINVAL;
}
memset(&tc_bw_data, 0, sizeof(tc_bw_data));
tc_bw_data.tc_valid_bits = enabled_tcmap;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
tc_bw_data.tc_bw_credits[i] =
(enabled_tcmap & (1 << i)) ? 1 : 0;
ret = i40e_aq_config_vsi_tc_bw(hw, vsi->seid, &tc_bw_data, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to configure TC BW");
return ret;
}
(void)rte_memcpy(vsi->info.qs_handle, tc_bw_data.qs_handles,
sizeof(vsi->info.qs_handle));
return I40E_SUCCESS;
}
static int
i40e_vsi_config_tc_queue_mapping(struct i40e_vsi *vsi,
struct i40e_aqc_vsi_properties_data *info,
uint8_t enabled_tcmap)
{
int ret, i, total_tc = 0;
uint16_t qpnum_per_tc, bsf, qp_idx;
ret = validate_tcmap_parameter(vsi, enabled_tcmap);
if (ret != I40E_SUCCESS)
return ret;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
if (enabled_tcmap & (1 << i))
total_tc++;
vsi->enabled_tc = enabled_tcmap;
/* Number of queues per enabled TC */
qpnum_per_tc = i40e_align_floor(vsi->nb_qps / total_tc);
qpnum_per_tc = RTE_MIN(qpnum_per_tc, I40E_MAX_Q_PER_TC);
bsf = rte_bsf32(qpnum_per_tc);
/* Adjust the queue number to actual queues that can be applied */
vsi->nb_qps = qpnum_per_tc * total_tc;
/**
* Configure TC and queue mapping parameters, for enabled TC,
* allocate qpnum_per_tc queues to this traffic. For disabled TC,
* default queue will serve it.
*/
qp_idx = 0;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (vsi->enabled_tc & (1 << i)) {
info->tc_mapping[i] = rte_cpu_to_le_16((qp_idx <<
I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
(bsf << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT));
qp_idx += qpnum_per_tc;
} else
info->tc_mapping[i] = 0;
}
/* Associate queue number with VSI */
if (vsi->type == I40E_VSI_SRIOV) {
info->mapping_flags |=
rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_NONCONTIG);
for (i = 0; i < vsi->nb_qps; i++)
info->queue_mapping[i] =
rte_cpu_to_le_16(vsi->base_queue + i);
} else {
info->mapping_flags |=
rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_CONTIG);
info->queue_mapping[0] = rte_cpu_to_le_16(vsi->base_queue);
}
info->valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID);
return I40E_SUCCESS;
}
static int
i40e_veb_release(struct i40e_veb *veb)
{
struct i40e_vsi *vsi;
struct i40e_hw *hw;
if (veb == NULL || veb->associate_vsi == NULL)
return -EINVAL;
if (!TAILQ_EMPTY(&veb->head)) {
PMD_DRV_LOG(ERR, "VEB still has VSI attached, can't remove");
return -EACCES;
}
vsi = veb->associate_vsi;
hw = I40E_VSI_TO_HW(vsi);
vsi->uplink_seid = veb->uplink_seid;
i40e_aq_delete_element(hw, veb->seid, NULL);
rte_free(veb);
vsi->veb = NULL;
return I40E_SUCCESS;
}
/* Setup a veb */
static struct i40e_veb *
i40e_veb_setup(struct i40e_pf *pf, struct i40e_vsi *vsi)
{
struct i40e_veb *veb;
int ret;
struct i40e_hw *hw;
if (NULL == pf || vsi == NULL) {
PMD_DRV_LOG(ERR, "veb setup failed, "
"associated VSI shouldn't null");
return NULL;
}
hw = I40E_PF_TO_HW(pf);
veb = rte_zmalloc("i40e_veb", sizeof(struct i40e_veb), 0);
if (!veb) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for veb");
goto fail;
}
veb->associate_vsi = vsi;
TAILQ_INIT(&veb->head);
veb->uplink_seid = vsi->uplink_seid;
ret = i40e_aq_add_veb(hw, veb->uplink_seid, vsi->seid,
I40E_DEFAULT_TCMAP, false, false, &veb->seid, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Add veb failed, aq_err: %d",
hw->aq.asq_last_status);
goto fail;
}
/* get statistics index */
ret = i40e_aq_get_veb_parameters(hw, veb->seid, NULL, NULL,
&veb->stats_idx, NULL, NULL, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Get veb statics index failed, aq_err: %d",
hw->aq.asq_last_status);
goto fail;
}
/* Get VEB bandwidth, to be implemented */
/* Now associated vsi binding to the VEB, set uplink to this VEB */
vsi->uplink_seid = veb->seid;
return veb;
fail:
rte_free(veb);
return NULL;
}
int
i40e_vsi_release(struct i40e_vsi *vsi)
{
struct i40e_pf *pf;
struct i40e_hw *hw;
struct i40e_vsi_list *vsi_list;
int ret;
struct i40e_mac_filter *f;
if (!vsi)
return I40E_SUCCESS;
pf = I40E_VSI_TO_PF(vsi);
hw = I40E_VSI_TO_HW(vsi);
/* VSI has child to attach, release child first */
if (vsi->veb) {
TAILQ_FOREACH(vsi_list, &vsi->veb->head, list) {
if (i40e_vsi_release(vsi_list->vsi) != I40E_SUCCESS)
return -1;
TAILQ_REMOVE(&vsi->veb->head, vsi_list, list);
}
i40e_veb_release(vsi->veb);
}
/* Remove all macvlan filters of the VSI */
i40e_vsi_remove_all_macvlan_filter(vsi);
TAILQ_FOREACH(f, &vsi->mac_list, next)
rte_free(f);
if (vsi->type != I40E_VSI_MAIN) {
/* Remove vsi from parent's sibling list */
if (vsi->parent_vsi == NULL || vsi->parent_vsi->veb == NULL) {
PMD_DRV_LOG(ERR, "VSI's parent VSI is NULL");
return I40E_ERR_PARAM;
}
TAILQ_REMOVE(&vsi->parent_vsi->veb->head,
&vsi->sib_vsi_list, list);
/* Remove all switch element of the VSI */
ret = i40e_aq_delete_element(hw, vsi->seid, NULL);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to delete element");
}
i40e_res_pool_free(&pf->qp_pool, vsi->base_queue);
if (vsi->type != I40E_VSI_SRIOV)
i40e_res_pool_free(&pf->msix_pool, vsi->msix_intr);
rte_free(vsi);
return I40E_SUCCESS;
}
static int
i40e_update_default_filter_setting(struct i40e_vsi *vsi)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
struct i40e_aqc_remove_macvlan_element_data def_filter;
struct i40e_mac_filter_info filter;
int ret;
if (vsi->type != I40E_VSI_MAIN)
return I40E_ERR_CONFIG;
memset(&def_filter, 0, sizeof(def_filter));
(void)rte_memcpy(def_filter.mac_addr, hw->mac.perm_addr,
ETH_ADDR_LEN);
def_filter.vlan_tag = 0;
def_filter.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
ret = i40e_aq_remove_macvlan(hw, vsi->seid, &def_filter, 1, NULL);
if (ret != I40E_SUCCESS) {
struct i40e_mac_filter *f;
struct ether_addr *mac;
PMD_DRV_LOG(WARNING, "Cannot remove the default "
"macvlan filter");
/* It needs to add the permanent mac into mac list */
f = rte_zmalloc("macv_filter", sizeof(*f), 0);
if (f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
mac = &f->mac_info.mac_addr;
(void)rte_memcpy(&mac->addr_bytes, hw->mac.perm_addr,
ETH_ADDR_LEN);
f->mac_info.filter_type = RTE_MACVLAN_PERFECT_MATCH;
TAILQ_INSERT_TAIL(&vsi->mac_list, f, next);
vsi->mac_num++;
return ret;
}
(void)rte_memcpy(&filter.mac_addr,
(struct ether_addr *)(hw->mac.perm_addr), ETH_ADDR_LEN);
filter.filter_type = RTE_MACVLAN_PERFECT_MATCH;
return i40e_vsi_add_mac(vsi, &filter);
}
static int
i40e_vsi_dump_bw_config(struct i40e_vsi *vsi)
{
struct i40e_aqc_query_vsi_bw_config_resp bw_config;
struct i40e_aqc_query_vsi_ets_sla_config_resp ets_sla_config;
struct i40e_hw *hw = &vsi->adapter->hw;
i40e_status ret;
int i;
memset(&bw_config, 0, sizeof(bw_config));
ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "VSI failed to get bandwidth configuration %u",
hw->aq.asq_last_status);
return ret;
}
memset(&ets_sla_config, 0, sizeof(ets_sla_config));
ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid,
&ets_sla_config, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "VSI failed to get TC bandwdith "
"configuration %u", hw->aq.asq_last_status);
return ret;
}
/* Not store the info yet, just print out */
PMD_DRV_LOG(INFO, "VSI bw limit:%u", bw_config.port_bw_limit);
PMD_DRV_LOG(INFO, "VSI max_bw:%u", bw_config.max_bw);
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
PMD_DRV_LOG(INFO, "\tVSI TC%u:share credits %u", i,
ets_sla_config.share_credits[i]);
PMD_DRV_LOG(INFO, "\tVSI TC%u:credits %u", i,
rte_le_to_cpu_16(ets_sla_config.credits[i]));
PMD_DRV_LOG(INFO, "\tVSI TC%u: max credits: %u", i,
rte_le_to_cpu_16(ets_sla_config.credits[i / 4]) >>
(i * 4));
}
return 0;
}
/* Setup a VSI */
struct i40e_vsi *
i40e_vsi_setup(struct i40e_pf *pf,
enum i40e_vsi_type type,
struct i40e_vsi *uplink_vsi,
uint16_t user_param)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_vsi *vsi;
struct i40e_mac_filter_info filter;
int ret;
struct i40e_vsi_context ctxt;
struct ether_addr broadcast =
{.addr_bytes = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}};
if (type != I40E_VSI_MAIN && uplink_vsi == NULL) {
PMD_DRV_LOG(ERR, "VSI setup failed, "
"VSI link shouldn't be NULL");
return NULL;
}
if (type == I40E_VSI_MAIN && uplink_vsi != NULL) {
PMD_DRV_LOG(ERR, "VSI setup failed, MAIN VSI "
"uplink VSI should be NULL");
return NULL;
}
/* If uplink vsi didn't setup VEB, create one first */
if (type != I40E_VSI_MAIN && uplink_vsi->veb == NULL) {
uplink_vsi->veb = i40e_veb_setup(pf, uplink_vsi);
if (NULL == uplink_vsi->veb) {
PMD_DRV_LOG(ERR, "VEB setup failed");
return NULL;
}
}
vsi = rte_zmalloc("i40e_vsi", sizeof(struct i40e_vsi), 0);
if (!vsi) {
PMD_DRV_LOG(ERR, "Failed to allocate memory for vsi");
return NULL;
}
TAILQ_INIT(&vsi->mac_list);
vsi->type = type;
vsi->adapter = I40E_PF_TO_ADAPTER(pf);
vsi->max_macaddrs = I40E_NUM_MACADDR_MAX;
vsi->parent_vsi = uplink_vsi;
vsi->user_param = user_param;
/* Allocate queues */
switch (vsi->type) {
case I40E_VSI_MAIN :
vsi->nb_qps = pf->lan_nb_qps;
break;
case I40E_VSI_SRIOV :
vsi->nb_qps = pf->vf_nb_qps;
break;
case I40E_VSI_VMDQ2:
vsi->nb_qps = pf->vmdq_nb_qps;
break;
case I40E_VSI_FDIR:
vsi->nb_qps = pf->fdir_nb_qps;
break;
default:
goto fail_mem;
}
/*
* The filter status descriptor is reported in rx queue 0,
* while the tx queue for fdir filter programming has no
* such constraints, can be non-zero queues.
* To simplify it, choose FDIR vsi use queue 0 pair.
* To make sure it will use queue 0 pair, queue allocation
* need be done before this function is called
*/
if (type != I40E_VSI_FDIR) {
ret = i40e_res_pool_alloc(&pf->qp_pool, vsi->nb_qps);
if (ret < 0) {
PMD_DRV_LOG(ERR, "VSI %d allocate queue failed %d",
vsi->seid, ret);
goto fail_mem;
}
vsi->base_queue = ret;
} else
vsi->base_queue = I40E_FDIR_QUEUE_ID;
/* VF has MSIX interrupt in VF range, don't allocate here */
if (type != I40E_VSI_SRIOV) {
ret = i40e_res_pool_alloc(&pf->msix_pool, 1);
if (ret < 0) {
PMD_DRV_LOG(ERR, "VSI %d get heap failed %d", vsi->seid, ret);
goto fail_queue_alloc;
}
vsi->msix_intr = ret;
} else
vsi->msix_intr = 0;
/* Add VSI */
if (type == I40E_VSI_MAIN) {
/* For main VSI, no need to add since it's default one */
vsi->uplink_seid = pf->mac_seid;
vsi->seid = pf->main_vsi_seid;
/* Bind queues with specific MSIX interrupt */
/**
* Needs 2 interrupt at least, one for misc cause which will
* enabled from OS side, Another for queues binding the
* interrupt from device side only.
*/
/* Get default VSI parameters from hardware */
memset(&ctxt, 0, sizeof(ctxt));
ctxt.seid = vsi->seid;
ctxt.pf_num = hw->pf_id;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.vf_num = 0;
ret = i40e_aq_get_vsi_params(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to get VSI params");
goto fail_msix_alloc;
}
(void)rte_memcpy(&vsi->info, &ctxt.info,
sizeof(struct i40e_aqc_vsi_properties_data));
vsi->vsi_id = ctxt.vsi_number;
vsi->info.valid_sections = 0;
/* Configure tc, enabled TC0 only */
if (i40e_vsi_update_tc_bandwidth(vsi, I40E_DEFAULT_TCMAP) !=
I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to update TC bandwidth");
goto fail_msix_alloc;
}
/* TC, queue mapping */
memset(&ctxt, 0, sizeof(ctxt));
vsi->info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID);
vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
(void)rte_memcpy(&ctxt.info, &vsi->info,
sizeof(struct i40e_aqc_vsi_properties_data));
ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info,
I40E_DEFAULT_TCMAP);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to configure "
"TC queue mapping");
goto fail_msix_alloc;
}
ctxt.seid = vsi->seid;
ctxt.pf_num = hw->pf_id;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.vf_num = 0;
/* Update VSI parameters */
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to update VSI params");
goto fail_msix_alloc;
}
(void)rte_memcpy(&vsi->info.tc_mapping, &ctxt.info.tc_mapping,
sizeof(vsi->info.tc_mapping));
(void)rte_memcpy(&vsi->info.queue_mapping,
&ctxt.info.queue_mapping,
sizeof(vsi->info.queue_mapping));
vsi->info.mapping_flags = ctxt.info.mapping_flags;
vsi->info.valid_sections = 0;
(void)rte_memcpy(pf->dev_addr.addr_bytes, hw->mac.perm_addr,
ETH_ADDR_LEN);
/**
* Updating default filter settings are necessary to prevent
* reception of tagged packets.
* Some old firmware configurations load a default macvlan
* filter which accepts both tagged and untagged packets.
* The updating is to use a normal filter instead if needed.
* For NVM 4.2.2 or after, the updating is not needed anymore.
* The firmware with correct configurations load the default
* macvlan filter which is expected and cannot be removed.
*/
i40e_update_default_filter_setting(vsi);
i40e_config_qinq(hw, vsi);
} else if (type == I40E_VSI_SRIOV) {
memset(&ctxt, 0, sizeof(ctxt));
/**
* For other VSI, the uplink_seid equals to uplink VSI's
* uplink_seid since they share same VEB
*/
vsi->uplink_seid = uplink_vsi->uplink_seid;
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = hw->func_caps.vf_base_id + user_param;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.connection_type = 0x1;
ctxt.flags = I40E_AQ_VSI_TYPE_VF;
/**
* Do not configure switch ID to enable VEB switch by
* I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB. Because in Fortville,
* if the source mac address of packet sent from VF is not
* listed in the VEB's mac table, the VEB will switch the
* packet back to the VF. Need to enable it when HW issue
* is fixed.
*/
/* Configure port/vlan */
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID);
ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL;
ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info,
I40E_DEFAULT_TCMAP);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to configure "
"TC queue mapping");
goto fail_msix_alloc;
}
ctxt.info.up_enable_bits = I40E_DEFAULT_TCMAP;
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SCHED_VALID);
/**
* Since VSI is not created yet, only configure parameter,
* will add vsi below.
*/
i40e_config_qinq(hw, vsi);
} else if (type == I40E_VSI_VMDQ2) {
memset(&ctxt, 0, sizeof(ctxt));
/*
* For other VSI, the uplink_seid equals to uplink VSI's
* uplink_seid since they share same VEB
*/
vsi->uplink_seid = uplink_vsi->uplink_seid;
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.connection_type = 0x1;
ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SWITCH_VALID);
/* user_param carries flag to enable loop back */
if (user_param) {
ctxt.info.switch_id =
rte_cpu_to_le_16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB);
ctxt.info.switch_id |=
rte_cpu_to_le_16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
}
/* Configure port/vlan */
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID);
ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL;
ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info,
I40E_DEFAULT_TCMAP);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to configure "
"TC queue mapping");
goto fail_msix_alloc;
}
ctxt.info.up_enable_bits = I40E_DEFAULT_TCMAP;
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SCHED_VALID);
} else if (type == I40E_VSI_FDIR) {
memset(&ctxt, 0, sizeof(ctxt));
vsi->uplink_seid = uplink_vsi->uplink_seid;
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.connection_type = 0x1; /* regular data port */
ctxt.flags = I40E_AQ_VSI_TYPE_PF;
ret = i40e_vsi_config_tc_queue_mapping(vsi, &ctxt.info,
I40E_DEFAULT_TCMAP);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to configure "
"TC queue mapping.");
goto fail_msix_alloc;
}
ctxt.info.up_enable_bits = I40E_DEFAULT_TCMAP;
ctxt.info.valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_SCHED_VALID);
} else {
PMD_DRV_LOG(ERR, "VSI: Not support other type VSI yet");
goto fail_msix_alloc;
}
if (vsi->type != I40E_VSI_MAIN) {
ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "add vsi failed, aq_err=%d",
hw->aq.asq_last_status);
goto fail_msix_alloc;
}
memcpy(&vsi->info, &ctxt.info, sizeof(ctxt.info));
vsi->info.valid_sections = 0;
vsi->seid = ctxt.seid;
vsi->vsi_id = ctxt.vsi_number;
vsi->sib_vsi_list.vsi = vsi;
TAILQ_INSERT_TAIL(&uplink_vsi->veb->head,
&vsi->sib_vsi_list, list);
}
/* MAC/VLAN configuration */
(void)rte_memcpy(&filter.mac_addr, &broadcast, ETHER_ADDR_LEN);
filter.filter_type = RTE_MACVLAN_PERFECT_MATCH;
ret = i40e_vsi_add_mac(vsi, &filter);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add MACVLAN filter");
goto fail_msix_alloc;
}
/* Get VSI BW information */
i40e_vsi_dump_bw_config(vsi);
return vsi;
fail_msix_alloc:
i40e_res_pool_free(&pf->msix_pool,vsi->msix_intr);
fail_queue_alloc:
i40e_res_pool_free(&pf->qp_pool,vsi->base_queue);
fail_mem:
rte_free(vsi);
return NULL;
}
/* Configure vlan stripping on or off */
int
i40e_vsi_config_vlan_stripping(struct i40e_vsi *vsi, bool on)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
struct i40e_vsi_context ctxt;
uint8_t vlan_flags;
int ret = I40E_SUCCESS;
/* Check if it has been already on or off */
if (vsi->info.valid_sections &
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID)) {
if (on) {
if ((vsi->info.port_vlan_flags &
I40E_AQ_VSI_PVLAN_EMOD_MASK) == 0)
return 0; /* already on */
} else {
if ((vsi->info.port_vlan_flags &
I40E_AQ_VSI_PVLAN_EMOD_MASK) ==
I40E_AQ_VSI_PVLAN_EMOD_MASK)
return 0; /* already off */
}
}
if (on)
vlan_flags = I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
else
vlan_flags = I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
vsi->info.valid_sections =
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_VLAN_VALID);
vsi->info.port_vlan_flags &= ~(I40E_AQ_VSI_PVLAN_EMOD_MASK);
vsi->info.port_vlan_flags |= vlan_flags;
ctxt.seid = vsi->seid;
(void)rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret)
PMD_DRV_LOG(INFO, "Update VSI failed to %s vlan stripping",
on ? "enable" : "disable");
return ret;
}
static int
i40e_dev_init_vlan(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *data = dev->data;
int ret;
/* Apply vlan offload setting */
i40e_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
/* Apply double-vlan setting, not implemented yet */
/* Apply pvid setting */
ret = i40e_vlan_pvid_set(dev, data->dev_conf.txmode.pvid,
data->dev_conf.txmode.hw_vlan_insert_pvid);
if (ret)
PMD_DRV_LOG(INFO, "Failed to update VSI params");
return ret;
}
static int
i40e_vsi_config_double_vlan(struct i40e_vsi *vsi, int on)
{
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
return i40e_aq_set_port_parameters(hw, vsi->seid, 0, 1, on, NULL);
}
static int
i40e_update_flow_control(struct i40e_hw *hw)
{
#define I40E_LINK_PAUSE_RXTX (I40E_AQ_LINK_PAUSE_RX | I40E_AQ_LINK_PAUSE_TX)
struct i40e_link_status link_status;
uint32_t rxfc = 0, txfc = 0, reg;
uint8_t an_info;
int ret;
memset(&link_status, 0, sizeof(link_status));
ret = i40e_aq_get_link_info(hw, FALSE, &link_status, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to get link status information");
goto write_reg; /* Disable flow control */
}
an_info = hw->phy.link_info.an_info;
if (!(an_info & I40E_AQ_AN_COMPLETED)) {
PMD_DRV_LOG(INFO, "Link auto negotiation not completed");
ret = I40E_ERR_NOT_READY;
goto write_reg; /* Disable flow control */
}
/**
* If link auto negotiation is enabled, flow control needs to
* be configured according to it
*/
switch (an_info & I40E_LINK_PAUSE_RXTX) {
case I40E_LINK_PAUSE_RXTX:
rxfc = 1;
txfc = 1;
hw->fc.current_mode = I40E_FC_FULL;
break;
case I40E_AQ_LINK_PAUSE_RX:
rxfc = 1;
hw->fc.current_mode = I40E_FC_RX_PAUSE;
break;
case I40E_AQ_LINK_PAUSE_TX:
txfc = 1;
hw->fc.current_mode = I40E_FC_TX_PAUSE;
break;
default:
hw->fc.current_mode = I40E_FC_NONE;
break;
}
write_reg:
I40E_WRITE_REG(hw, I40E_PRTDCB_FCCFG,
txfc << I40E_PRTDCB_FCCFG_TFCE_SHIFT);
reg = I40E_READ_REG(hw, I40E_PRTDCB_MFLCN);
reg &= ~I40E_PRTDCB_MFLCN_RFCE_MASK;
reg |= rxfc << I40E_PRTDCB_MFLCN_RFCE_SHIFT;
I40E_WRITE_REG(hw, I40E_PRTDCB_MFLCN, reg);
return ret;
}
/* PF setup */
static int
i40e_pf_setup(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_filter_control_settings settings;
struct i40e_vsi *vsi;
int ret;
/* Clear all stats counters */
pf->offset_loaded = FALSE;
memset(&pf->stats, 0, sizeof(struct i40e_hw_port_stats));
memset(&pf->stats_offset, 0, sizeof(struct i40e_hw_port_stats));
ret = i40e_pf_get_switch_config(pf);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Could not get switch config, err %d", ret);
return ret;
}
if (pf->flags & I40E_FLAG_FDIR) {
/* make queue allocated first, let FDIR use queue pair 0*/
ret = i40e_res_pool_alloc(&pf->qp_pool, I40E_DEFAULT_QP_NUM_FDIR);
if (ret != I40E_FDIR_QUEUE_ID) {
PMD_DRV_LOG(ERR, "queue allocation fails for FDIR :"
" ret =%d", ret);
pf->flags &= ~I40E_FLAG_FDIR;
}
}
/* main VSI setup */
vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, NULL, 0);
if (!vsi) {
PMD_DRV_LOG(ERR, "Setup of main vsi failed");
return I40E_ERR_NOT_READY;
}
pf->main_vsi = vsi;
/* Configure filter control */
memset(&settings, 0, sizeof(settings));
if (hw->func_caps.rss_table_size == ETH_RSS_RETA_SIZE_128)
settings.hash_lut_size = I40E_HASH_LUT_SIZE_128;
else if (hw->func_caps.rss_table_size == ETH_RSS_RETA_SIZE_512)
settings.hash_lut_size = I40E_HASH_LUT_SIZE_512;
else {
PMD_DRV_LOG(ERR, "Hash lookup table size (%u) not supported\n",
hw->func_caps.rss_table_size);
return I40E_ERR_PARAM;
}
PMD_DRV_LOG(INFO, "Hardware capability of hash lookup table "
"size: %u\n", hw->func_caps.rss_table_size);
pf->hash_lut_size = hw->func_caps.rss_table_size;
/* Enable ethtype and macvlan filters */
settings.enable_ethtype = TRUE;
settings.enable_macvlan = TRUE;
ret = i40e_set_filter_control(hw, &settings);
if (ret)
PMD_INIT_LOG(WARNING, "setup_pf_filter_control failed: %d",
ret);
/* Update flow control according to the auto negotiation */
i40e_update_flow_control(hw);
return I40E_SUCCESS;
}
int
i40e_switch_tx_queue(struct i40e_hw *hw, uint16_t q_idx, bool on)
{
uint32_t reg;
uint16_t j;
/**
* Set or clear TX Queue Disable flags,
* which is required by hardware.
*/
i40e_pre_tx_queue_cfg(hw, q_idx, on);
rte_delay_us(I40E_PRE_TX_Q_CFG_WAIT_US);
/* Wait until the request is finished */
for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) {
rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US);
reg = I40E_READ_REG(hw, I40E_QTX_ENA(q_idx));
if (!(((reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 0x1) ^
((reg >> I40E_QTX_ENA_QENA_STAT_SHIFT)
& 0x1))) {
break;
}
}
if (on) {
if (reg & I40E_QTX_ENA_QENA_STAT_MASK)
return I40E_SUCCESS; /* already on, skip next steps */
I40E_WRITE_REG(hw, I40E_QTX_HEAD(q_idx), 0);
reg |= I40E_QTX_ENA_QENA_REQ_MASK;
} else {
if (!(reg & I40E_QTX_ENA_QENA_STAT_MASK))
return I40E_SUCCESS; /* already off, skip next steps */
reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
}
/* Write the register */
I40E_WRITE_REG(hw, I40E_QTX_ENA(q_idx), reg);
/* Check the result */
for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) {
rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US);
reg = I40E_READ_REG(hw, I40E_QTX_ENA(q_idx));
if (on) {
if ((reg & I40E_QTX_ENA_QENA_REQ_MASK) &&
(reg & I40E_QTX_ENA_QENA_STAT_MASK))
break;
} else {
if (!(reg & I40E_QTX_ENA_QENA_REQ_MASK) &&
!(reg & I40E_QTX_ENA_QENA_STAT_MASK))
break;
}
}
/* Check if it is timeout */
if (j >= I40E_CHK_Q_ENA_COUNT) {
PMD_DRV_LOG(ERR, "Failed to %s tx queue[%u]",
(on ? "enable" : "disable"), q_idx);
return I40E_ERR_TIMEOUT;
}
return I40E_SUCCESS;
}
/* Swith on or off the tx queues */
static int
i40e_dev_switch_tx_queues(struct i40e_pf *pf, bool on)
{
struct rte_eth_dev_data *dev_data = pf->dev_data;
struct i40e_tx_queue *txq;
struct rte_eth_dev *dev = pf->adapter->eth_dev;
uint16_t i;
int ret;
for (i = 0; i < dev_data->nb_tx_queues; i++) {
txq = dev_data->tx_queues[i];
/* Don't operate the queue if not configured or
* if starting only per queue */
if (!txq || !txq->q_set || (on && txq->tx_deferred_start))
continue;
if (on)
ret = i40e_dev_tx_queue_start(dev, i);
else
ret = i40e_dev_tx_queue_stop(dev, i);
if ( ret != I40E_SUCCESS)
return ret;
}
return I40E_SUCCESS;
}
int
i40e_switch_rx_queue(struct i40e_hw *hw, uint16_t q_idx, bool on)
{
uint32_t reg;
uint16_t j;
/* Wait until the request is finished */
for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) {
rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US);
reg = I40E_READ_REG(hw, I40E_QRX_ENA(q_idx));
if (!((reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 0x1) ^
((reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 0x1))
break;
}
if (on) {
if (reg & I40E_QRX_ENA_QENA_STAT_MASK)
return I40E_SUCCESS; /* Already on, skip next steps */
reg |= I40E_QRX_ENA_QENA_REQ_MASK;
} else {
if (!(reg & I40E_QRX_ENA_QENA_STAT_MASK))
return I40E_SUCCESS; /* Already off, skip next steps */
reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
}
/* Write the register */
I40E_WRITE_REG(hw, I40E_QRX_ENA(q_idx), reg);
/* Check the result */
for (j = 0; j < I40E_CHK_Q_ENA_COUNT; j++) {
rte_delay_us(I40E_CHK_Q_ENA_INTERVAL_US);
reg = I40E_READ_REG(hw, I40E_QRX_ENA(q_idx));
if (on) {
if ((reg & I40E_QRX_ENA_QENA_REQ_MASK) &&
(reg & I40E_QRX_ENA_QENA_STAT_MASK))
break;
} else {
if (!(reg & I40E_QRX_ENA_QENA_REQ_MASK) &&
!(reg & I40E_QRX_ENA_QENA_STAT_MASK))
break;
}
}
/* Check if it is timeout */
if (j >= I40E_CHK_Q_ENA_COUNT) {
PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
(on ? "enable" : "disable"), q_idx);
return I40E_ERR_TIMEOUT;
}
return I40E_SUCCESS;
}
/* Switch on or off the rx queues */
static int
i40e_dev_switch_rx_queues(struct i40e_pf *pf, bool on)
{
struct rte_eth_dev_data *dev_data = pf->dev_data;
struct i40e_rx_queue *rxq;
struct rte_eth_dev *dev = pf->adapter->eth_dev;
uint16_t i;
int ret;
for (i = 0; i < dev_data->nb_rx_queues; i++) {
rxq = dev_data->rx_queues[i];
/* Don't operate the queue if not configured or
* if starting only per queue */
if (!rxq || !rxq->q_set || (on && rxq->rx_deferred_start))
continue;
if (on)
ret = i40e_dev_rx_queue_start(dev, i);
else
ret = i40e_dev_rx_queue_stop(dev, i);
if (ret != I40E_SUCCESS)
return ret;
}
return I40E_SUCCESS;
}
/* Switch on or off all the rx/tx queues */
int
i40e_dev_switch_queues(struct i40e_pf *pf, bool on)
{
int ret;
if (on) {
/* enable rx queues before enabling tx queues */
ret = i40e_dev_switch_rx_queues(pf, on);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to switch rx queues");
return ret;
}
ret = i40e_dev_switch_tx_queues(pf, on);
} else {
/* Stop tx queues before stopping rx queues */
ret = i40e_dev_switch_tx_queues(pf, on);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to switch tx queues");
return ret;
}
ret = i40e_dev_switch_rx_queues(pf, on);
}
return ret;
}
/* Initialize VSI for TX */
static int
i40e_dev_tx_init(struct i40e_pf *pf)
{
struct rte_eth_dev_data *data = pf->dev_data;
uint16_t i;
uint32_t ret = I40E_SUCCESS;
struct i40e_tx_queue *txq;
for (i = 0; i < data->nb_tx_queues; i++) {
txq = data->tx_queues[i];
if (!txq || !txq->q_set)
continue;
ret = i40e_tx_queue_init(txq);
if (ret != I40E_SUCCESS)
break;
}
if (ret == I40E_SUCCESS)
i40e_set_tx_function(container_of(pf, struct i40e_adapter, pf)
->eth_dev);
return ret;
}
/* Initialize VSI for RX */
static int
i40e_dev_rx_init(struct i40e_pf *pf)
{
struct rte_eth_dev_data *data = pf->dev_data;
int ret = I40E_SUCCESS;
uint16_t i;
struct i40e_rx_queue *rxq;
i40e_pf_config_mq_rx(pf);
for (i = 0; i < data->nb_rx_queues; i++) {
rxq = data->rx_queues[i];
if (!rxq || !rxq->q_set)
continue;
ret = i40e_rx_queue_init(rxq);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to do RX queue "
"initialization");
break;
}
}
if (ret == I40E_SUCCESS)
i40e_set_rx_function(container_of(pf, struct i40e_adapter, pf)
->eth_dev);
return ret;
}
static int
i40e_dev_rxtx_init(struct i40e_pf *pf)
{
int err;
err = i40e_dev_tx_init(pf);
if (err) {
PMD_DRV_LOG(ERR, "Failed to do TX initialization");
return err;
}
err = i40e_dev_rx_init(pf);
if (err) {
PMD_DRV_LOG(ERR, "Failed to do RX initialization");
return err;
}
return err;
}
static int
i40e_vmdq_setup(struct rte_eth_dev *dev)
{
struct rte_eth_conf *conf = &dev->data->dev_conf;
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int i, err, conf_vsis, j, loop;
struct i40e_vsi *vsi;
struct i40e_vmdq_info *vmdq_info;
struct rte_eth_vmdq_rx_conf *vmdq_conf;
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
/*
* Disable interrupt to avoid message from VF. Furthermore, it will
* avoid race condition in VSI creation/destroy.
*/
i40e_pf_disable_irq0(hw);
if ((pf->flags & I40E_FLAG_VMDQ) == 0) {
PMD_INIT_LOG(ERR, "FW doesn't support VMDQ");
return -ENOTSUP;
}
conf_vsis = conf->rx_adv_conf.vmdq_rx_conf.nb_queue_pools;
if (conf_vsis > pf->max_nb_vmdq_vsi) {
PMD_INIT_LOG(ERR, "VMDQ config: %u, max support:%u",
conf->rx_adv_conf.vmdq_rx_conf.nb_queue_pools,
pf->max_nb_vmdq_vsi);
return -ENOTSUP;
}
if (pf->vmdq != NULL) {
PMD_INIT_LOG(INFO, "VMDQ already configured");
return 0;
}
pf->vmdq = rte_zmalloc("vmdq_info_struct",
sizeof(*vmdq_info) * conf_vsis, 0);
if (pf->vmdq == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate memory");
return -ENOMEM;
}
vmdq_conf = &conf->rx_adv_conf.vmdq_rx_conf;
/* Create VMDQ VSI */
for (i = 0; i < conf_vsis; i++) {
vsi = i40e_vsi_setup(pf, I40E_VSI_VMDQ2, pf->main_vsi,
vmdq_conf->enable_loop_back);
if (vsi == NULL) {
PMD_INIT_LOG(ERR, "Failed to create VMDQ VSI");
err = -1;
goto err_vsi_setup;
}
vmdq_info = &pf->vmdq[i];
vmdq_info->pf = pf;
vmdq_info->vsi = vsi;
}
pf->nb_cfg_vmdq_vsi = conf_vsis;
/* Configure Vlan */
loop = sizeof(vmdq_conf->pool_map[0].pools) * CHAR_BIT;
for (i = 0; i < vmdq_conf->nb_pool_maps; i++) {
for (j = 0; j < loop && j < pf->nb_cfg_vmdq_vsi; j++) {
if (vmdq_conf->pool_map[i].pools & (1UL << j)) {
PMD_INIT_LOG(INFO, "Add vlan %u to vmdq pool %u",
vmdq_conf->pool_map[i].vlan_id, j);
err = i40e_vsi_add_vlan(pf->vmdq[j].vsi,
vmdq_conf->pool_map[i].vlan_id);
if (err) {
PMD_INIT_LOG(ERR, "Failed to add vlan");
err = -1;
goto err_vsi_setup;
}
}
}
}
i40e_pf_enable_irq0(hw);
return 0;
err_vsi_setup:
for (i = 0; i < conf_vsis; i++)
if (pf->vmdq[i].vsi == NULL)
break;
else
i40e_vsi_release(pf->vmdq[i].vsi);
rte_free(pf->vmdq);
pf->vmdq = NULL;
i40e_pf_enable_irq0(hw);
return err;
}
static void
i40e_stat_update_32(struct i40e_hw *hw,
uint32_t reg,
bool offset_loaded,
uint64_t *offset,
uint64_t *stat)
{
uint64_t new_data;
new_data = (uint64_t)I40E_READ_REG(hw, reg);
if (!offset_loaded)
*offset = new_data;
if (new_data >= *offset)
*stat = (uint64_t)(new_data - *offset);
else
*stat = (uint64_t)((new_data +
((uint64_t)1 << I40E_32_BIT_WIDTH)) - *offset);
}
static void
i40e_stat_update_48(struct i40e_hw *hw,
uint32_t hireg,
uint32_t loreg,
bool offset_loaded,
uint64_t *offset,
uint64_t *stat)
{
uint64_t new_data;
new_data = (uint64_t)I40E_READ_REG(hw, loreg);
new_data |= ((uint64_t)(I40E_READ_REG(hw, hireg) &
I40E_16_BIT_MASK)) << I40E_32_BIT_WIDTH;
if (!offset_loaded)
*offset = new_data;
if (new_data >= *offset)
*stat = new_data - *offset;
else
*stat = (uint64_t)((new_data +
((uint64_t)1 << I40E_48_BIT_WIDTH)) - *offset);
*stat &= I40E_48_BIT_MASK;
}
/* Disable IRQ0 */
void
i40e_pf_disable_irq0(struct i40e_hw *hw)
{
/* Disable all interrupt types */
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0, 0);
I40E_WRITE_FLUSH(hw);
}
/* Enable IRQ0 */
void
i40e_pf_enable_irq0(struct i40e_hw *hw)
{
I40E_WRITE_REG(hw, I40E_PFINT_DYN_CTL0,
I40E_PFINT_DYN_CTL0_INTENA_MASK |
I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
I40E_PFINT_DYN_CTL0_ITR_INDX_MASK);
I40E_WRITE_FLUSH(hw);
}
static void
i40e_pf_config_irq0(struct i40e_hw *hw)
{
/* read pending request and disable first */
i40e_pf_disable_irq0(hw);
I40E_WRITE_REG(hw, I40E_PFINT_ICR0_ENA, I40E_PFINT_ICR0_ENA_MASK);
I40E_WRITE_REG(hw, I40E_PFINT_STAT_CTL0,
I40E_PFINT_STAT_CTL0_OTHER_ITR_INDX_MASK);
/* Link no queues with irq0 */
I40E_WRITE_REG(hw, I40E_PFINT_LNKLST0,
I40E_PFINT_LNKLST0_FIRSTQ_INDX_MASK);
}
static void
i40e_dev_handle_vfr_event(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int i;
uint16_t abs_vf_id;
uint32_t index, offset, val;
if (!pf->vfs)
return;
/**
* Try to find which VF trigger a reset, use absolute VF id to access
* since the reg is global register.
*/
for (i = 0; i < pf->vf_num; i++) {
abs_vf_id = hw->func_caps.vf_base_id + i;
index = abs_vf_id / I40E_UINT32_BIT_SIZE;
offset = abs_vf_id % I40E_UINT32_BIT_SIZE;
val = I40E_READ_REG(hw, I40E_GLGEN_VFLRSTAT(index));
/* VFR event occured */
if (val & (0x1 << offset)) {
int ret;
/* Clear the event first */
I40E_WRITE_REG(hw, I40E_GLGEN_VFLRSTAT(index),
(0x1 << offset));
PMD_DRV_LOG(INFO, "VF %u reset occured", abs_vf_id);
/**
* Only notify a VF reset event occured,
* don't trigger another SW reset
*/
ret = i40e_pf_host_vf_reset(&pf->vfs[i], 0);
if (ret != I40E_SUCCESS)
PMD_DRV_LOG(ERR, "Failed to do VF reset");
}
}
}
static void
i40e_dev_handle_aq_msg(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_arq_event_info info;
uint16_t pending, opcode;
int ret;
info.buf_len = I40E_AQ_BUF_SZ;
info.msg_buf = rte_zmalloc("msg_buffer", info.buf_len, 0);
if (!info.msg_buf) {
PMD_DRV_LOG(ERR, "Failed to allocate mem");
return;
}
pending = 1;
while (pending) {
ret = i40e_clean_arq_element(hw, &info, &pending);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(INFO, "Failed to read msg from AdminQ, "
"aq_err: %u", hw->aq.asq_last_status);
break;
}
opcode = rte_le_to_cpu_16(info.desc.opcode);
switch (opcode) {
case i40e_aqc_opc_send_msg_to_pf:
/* Refer to i40e_aq_send_msg_to_pf() for argument layout*/
i40e_pf_host_handle_vf_msg(dev,
rte_le_to_cpu_16(info.desc.retval),
rte_le_to_cpu_32(info.desc.cookie_high),
rte_le_to_cpu_32(info.desc.cookie_low),
info.msg_buf,
info.msg_len);
break;
default:
PMD_DRV_LOG(ERR, "Request %u is not supported yet",
opcode);
break;
}
}
rte_free(info.msg_buf);
}
/*
* Interrupt handler is registered as the alarm callback for handling LSC
* interrupt in a definite of time, in order to wait the NIC into a stable
* state. Currently it waits 1 sec in i40e for the link up interrupt, and
* no need for link down interrupt.
*/
static void
i40e_dev_interrupt_delayed_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t icr0;
/* read interrupt causes again */
icr0 = I40E_READ_REG(hw, I40E_PFINT_ICR0);
#ifdef RTE_LIBRTE_I40E_DEBUG_DRIVER
if (icr0 & I40E_PFINT_ICR0_ECC_ERR_MASK)
PMD_DRV_LOG(ERR, "ICR0: unrecoverable ECC error\n");
if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK)
PMD_DRV_LOG(ERR, "ICR0: malicious programming detected\n");
if (icr0 & I40E_PFINT_ICR0_GRST_MASK)
PMD_DRV_LOG(INFO, "ICR0: global reset requested\n");
if (icr0 & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK)
PMD_DRV_LOG(INFO, "ICR0: PCI exception\n activated\n");
if (icr0 & I40E_PFINT_ICR0_STORM_DETECT_MASK)
PMD_DRV_LOG(INFO, "ICR0: a change in the storm control "
"state\n");
if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK)
PMD_DRV_LOG(ERR, "ICR0: HMC error\n");
if (icr0 & I40E_PFINT_ICR0_PE_CRITERR_MASK)
PMD_DRV_LOG(ERR, "ICR0: protocol engine critical error\n");
#endif /* RTE_LIBRTE_I40E_DEBUG_DRIVER */
if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) {
PMD_DRV_LOG(INFO, "INT:VF reset detected\n");
i40e_dev_handle_vfr_event(dev);
}
if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) {
PMD_DRV_LOG(INFO, "INT:ADMINQ event\n");
i40e_dev_handle_aq_msg(dev);
}
/* handle the link up interrupt in an alarm callback */
i40e_dev_link_update(dev, 0);
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
i40e_pf_enable_irq0(hw);
rte_intr_enable(&(dev->pci_dev->intr_handle));
}
/**
* Interrupt handler triggered by NIC for handling
* specific interrupt.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
i40e_dev_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t icr0;
/* Disable interrupt */
i40e_pf_disable_irq0(hw);
/* read out interrupt causes */
icr0 = I40E_READ_REG(hw, I40E_PFINT_ICR0);
/* No interrupt event indicated */
if (!(icr0 & I40E_PFINT_ICR0_INTEVENT_MASK)) {
PMD_DRV_LOG(INFO, "No interrupt event");
goto done;
}
#ifdef RTE_LIBRTE_I40E_DEBUG_DRIVER
if (icr0 & I40E_PFINT_ICR0_ECC_ERR_MASK)
PMD_DRV_LOG(ERR, "ICR0: unrecoverable ECC error");
if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK)
PMD_DRV_LOG(ERR, "ICR0: malicious programming detected");
if (icr0 & I40E_PFINT_ICR0_GRST_MASK)
PMD_DRV_LOG(INFO, "ICR0: global reset requested");
if (icr0 & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK)
PMD_DRV_LOG(INFO, "ICR0: PCI exception activated");
if (icr0 & I40E_PFINT_ICR0_STORM_DETECT_MASK)
PMD_DRV_LOG(INFO, "ICR0: a change in the storm control state");
if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK)
PMD_DRV_LOG(ERR, "ICR0: HMC error");
if (icr0 & I40E_PFINT_ICR0_PE_CRITERR_MASK)
PMD_DRV_LOG(ERR, "ICR0: protocol engine critical error");
#endif /* RTE_LIBRTE_I40E_DEBUG_DRIVER */
if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) {
PMD_DRV_LOG(INFO, "ICR0: VF reset detected");
i40e_dev_handle_vfr_event(dev);
}
if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) {
PMD_DRV_LOG(INFO, "ICR0: adminq event");
i40e_dev_handle_aq_msg(dev);
}
/* Link Status Change interrupt */
if (icr0 & I40E_PFINT_ICR0_LINK_STAT_CHANGE_MASK) {
#define I40E_US_PER_SECOND 1000000
struct rte_eth_link link;
PMD_DRV_LOG(INFO, "ICR0: link status changed\n");
memset(&link, 0, sizeof(link));
rte_i40e_dev_atomic_read_link_status(dev, &link);
i40e_dev_link_update(dev, 0);
/*
* For link up interrupt, it needs to wait 1 second to let the
* hardware be a stable state. Otherwise several consecutive
* interrupts can be observed.
* For link down interrupt, no need to wait.
*/
if (!link.link_status && rte_eal_alarm_set(I40E_US_PER_SECOND,
i40e_dev_interrupt_delayed_handler, (void *)dev) >= 0)
return;
else
_rte_eth_dev_callback_process(dev,
RTE_ETH_EVENT_INTR_LSC);
}
done:
/* Enable interrupt */
i40e_pf_enable_irq0(hw);
rte_intr_enable(&(dev->pci_dev->intr_handle));
}
static int
i40e_add_macvlan_filters(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *filter,
int total)
{
int ele_num, ele_buff_size;
int num, actual_num, i;
uint16_t flags;
int ret = I40E_SUCCESS;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
struct i40e_aqc_add_macvlan_element_data *req_list;
if (filter == NULL || total == 0)
return I40E_ERR_PARAM;
ele_num = hw->aq.asq_buf_size / sizeof(*req_list);
ele_buff_size = hw->aq.asq_buf_size;
req_list = rte_zmalloc("macvlan_add", ele_buff_size, 0);
if (req_list == NULL) {
PMD_DRV_LOG(ERR, "Fail to allocate memory");
return I40E_ERR_NO_MEMORY;
}
num = 0;
do {
actual_num = (num + ele_num > total) ? (total - num) : ele_num;
memset(req_list, 0, ele_buff_size);
for (i = 0; i < actual_num; i++) {
(void)rte_memcpy(req_list[i].mac_addr,
&filter[num + i].macaddr, ETH_ADDR_LEN);
req_list[i].vlan_tag =
rte_cpu_to_le_16(filter[num + i].vlan_id);
switch (filter[num + i].filter_type) {
case RTE_MAC_PERFECT_MATCH:
flags = I40E_AQC_MACVLAN_ADD_PERFECT_MATCH |
I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
break;
case RTE_MACVLAN_PERFECT_MATCH:
flags = I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
break;
case RTE_MAC_HASH_MATCH:
flags = I40E_AQC_MACVLAN_ADD_HASH_MATCH |
I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
break;
case RTE_MACVLAN_HASH_MATCH:
flags = I40E_AQC_MACVLAN_ADD_HASH_MATCH;
break;
default:
PMD_DRV_LOG(ERR, "Invalid MAC match type\n");
ret = I40E_ERR_PARAM;
goto DONE;
}
req_list[i].queue_number = 0;
req_list[i].flags = rte_cpu_to_le_16(flags);
}
ret = i40e_aq_add_macvlan(hw, vsi->seid, req_list,
actual_num, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to add macvlan filter");
goto DONE;
}
num += actual_num;
} while (num < total);
DONE:
rte_free(req_list);
return ret;
}
static int
i40e_remove_macvlan_filters(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *filter,
int total)
{
int ele_num, ele_buff_size;
int num, actual_num, i;
uint16_t flags;
int ret = I40E_SUCCESS;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
struct i40e_aqc_remove_macvlan_element_data *req_list;
if (filter == NULL || total == 0)
return I40E_ERR_PARAM;
ele_num = hw->aq.asq_buf_size / sizeof(*req_list);
ele_buff_size = hw->aq.asq_buf_size;
req_list = rte_zmalloc("macvlan_remove", ele_buff_size, 0);
if (req_list == NULL) {
PMD_DRV_LOG(ERR, "Fail to allocate memory");
return I40E_ERR_NO_MEMORY;
}
num = 0;
do {
actual_num = (num + ele_num > total) ? (total - num) : ele_num;
memset(req_list, 0, ele_buff_size);
for (i = 0; i < actual_num; i++) {
(void)rte_memcpy(req_list[i].mac_addr,
&filter[num + i].macaddr, ETH_ADDR_LEN);
req_list[i].vlan_tag =
rte_cpu_to_le_16(filter[num + i].vlan_id);
switch (filter[num + i].filter_type) {
case RTE_MAC_PERFECT_MATCH:
flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
break;
case RTE_MACVLAN_PERFECT_MATCH:
flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
break;
case RTE_MAC_HASH_MATCH:
flags = I40E_AQC_MACVLAN_DEL_HASH_MATCH |
I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
break;
case RTE_MACVLAN_HASH_MATCH:
flags = I40E_AQC_MACVLAN_DEL_HASH_MATCH;
break;
default:
PMD_DRV_LOG(ERR, "Invalid MAC filter type\n");
ret = I40E_ERR_PARAM;
goto DONE;
}
req_list[i].flags = rte_cpu_to_le_16(flags);
}
ret = i40e_aq_remove_macvlan(hw, vsi->seid, req_list,
actual_num, NULL);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "Failed to remove macvlan filter");
goto DONE;
}
num += actual_num;
} while (num < total);
DONE:
rte_free(req_list);
return ret;
}
/* Find out specific MAC filter */
static struct i40e_mac_filter *
i40e_find_mac_filter(struct i40e_vsi *vsi,
struct ether_addr *macaddr)
{
struct i40e_mac_filter *f;
TAILQ_FOREACH(f, &vsi->mac_list, next) {
if (is_same_ether_addr(macaddr, &f->mac_info.mac_addr))
return f;
}
return NULL;
}
static bool
i40e_find_vlan_filter(struct i40e_vsi *vsi,
uint16_t vlan_id)
{
uint32_t vid_idx, vid_bit;
if (vlan_id > ETH_VLAN_ID_MAX)
return 0;
vid_idx = I40E_VFTA_IDX(vlan_id);
vid_bit = I40E_VFTA_BIT(vlan_id);
if (vsi->vfta[vid_idx] & vid_bit)
return 1;
else
return 0;
}
static void
i40e_set_vlan_filter(struct i40e_vsi *vsi,
uint16_t vlan_id, bool on)
{
uint32_t vid_idx, vid_bit;
if (vlan_id > ETH_VLAN_ID_MAX)
return;
vid_idx = I40E_VFTA_IDX(vlan_id);
vid_bit = I40E_VFTA_BIT(vlan_id);
if (on)
vsi->vfta[vid_idx] |= vid_bit;
else
vsi->vfta[vid_idx] &= ~vid_bit;
}
/**
* Find all vlan options for specific mac addr,
* return with actual vlan found.
*/
static inline int
i40e_find_all_vlan_for_mac(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *mv_f,
int num, struct ether_addr *addr)
{
int i;
uint32_t j, k;
/**
* Not to use i40e_find_vlan_filter to decrease the loop time,
* although the code looks complex.
*/
if (num < vsi->vlan_num)
return I40E_ERR_PARAM;
i = 0;
for (j = 0; j < I40E_VFTA_SIZE; j++) {
if (vsi->vfta[j]) {
for (k = 0; k < I40E_UINT32_BIT_SIZE; k++) {
if (vsi->vfta[j] & (1 << k)) {
if (i > num - 1) {
PMD_DRV_LOG(ERR, "vlan number "
"not match");
return I40E_ERR_PARAM;
}
(void)rte_memcpy(&mv_f[i].macaddr,
addr, ETH_ADDR_LEN);
mv_f[i].vlan_id =
j * I40E_UINT32_BIT_SIZE + k;
i++;
}
}
}
}
return I40E_SUCCESS;
}
static inline int
i40e_find_all_mac_for_vlan(struct i40e_vsi *vsi,
struct i40e_macvlan_filter *mv_f,
int num,
uint16_t vlan)
{
int i = 0;
struct i40e_mac_filter *f;
if (num < vsi->mac_num)
return I40E_ERR_PARAM;
TAILQ_FOREACH(f, &vsi->mac_list, next) {
if (i > num - 1) {
PMD_DRV_LOG(ERR, "buffer number not match");
return I40E_ERR_PARAM;
}
(void)rte_memcpy(&mv_f[i].macaddr, &f->mac_info.mac_addr,
ETH_ADDR_LEN);
mv_f[i].vlan_id = vlan;
mv_f[i].filter_type = f->mac_info.filter_type;
i++;
}
return I40E_SUCCESS;
}
static int
i40e_vsi_remove_all_macvlan_filter(struct i40e_vsi *vsi)
{
int i, num;
struct i40e_mac_filter *f;
struct i40e_macvlan_filter *mv_f;
int ret = I40E_SUCCESS;
if (vsi == NULL || vsi->mac_num == 0)
return I40E_ERR_PARAM;
/* Case that no vlan is set */
if (vsi->vlan_num == 0)
num = vsi->mac_num;
else
num = vsi->mac_num * vsi->vlan_num;
mv_f = rte_zmalloc("macvlan_data", num * sizeof(*mv_f), 0);
if (mv_f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
i = 0;
if (vsi->vlan_num == 0) {
TAILQ_FOREACH(f, &vsi->mac_list, next) {
(void)rte_memcpy(&mv_f[i].macaddr,
&f->mac_info.mac_addr, ETH_ADDR_LEN);
mv_f[i].vlan_id = 0;
i++;
}
} else {
TAILQ_FOREACH(f, &vsi->mac_list, next) {
ret = i40e_find_all_vlan_for_mac(vsi,&mv_f[i],
vsi->vlan_num, &f->mac_info.mac_addr);
if (ret != I40E_SUCCESS)
goto DONE;
i += vsi->vlan_num;
}
}
ret = i40e_remove_macvlan_filters(vsi, mv_f, num);
DONE:
rte_free(mv_f);
return ret;
}
int
i40e_vsi_add_vlan(struct i40e_vsi *vsi, uint16_t vlan)
{
struct i40e_macvlan_filter *mv_f;
int mac_num;
int ret = I40E_SUCCESS;
if (!vsi || vlan > ETHER_MAX_VLAN_ID)
return I40E_ERR_PARAM;
/* If it's already set, just return */
if (i40e_find_vlan_filter(vsi,vlan))
return I40E_SUCCESS;
mac_num = vsi->mac_num;
if (mac_num == 0) {
PMD_DRV_LOG(ERR, "Error! VSI doesn't have a mac addr");
return I40E_ERR_PARAM;
}
mv_f = rte_zmalloc("macvlan_data", mac_num * sizeof(*mv_f), 0);
if (mv_f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
ret = i40e_find_all_mac_for_vlan(vsi, mv_f, mac_num, vlan);
if (ret != I40E_SUCCESS)
goto DONE;
ret = i40e_add_macvlan_filters(vsi, mv_f, mac_num);
if (ret != I40E_SUCCESS)
goto DONE;
i40e_set_vlan_filter(vsi, vlan, 1);
vsi->vlan_num++;
ret = I40E_SUCCESS;
DONE:
rte_free(mv_f);
return ret;
}
int
i40e_vsi_delete_vlan(struct i40e_vsi *vsi, uint16_t vlan)
{
struct i40e_macvlan_filter *mv_f;
int mac_num;
int ret = I40E_SUCCESS;
/**
* Vlan 0 is the generic filter for untagged packets
* and can't be removed.
*/
if (!vsi || vlan == 0 || vlan > ETHER_MAX_VLAN_ID)
return I40E_ERR_PARAM;
/* If can't find it, just return */
if (!i40e_find_vlan_filter(vsi, vlan))
return I40E_ERR_PARAM;
mac_num = vsi->mac_num;
if (mac_num == 0) {
PMD_DRV_LOG(ERR, "Error! VSI doesn't have a mac addr");
return I40E_ERR_PARAM;
}
mv_f = rte_zmalloc("macvlan_data", mac_num * sizeof(*mv_f), 0);
if (mv_f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
ret = i40e_find_all_mac_for_vlan(vsi, mv_f, mac_num, vlan);
if (ret != I40E_SUCCESS)
goto DONE;
ret = i40e_remove_macvlan_filters(vsi, mv_f, mac_num);
if (ret != I40E_SUCCESS)
goto DONE;
/* This is last vlan to remove, replace all mac filter with vlan 0 */
if (vsi->vlan_num == 1) {
ret = i40e_find_all_mac_for_vlan(vsi, mv_f, mac_num, 0);
if (ret != I40E_SUCCESS)
goto DONE;
ret = i40e_add_macvlan_filters(vsi, mv_f, mac_num);
if (ret != I40E_SUCCESS)
goto DONE;
}
i40e_set_vlan_filter(vsi, vlan, 0);
vsi->vlan_num--;
ret = I40E_SUCCESS;
DONE:
rte_free(mv_f);
return ret;
}
int
i40e_vsi_add_mac(struct i40e_vsi *vsi, struct i40e_mac_filter_info *mac_filter)
{
struct i40e_mac_filter *f;
struct i40e_macvlan_filter *mv_f;
int i, vlan_num = 0;
int ret = I40E_SUCCESS;
/* If it's add and we've config it, return */
f = i40e_find_mac_filter(vsi, &mac_filter->mac_addr);
if (f != NULL)
return I40E_SUCCESS;
if ((mac_filter->filter_type == RTE_MACVLAN_PERFECT_MATCH) ||
(mac_filter->filter_type == RTE_MACVLAN_HASH_MATCH)) {
/**
* If vlan_num is 0, that's the first time to add mac,
* set mask for vlan_id 0.
*/
if (vsi->vlan_num == 0) {
i40e_set_vlan_filter(vsi, 0, 1);
vsi->vlan_num = 1;
}
vlan_num = vsi->vlan_num;
} else if ((mac_filter->filter_type == RTE_MAC_PERFECT_MATCH) ||
(mac_filter->filter_type == RTE_MAC_HASH_MATCH))
vlan_num = 1;
mv_f = rte_zmalloc("macvlan_data", vlan_num * sizeof(*mv_f), 0);
if (mv_f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
for (i = 0; i < vlan_num; i++) {
mv_f[i].filter_type = mac_filter->filter_type;
(void)rte_memcpy(&mv_f[i].macaddr, &mac_filter->mac_addr,
ETH_ADDR_LEN);
}
if (mac_filter->filter_type == RTE_MACVLAN_PERFECT_MATCH ||
mac_filter->filter_type == RTE_MACVLAN_HASH_MATCH) {
ret = i40e_find_all_vlan_for_mac(vsi, mv_f, vlan_num,
&mac_filter->mac_addr);
if (ret != I40E_SUCCESS)
goto DONE;
}
ret = i40e_add_macvlan_filters(vsi, mv_f, vlan_num);
if (ret != I40E_SUCCESS)
goto DONE;
/* Add the mac addr into mac list */
f = rte_zmalloc("macv_filter", sizeof(*f), 0);
if (f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
ret = I40E_ERR_NO_MEMORY;
goto DONE;
}
(void)rte_memcpy(&f->mac_info.mac_addr, &mac_filter->mac_addr,
ETH_ADDR_LEN);
f->mac_info.filter_type = mac_filter->filter_type;
TAILQ_INSERT_TAIL(&vsi->mac_list, f, next);
vsi->mac_num++;
ret = I40E_SUCCESS;
DONE:
rte_free(mv_f);
return ret;
}
int
i40e_vsi_delete_mac(struct i40e_vsi *vsi, struct ether_addr *addr)
{
struct i40e_mac_filter *f;
struct i40e_macvlan_filter *mv_f;
int i, vlan_num;
enum rte_mac_filter_type filter_type;
int ret = I40E_SUCCESS;
/* Can't find it, return an error */
f = i40e_find_mac_filter(vsi, addr);
if (f == NULL)
return I40E_ERR_PARAM;
vlan_num = vsi->vlan_num;
filter_type = f->mac_info.filter_type;
if (filter_type == RTE_MACVLAN_PERFECT_MATCH ||
filter_type == RTE_MACVLAN_HASH_MATCH) {
if (vlan_num == 0) {
PMD_DRV_LOG(ERR, "VLAN number shouldn't be 0\n");
return I40E_ERR_PARAM;
}
} else if (filter_type == RTE_MAC_PERFECT_MATCH ||
filter_type == RTE_MAC_HASH_MATCH)
vlan_num = 1;
mv_f = rte_zmalloc("macvlan_data", vlan_num * sizeof(*mv_f), 0);
if (mv_f == NULL) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
for (i = 0; i < vlan_num; i++) {
mv_f[i].filter_type = filter_type;
(void)rte_memcpy(&mv_f[i].macaddr, &f->mac_info.mac_addr,
ETH_ADDR_LEN);
}
if (filter_type == RTE_MACVLAN_PERFECT_MATCH ||
filter_type == RTE_MACVLAN_HASH_MATCH) {
ret = i40e_find_all_vlan_for_mac(vsi, mv_f, vlan_num, addr);
if (ret != I40E_SUCCESS)
goto DONE;
}
ret = i40e_remove_macvlan_filters(vsi, mv_f, vlan_num);
if (ret != I40E_SUCCESS)
goto DONE;
/* Remove the mac addr into mac list */
TAILQ_REMOVE(&vsi->mac_list, f, next);
rte_free(f);
vsi->mac_num--;
ret = I40E_SUCCESS;
DONE:
rte_free(mv_f);
return ret;
}
/* Configure hash enable flags for RSS */
uint64_t
i40e_config_hena(uint64_t flags)
{
uint64_t hena = 0;
if (!flags)
return hena;
if (flags & ETH_RSS_FRAG_IPV4)
hena |= 1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4;
if (flags & ETH_RSS_NONFRAG_IPV4_TCP)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
if (flags & ETH_RSS_NONFRAG_IPV4_UDP)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
if (flags & ETH_RSS_NONFRAG_IPV4_SCTP)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
if (flags & ETH_RSS_NONFRAG_IPV4_OTHER)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
if (flags & ETH_RSS_FRAG_IPV6)
hena |= 1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6;
if (flags & ETH_RSS_NONFRAG_IPV6_TCP)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP;
if (flags & ETH_RSS_NONFRAG_IPV6_UDP)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP;
if (flags & ETH_RSS_NONFRAG_IPV6_SCTP)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP;
if (flags & ETH_RSS_NONFRAG_IPV6_OTHER)
hena |= 1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
if (flags & ETH_RSS_L2_PAYLOAD)
hena |= 1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD;
return hena;
}
/* Parse the hash enable flags */
uint64_t
i40e_parse_hena(uint64_t flags)
{
uint64_t rss_hf = 0;
if (!flags)
return rss_hf;
if (flags & (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV4))
rss_hf |= ETH_RSS_FRAG_IPV4;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_TCP))
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_UDP))
rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_SCTP))
rss_hf |= ETH_RSS_NONFRAG_IPV4_SCTP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV4_OTHER))
rss_hf |= ETH_RSS_NONFRAG_IPV4_OTHER;
if (flags & (1ULL << I40E_FILTER_PCTYPE_FRAG_IPV6))
rss_hf |= ETH_RSS_FRAG_IPV6;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_TCP))
rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_UDP))
rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_SCTP))
rss_hf |= ETH_RSS_NONFRAG_IPV6_SCTP;
if (flags & (1ULL << I40E_FILTER_PCTYPE_NONF_IPV6_OTHER))
rss_hf |= ETH_RSS_NONFRAG_IPV6_OTHER;
if (flags & (1ULL << I40E_FILTER_PCTYPE_L2_PAYLOAD))
rss_hf |= ETH_RSS_L2_PAYLOAD;
return rss_hf;
}
/* Disable RSS */
static void
i40e_pf_disable_rss(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
uint64_t hena;
hena = (uint64_t)I40E_READ_REG(hw, I40E_PFQF_HENA(0));
hena |= ((uint64_t)I40E_READ_REG(hw, I40E_PFQF_HENA(1))) << 32;
hena &= ~I40E_RSS_HENA_ALL;
I40E_WRITE_REG(hw, I40E_PFQF_HENA(0), (uint32_t)hena);
I40E_WRITE_REG(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32));
I40E_WRITE_FLUSH(hw);
}
static int
i40e_hw_rss_hash_set(struct i40e_hw *hw, struct rte_eth_rss_conf *rss_conf)
{
uint32_t *hash_key;
uint8_t hash_key_len;
uint64_t rss_hf;
uint16_t i;
uint64_t hena;
hash_key = (uint32_t *)(rss_conf->rss_key);
hash_key_len = rss_conf->rss_key_len;
if (hash_key != NULL && hash_key_len >=
(I40E_PFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t)) {
/* Fill in RSS hash key */
for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
I40E_WRITE_REG(hw, I40E_PFQF_HKEY(i), hash_key[i]);
}
rss_hf = rss_conf->rss_hf;
hena = (uint64_t)I40E_READ_REG(hw, I40E_PFQF_HENA(0));
hena |= ((uint64_t)I40E_READ_REG(hw, I40E_PFQF_HENA(1))) << 32;
hena &= ~I40E_RSS_HENA_ALL;
hena |= i40e_config_hena(rss_hf);
I40E_WRITE_REG(hw, I40E_PFQF_HENA(0), (uint32_t)hena);
I40E_WRITE_REG(hw, I40E_PFQF_HENA(1), (uint32_t)(hena >> 32));
I40E_WRITE_FLUSH(hw);
return 0;
}
static int
i40e_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t rss_hf = rss_conf->rss_hf & I40E_RSS_OFFLOAD_ALL;
uint64_t hena;
hena = (uint64_t)I40E_READ_REG(hw, I40E_PFQF_HENA(0));
hena |= ((uint64_t)I40E_READ_REG(hw, I40E_PFQF_HENA(1))) << 32;
if (!(hena & I40E_RSS_HENA_ALL)) { /* RSS disabled */
if (rss_hf != 0) /* Enable RSS */
return -EINVAL;
return 0; /* Nothing to do */
}
/* RSS enabled */
if (rss_hf == 0) /* Disable RSS */
return -EINVAL;
return i40e_hw_rss_hash_set(hw, rss_conf);
}
static int
i40e_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t *hash_key = (uint32_t *)(rss_conf->rss_key);
uint64_t hena;
uint16_t i;
if (hash_key != NULL) {
for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
hash_key[i] = I40E_READ_REG(hw, I40E_PFQF_HKEY(i));
rss_conf->rss_key_len = i * sizeof(uint32_t);
}
hena = (uint64_t)I40E_READ_REG(hw, I40E_PFQF_HENA(0));
hena |= ((uint64_t)I40E_READ_REG(hw, I40E_PFQF_HENA(1))) << 32;
rss_conf->rss_hf = i40e_parse_hena(hena);
return 0;
}
static int
i40e_dev_get_filter_type(uint16_t filter_type, uint16_t *flag)
{
switch (filter_type) {
case RTE_TUNNEL_FILTER_IMAC_IVLAN:
*flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN;
break;
case RTE_TUNNEL_FILTER_IMAC_IVLAN_TENID:
*flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID;
break;
case RTE_TUNNEL_FILTER_IMAC_TENID:
*flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID;
break;
case RTE_TUNNEL_FILTER_OMAC_TENID_IMAC:
*flag = I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC;
break;
case ETH_TUNNEL_FILTER_IMAC:
*flag = I40E_AQC_ADD_CLOUD_FILTER_IMAC;
break;
default:
PMD_DRV_LOG(ERR, "invalid tunnel filter type");
return -EINVAL;
}
return 0;
}
static int
i40e_dev_tunnel_filter_set(struct i40e_pf *pf,
struct rte_eth_tunnel_filter_conf *tunnel_filter,
uint8_t add)
{
uint16_t ip_type;
uint8_t tun_type = 0;
int val, ret = 0;
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_vsi *vsi = pf->main_vsi;
struct i40e_aqc_add_remove_cloud_filters_element_data *cld_filter;
struct i40e_aqc_add_remove_cloud_filters_element_data *pfilter;
cld_filter = rte_zmalloc("tunnel_filter",
sizeof(struct i40e_aqc_add_remove_cloud_filters_element_data),
0);
if (NULL == cld_filter) {
PMD_DRV_LOG(ERR, "Failed to alloc memory.");
return -EINVAL;
}
pfilter = cld_filter;
(void)rte_memcpy(&pfilter->outer_mac, tunnel_filter->outer_mac,
sizeof(struct ether_addr));
(void)rte_memcpy(&pfilter->inner_mac, tunnel_filter->inner_mac,
sizeof(struct ether_addr));
pfilter->inner_vlan = tunnel_filter->inner_vlan;
if (tunnel_filter->ip_type == RTE_TUNNEL_IPTYPE_IPV4) {
ip_type = I40E_AQC_ADD_CLOUD_FLAGS_IPV4;
(void)rte_memcpy(&pfilter->ipaddr.v4.data,
&tunnel_filter->ip_addr,
sizeof(pfilter->ipaddr.v4.data));
} else {
ip_type = I40E_AQC_ADD_CLOUD_FLAGS_IPV6;
(void)rte_memcpy(&pfilter->ipaddr.v6.data,
&tunnel_filter->ip_addr,
sizeof(pfilter->ipaddr.v6.data));
}
/* check tunneled type */
switch (tunnel_filter->tunnel_type) {
case RTE_TUNNEL_TYPE_VXLAN:
tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_XVLAN;
break;
case RTE_TUNNEL_TYPE_NVGRE:
tun_type = I40E_AQC_ADD_CLOUD_TNL_TYPE_NVGRE_OMAC;
break;
default:
/* Other tunnel types is not supported. */
PMD_DRV_LOG(ERR, "tunnel type is not supported.");
rte_free(cld_filter);
return -EINVAL;
}
val = i40e_dev_get_filter_type(tunnel_filter->filter_type,
&pfilter->flags);
if (val < 0) {
rte_free(cld_filter);
return -EINVAL;
}
pfilter->flags |= I40E_AQC_ADD_CLOUD_FLAGS_TO_QUEUE | ip_type |
(tun_type << I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT);
pfilter->tenant_id = tunnel_filter->tenant_id;
pfilter->queue_number = tunnel_filter->queue_id;
if (add)
ret = i40e_aq_add_cloud_filters(hw, vsi->seid, cld_filter, 1);
else
ret = i40e_aq_remove_cloud_filters(hw, vsi->seid,
cld_filter, 1);
rte_free(cld_filter);
return ret;
}
static int
i40e_get_vxlan_port_idx(struct i40e_pf *pf, uint16_t port)
{
uint8_t i;
for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) {
if (pf->vxlan_ports[i] == port)
return i;
}
return -1;
}
static int
i40e_add_vxlan_port(struct i40e_pf *pf, uint16_t port)
{
int idx, ret;
uint8_t filter_idx;
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
idx = i40e_get_vxlan_port_idx(pf, port);
/* Check if port already exists */
if (idx >= 0) {
PMD_DRV_LOG(ERR, "Port %d already offloaded", port);
return -EINVAL;
}
/* Now check if there is space to add the new port */
idx = i40e_get_vxlan_port_idx(pf, 0);
if (idx < 0) {
PMD_DRV_LOG(ERR, "Maximum number of UDP ports reached,"
"not adding port %d", port);
return -ENOSPC;
}
ret = i40e_aq_add_udp_tunnel(hw, port, I40E_AQC_TUNNEL_TYPE_VXLAN,
&filter_idx, NULL);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to add VXLAN UDP port %d", port);
return -1;
}
PMD_DRV_LOG(INFO, "Added port %d with AQ command with index %d",
port, filter_idx);
/* New port: add it and mark its index in the bitmap */
pf->vxlan_ports[idx] = port;
pf->vxlan_bitmap |= (1 << idx);
if (!(pf->flags & I40E_FLAG_VXLAN))
pf->flags |= I40E_FLAG_VXLAN;
return 0;
}
static int
i40e_del_vxlan_port(struct i40e_pf *pf, uint16_t port)
{
int idx;
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
if (!(pf->flags & I40E_FLAG_VXLAN)) {
PMD_DRV_LOG(ERR, "VXLAN UDP port was not configured.");
return -EINVAL;
}
idx = i40e_get_vxlan_port_idx(pf, port);
if (idx < 0) {
PMD_DRV_LOG(ERR, "Port %d doesn't exist", port);
return -EINVAL;
}
if (i40e_aq_del_udp_tunnel(hw, idx, NULL) < 0) {
PMD_DRV_LOG(ERR, "Failed to delete VXLAN UDP port %d", port);
return -1;
}
PMD_DRV_LOG(INFO, "Deleted port %d with AQ command with index %d",
port, idx);
pf->vxlan_ports[idx] = 0;
pf->vxlan_bitmap &= ~(1 << idx);
if (!pf->vxlan_bitmap)
pf->flags &= ~I40E_FLAG_VXLAN;
return 0;
}
/* Add UDP tunneling port */
static int
i40e_dev_udp_tunnel_add(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
int ret = 0;
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (udp_tunnel == NULL)
return -EINVAL;
switch (udp_tunnel->prot_type) {
case RTE_TUNNEL_TYPE_VXLAN:
ret = i40e_add_vxlan_port(pf, udp_tunnel->udp_port);
break;
case RTE_TUNNEL_TYPE_GENEVE:
case RTE_TUNNEL_TYPE_TEREDO:
PMD_DRV_LOG(ERR, "Tunnel type is not supported now.");
ret = -1;
break;
default:
PMD_DRV_LOG(ERR, "Invalid tunnel type");
ret = -1;
break;
}
return ret;
}
/* Remove UDP tunneling port */
static int
i40e_dev_udp_tunnel_del(struct rte_eth_dev *dev,
struct rte_eth_udp_tunnel *udp_tunnel)
{
int ret = 0;
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
if (udp_tunnel == NULL)
return -EINVAL;
switch (udp_tunnel->prot_type) {
case RTE_TUNNEL_TYPE_VXLAN:
ret = i40e_del_vxlan_port(pf, udp_tunnel->udp_port);
break;
case RTE_TUNNEL_TYPE_GENEVE:
case RTE_TUNNEL_TYPE_TEREDO:
PMD_DRV_LOG(ERR, "Tunnel type is not supported now.");
ret = -1;
break;
default:
PMD_DRV_LOG(ERR, "Invalid tunnel type");
ret = -1;
break;
}
return ret;
}
/* Calculate the maximum number of contiguous PF queues that are configured */
static int
i40e_pf_calc_configured_queues_num(struct i40e_pf *pf)
{
struct rte_eth_dev_data *data = pf->dev_data;
int i, num;
struct i40e_rx_queue *rxq;
num = 0;
for (i = 0; i < pf->lan_nb_qps; i++) {
rxq = data->rx_queues[i];
if (rxq && rxq->q_set)
num++;
else
break;
}
return num;
}
/* Configure RSS */
static int
i40e_pf_config_rss(struct i40e_pf *pf)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct rte_eth_rss_conf rss_conf;
uint32_t i, lut = 0;
uint16_t j, num;
/*
* If both VMDQ and RSS enabled, not all of PF queues are configured.
* It's necessary to calulate the actual PF queues that are configured.
*/
if (pf->dev_data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_VMDQ_FLAG) {
num = i40e_pf_calc_configured_queues_num(pf);
num = i40e_align_floor(num);
} else
num = i40e_align_floor(pf->dev_data->nb_rx_queues);
PMD_INIT_LOG(INFO, "Max of contiguous %u PF queues are configured",
num);
if (num == 0) {
PMD_INIT_LOG(ERR, "No PF queues are configured to enable RSS");
return -ENOTSUP;
}
for (i = 0, j = 0; i < hw->func_caps.rss_table_size; i++, j++) {
if (j == num)
j = 0;
lut = (lut << 8) | (j & ((0x1 <<
hw->func_caps.rss_table_entry_width) - 1));
if ((i & 3) == 3)
I40E_WRITE_REG(hw, I40E_PFQF_HLUT(i >> 2), lut);
}
rss_conf = pf->dev_data->dev_conf.rx_adv_conf.rss_conf;
if ((rss_conf.rss_hf & I40E_RSS_OFFLOAD_ALL) == 0) {
i40e_pf_disable_rss(pf);
return 0;
}
if (rss_conf.rss_key == NULL || rss_conf.rss_key_len <
(I40E_PFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t)) {
/* Random default keys */
static uint32_t rss_key_default[] = {0x6b793944,
0x23504cb5, 0x5bea75b6, 0x309f4f12, 0x3dc0a2b8,
0x024ddcdf, 0x339b8ca0, 0x4c4af64a, 0x34fac605,
0x55d85839, 0x3a58997d, 0x2ec938e1, 0x66031581};
rss_conf.rss_key = (uint8_t *)rss_key_default;
rss_conf.rss_key_len = (I40E_PFQF_HKEY_MAX_INDEX + 1) *
sizeof(uint32_t);
}
return i40e_hw_rss_hash_set(hw, &rss_conf);
}
static int
i40e_tunnel_filter_param_check(struct i40e_pf *pf,
struct rte_eth_tunnel_filter_conf *filter)
{
if (pf == NULL || filter == NULL) {
PMD_DRV_LOG(ERR, "Invalid parameter");
return -EINVAL;
}
if (filter->queue_id >= pf->dev_data->nb_rx_queues) {
PMD_DRV_LOG(ERR, "Invalid queue ID");
return -EINVAL;
}
if (filter->inner_vlan > ETHER_MAX_VLAN_ID) {
PMD_DRV_LOG(ERR, "Invalid inner VLAN ID");
return -EINVAL;
}
if ((filter->filter_type & ETH_TUNNEL_FILTER_OMAC) &&
(is_zero_ether_addr(filter->outer_mac))) {
PMD_DRV_LOG(ERR, "Cannot add NULL outer MAC address");
return -EINVAL;
}
if ((filter->filter_type & ETH_TUNNEL_FILTER_IMAC) &&
(is_zero_ether_addr(filter->inner_mac))) {
PMD_DRV_LOG(ERR, "Cannot add NULL inner MAC address");
return -EINVAL;
}
return 0;
}
static int
i40e_tunnel_filter_handle(struct rte_eth_dev *dev, enum rte_filter_op filter_op,
void *arg)
{
struct rte_eth_tunnel_filter_conf *filter;
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int ret = I40E_SUCCESS;
filter = (struct rte_eth_tunnel_filter_conf *)(arg);
if (i40e_tunnel_filter_param_check(pf, filter) < 0)
return I40E_ERR_PARAM;
switch (filter_op) {
case RTE_ETH_FILTER_NOP:
if (!(pf->flags & I40E_FLAG_VXLAN))
ret = I40E_NOT_SUPPORTED;
case RTE_ETH_FILTER_ADD:
ret = i40e_dev_tunnel_filter_set(pf, filter, 1);
break;
case RTE_ETH_FILTER_DELETE:
ret = i40e_dev_tunnel_filter_set(pf, filter, 0);
break;
default:
PMD_DRV_LOG(ERR, "unknown operation %u", filter_op);
ret = I40E_ERR_PARAM;
break;
}
return ret;
}
static int
i40e_pf_config_mq_rx(struct i40e_pf *pf)
{
int ret = 0;
enum rte_eth_rx_mq_mode mq_mode = pf->dev_data->dev_conf.rxmode.mq_mode;
/* RSS setup */
if (mq_mode & ETH_MQ_RX_RSS_FLAG)
ret = i40e_pf_config_rss(pf);
else
i40e_pf_disable_rss(pf);
return ret;
}
/* Get the symmetric hash enable configurations per port */
static void
i40e_get_symmetric_hash_enable_per_port(struct i40e_hw *hw, uint8_t *enable)
{
uint32_t reg = I40E_READ_REG(hw, I40E_PRTQF_CTL_0);
*enable = reg & I40E_PRTQF_CTL_0_HSYM_ENA_MASK ? 1 : 0;
}
/* Set the symmetric hash enable configurations per port */
static void
i40e_set_symmetric_hash_enable_per_port(struct i40e_hw *hw, uint8_t enable)
{
uint32_t reg = I40E_READ_REG(hw, I40E_PRTQF_CTL_0);
if (enable > 0) {
if (reg & I40E_PRTQF_CTL_0_HSYM_ENA_MASK) {
PMD_DRV_LOG(INFO, "Symmetric hash has already "
"been enabled");
return;
}
reg |= I40E_PRTQF_CTL_0_HSYM_ENA_MASK;
} else {
if (!(reg & I40E_PRTQF_CTL_0_HSYM_ENA_MASK)) {
PMD_DRV_LOG(INFO, "Symmetric hash has already "
"been disabled");
return;
}
reg &= ~I40E_PRTQF_CTL_0_HSYM_ENA_MASK;
}
I40E_WRITE_REG(hw, I40E_PRTQF_CTL_0, reg);
I40E_WRITE_FLUSH(hw);
}
/*
* Get global configurations of hash function type and symmetric hash enable
* per flow type (pctype). Note that global configuration means it affects all
* the ports on the same NIC.
*/
static int
i40e_get_hash_filter_global_config(struct i40e_hw *hw,
struct rte_eth_hash_global_conf *g_cfg)
{
uint32_t reg, mask = I40E_FLOW_TYPES;
uint16_t i;
enum i40e_filter_pctype pctype;
memset(g_cfg, 0, sizeof(*g_cfg));
reg = I40E_READ_REG(hw, I40E_GLQF_CTL);
if (reg & I40E_GLQF_CTL_HTOEP_MASK)
g_cfg->hash_func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
else
g_cfg->hash_func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
PMD_DRV_LOG(DEBUG, "Hash function is %s",
(reg & I40E_GLQF_CTL_HTOEP_MASK) ? "Toeplitz" : "Simple XOR");
for (i = 0; mask && i < RTE_ETH_FLOW_MAX; i++) {
if (!(mask & (1UL << i)))
continue;
mask &= ~(1UL << i);
/* Bit set indicats the coresponding flow type is supported */
g_cfg->valid_bit_mask[0] |= (1UL << i);
pctype = i40e_flowtype_to_pctype(i);
reg = I40E_READ_REG(hw, I40E_GLQF_HSYM(pctype));
if (reg & I40E_GLQF_HSYM_SYMH_ENA_MASK)
g_cfg->sym_hash_enable_mask[0] |= (1UL << i);
}
return 0;
}
static int
i40e_hash_global_config_check(struct rte_eth_hash_global_conf *g_cfg)
{
uint32_t i;
uint32_t mask0, i40e_mask = I40E_FLOW_TYPES;
if (g_cfg->hash_func != RTE_ETH_HASH_FUNCTION_TOEPLITZ &&
g_cfg->hash_func != RTE_ETH_HASH_FUNCTION_SIMPLE_XOR &&
g_cfg->hash_func != RTE_ETH_HASH_FUNCTION_DEFAULT) {
PMD_DRV_LOG(ERR, "Unsupported hash function type %d",
g_cfg->hash_func);
return -EINVAL;
}
/*
* As i40e supports less than 32 flow types, only first 32 bits need to
* be checked.
*/
mask0 = g_cfg->valid_bit_mask[0];
for (i = 0; i < RTE_SYM_HASH_MASK_ARRAY_SIZE; i++) {
if (i == 0) {
/* Check if any unsupported flow type configured */
if ((mask0 | i40e_mask) ^ i40e_mask)
goto mask_err;
} else {
if (g_cfg->valid_bit_mask[i])
goto mask_err;
}
}
return 0;
mask_err:
PMD_DRV_LOG(ERR, "i40e unsupported flow type bit(s) configured");
return -EINVAL;
}
/*
* Set global configurations of hash function type and symmetric hash enable
* per flow type (pctype). Note any modifying global configuration will affect
* all the ports on the same NIC.
*/
static int
i40e_set_hash_filter_global_config(struct i40e_hw *hw,
struct rte_eth_hash_global_conf *g_cfg)
{
int ret;
uint16_t i;
uint32_t reg;
uint32_t mask0 = g_cfg->valid_bit_mask[0];
enum i40e_filter_pctype pctype;
/* Check the input parameters */
ret = i40e_hash_global_config_check(g_cfg);
if (ret < 0)
return ret;
for (i = 0; mask0 && i < UINT32_BIT; i++) {
if (!(mask0 & (1UL << i)))
continue;
mask0 &= ~(1UL << i);
pctype = i40e_flowtype_to_pctype(i);
reg = (g_cfg->sym_hash_enable_mask[0] & (1UL << i)) ?
I40E_GLQF_HSYM_SYMH_ENA_MASK : 0;
I40E_WRITE_REG(hw, I40E_GLQF_HSYM(pctype), reg);
}
reg = I40E_READ_REG(hw, I40E_GLQF_CTL);
if (g_cfg->hash_func == RTE_ETH_HASH_FUNCTION_TOEPLITZ) {
/* Toeplitz */
if (reg & I40E_GLQF_CTL_HTOEP_MASK) {
PMD_DRV_LOG(DEBUG, "Hash function already set to "
"Toeplitz");
goto out;
}
reg |= I40E_GLQF_CTL_HTOEP_MASK;
} else if (g_cfg->hash_func == RTE_ETH_HASH_FUNCTION_SIMPLE_XOR) {
/* Simple XOR */
if (!(reg & I40E_GLQF_CTL_HTOEP_MASK)) {
PMD_DRV_LOG(DEBUG, "Hash function already set to "
"Simple XOR");
goto out;
}
reg &= ~I40E_GLQF_CTL_HTOEP_MASK;
} else
/* Use the default, and keep it as it is */
goto out;
I40E_WRITE_REG(hw, I40E_GLQF_CTL, reg);
out:
I40E_WRITE_FLUSH(hw);
return 0;
}
static int
i40e_hash_filter_get(struct i40e_hw *hw, struct rte_eth_hash_filter_info *info)
{
int ret = 0;
if (!hw || !info) {
PMD_DRV_LOG(ERR, "Invalid pointer");
return -EFAULT;
}
switch (info->info_type) {
case RTE_ETH_HASH_FILTER_SYM_HASH_ENA_PER_PORT:
i40e_get_symmetric_hash_enable_per_port(hw,
&(info->info.enable));
break;
case RTE_ETH_HASH_FILTER_GLOBAL_CONFIG:
ret = i40e_get_hash_filter_global_config(hw,
&(info->info.global_conf));
break;
default:
PMD_DRV_LOG(ERR, "Hash filter info type (%d) not supported",
info->info_type);
ret = -EINVAL;
break;
}
return ret;
}
static int
i40e_hash_filter_set(struct i40e_hw *hw, struct rte_eth_hash_filter_info *info)
{
int ret = 0;
if (!hw || !info) {
PMD_DRV_LOG(ERR, "Invalid pointer");
return -EFAULT;
}
switch (info->info_type) {
case RTE_ETH_HASH_FILTER_SYM_HASH_ENA_PER_PORT:
i40e_set_symmetric_hash_enable_per_port(hw, info->info.enable);
break;
case RTE_ETH_HASH_FILTER_GLOBAL_CONFIG:
ret = i40e_set_hash_filter_global_config(hw,
&(info->info.global_conf));
break;
default:
PMD_DRV_LOG(ERR, "Hash filter info type (%d) not supported",
info->info_type);
ret = -EINVAL;
break;
}
return ret;
}
/* Operations for hash function */
static int
i40e_hash_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret = 0;
switch (filter_op) {
case RTE_ETH_FILTER_NOP:
break;
case RTE_ETH_FILTER_GET:
ret = i40e_hash_filter_get(hw,
(struct rte_eth_hash_filter_info *)arg);
break;
case RTE_ETH_FILTER_SET:
ret = i40e_hash_filter_set(hw,
(struct rte_eth_hash_filter_info *)arg);
break;
default:
PMD_DRV_LOG(WARNING, "Filter operation (%d) not supported",
filter_op);
ret = -ENOTSUP;
break;
}
return ret;
}
/*
* Configure ethertype filter, which can director packet by filtering
* with mac address and ether_type or only ether_type
*/
static int
i40e_ethertype_filter_set(struct i40e_pf *pf,
struct rte_eth_ethertype_filter *filter,
bool add)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_control_filter_stats stats;
uint16_t flags = 0;
int ret;
if (filter->queue >= pf->dev_data->nb_rx_queues) {
PMD_DRV_LOG(ERR, "Invalid queue ID");
return -EINVAL;
}
if (filter->ether_type == ETHER_TYPE_IPv4 ||
filter->ether_type == ETHER_TYPE_IPv6) {
PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
" control packet filter.", filter->ether_type);
return -EINVAL;
}
if (filter->ether_type == ETHER_TYPE_VLAN)
PMD_DRV_LOG(WARNING, "filter vlan ether_type in first tag is"
" not supported.");
if (!(filter->flags & RTE_ETHTYPE_FLAGS_MAC))
flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC;
if (filter->flags & RTE_ETHTYPE_FLAGS_DROP)
flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP;
flags |= I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TO_QUEUE;
memset(&stats, 0, sizeof(stats));
ret = i40e_aq_add_rem_control_packet_filter(hw,
filter->mac_addr.addr_bytes,
filter->ether_type, flags,
pf->main_vsi->seid,
filter->queue, add, &stats, NULL);
PMD_DRV_LOG(INFO, "add/rem control packet filter, return %d,"
" mac_etype_used = %u, etype_used = %u,"
" mac_etype_free = %u, etype_free = %u\n",
ret, stats.mac_etype_used, stats.etype_used,
stats.mac_etype_free, stats.etype_free);
if (ret < 0)
return -ENOSYS;
return 0;
}
/*
* Handle operations for ethertype filter.
*/
static int
i40e_ethertype_filter_handle(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int ret = 0;
if (filter_op == RTE_ETH_FILTER_NOP)
return ret;
if (arg == NULL) {
PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
filter_op);
return -EINVAL;
}
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
ret = i40e_ethertype_filter_set(pf,
(struct rte_eth_ethertype_filter *)arg,
TRUE);
break;
case RTE_ETH_FILTER_DELETE:
ret = i40e_ethertype_filter_set(pf,
(struct rte_eth_ethertype_filter *)arg,
FALSE);
break;
default:
PMD_DRV_LOG(ERR, "unsupported operation %u\n", filter_op);
ret = -ENOSYS;
break;
}
return ret;
}
static int
i40e_dev_filter_ctrl(struct rte_eth_dev *dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg)
{
int ret = 0;
if (dev == NULL)
return -EINVAL;
switch (filter_type) {
case RTE_ETH_FILTER_HASH:
ret = i40e_hash_filter_ctrl(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_MACVLAN:
ret = i40e_mac_filter_handle(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_ETHERTYPE:
ret = i40e_ethertype_filter_handle(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_TUNNEL:
ret = i40e_tunnel_filter_handle(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_FDIR:
ret = i40e_fdir_ctrl_func(dev, filter_op, arg);
break;
default:
PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
filter_type);
ret = -EINVAL;
break;
}
return ret;
}
/*
* As some registers wouldn't be reset unless a global hardware reset,
* hardware initialization is needed to put those registers into an
* expected initial state.
*/
static void
i40e_hw_init(struct i40e_hw *hw)
{
/* clear the PF Queue Filter control register */
I40E_WRITE_REG(hw, I40E_PFQF_CTL_0, 0);
/* Disable symmetric hash per port */
i40e_set_symmetric_hash_enable_per_port(hw, 0);
}
enum i40e_filter_pctype
i40e_flowtype_to_pctype(uint16_t flow_type)
{
static const enum i40e_filter_pctype pctype_table[] = {
[RTE_ETH_FLOW_FRAG_IPV4] = I40E_FILTER_PCTYPE_FRAG_IPV4,
[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] =
I40E_FILTER_PCTYPE_NONF_IPV4_UDP,
[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] =
I40E_FILTER_PCTYPE_NONF_IPV4_TCP,
[RTE_ETH_FLOW_NONFRAG_IPV4_SCTP] =
I40E_FILTER_PCTYPE_NONF_IPV4_SCTP,
[RTE_ETH_FLOW_NONFRAG_IPV4_OTHER] =
I40E_FILTER_PCTYPE_NONF_IPV4_OTHER,
[RTE_ETH_FLOW_FRAG_IPV6] = I40E_FILTER_PCTYPE_FRAG_IPV6,
[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] =
I40E_FILTER_PCTYPE_NONF_IPV6_UDP,
[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] =
I40E_FILTER_PCTYPE_NONF_IPV6_TCP,
[RTE_ETH_FLOW_NONFRAG_IPV6_SCTP] =
I40E_FILTER_PCTYPE_NONF_IPV6_SCTP,
[RTE_ETH_FLOW_NONFRAG_IPV6_OTHER] =
I40E_FILTER_PCTYPE_NONF_IPV6_OTHER,
[RTE_ETH_FLOW_L2_PAYLOAD] = I40E_FILTER_PCTYPE_L2_PAYLOAD,
};
return pctype_table[flow_type];
}
uint16_t
i40e_pctype_to_flowtype(enum i40e_filter_pctype pctype)
{
static const uint16_t flowtype_table[] = {
[I40E_FILTER_PCTYPE_FRAG_IPV4] = RTE_ETH_FLOW_FRAG_IPV4,
[I40E_FILTER_PCTYPE_NONF_IPV4_UDP] =
RTE_ETH_FLOW_NONFRAG_IPV4_UDP,
[I40E_FILTER_PCTYPE_NONF_IPV4_TCP] =
RTE_ETH_FLOW_NONFRAG_IPV4_TCP,
[I40E_FILTER_PCTYPE_NONF_IPV4_SCTP] =
RTE_ETH_FLOW_NONFRAG_IPV4_SCTP,
[I40E_FILTER_PCTYPE_NONF_IPV4_OTHER] =
RTE_ETH_FLOW_NONFRAG_IPV4_OTHER,
[I40E_FILTER_PCTYPE_FRAG_IPV6] = RTE_ETH_FLOW_FRAG_IPV6,
[I40E_FILTER_PCTYPE_NONF_IPV6_UDP] =
RTE_ETH_FLOW_NONFRAG_IPV6_UDP,
[I40E_FILTER_PCTYPE_NONF_IPV6_TCP] =
RTE_ETH_FLOW_NONFRAG_IPV6_TCP,
[I40E_FILTER_PCTYPE_NONF_IPV6_SCTP] =
RTE_ETH_FLOW_NONFRAG_IPV6_SCTP,
[I40E_FILTER_PCTYPE_NONF_IPV6_OTHER] =
RTE_ETH_FLOW_NONFRAG_IPV6_OTHER,
[I40E_FILTER_PCTYPE_L2_PAYLOAD] = RTE_ETH_FLOW_L2_PAYLOAD,
};
return flowtype_table[pctype];
}
/*
* On X710, performance number is far from the expectation on recent firmware
* versions; on XL710, performance number is also far from the expectation on
* recent firmware versions, if promiscuous mode is disabled, or promiscuous
* mode is enabled and port MAC address is equal to the packet destination MAC
* address. The fix for this issue may not be integrated in the following
* firmware version. So the workaround in software driver is needed. It needs
* to modify the initial values of 3 internal only registers for both X710 and
* XL710. Note that the values for X710 or XL710 could be different, and the
* workaround can be removed when it is fixed in firmware in the future.
*/
/* For both X710 and XL710 */
#define I40E_GL_SWR_PRI_JOIN_MAP_0_VALUE 0x10000200
#define I40E_GL_SWR_PRI_JOIN_MAP_0 0x26CE00
#define I40E_GL_SWR_PRI_JOIN_MAP_2_VALUE 0x011f0200
#define I40E_GL_SWR_PRI_JOIN_MAP_2 0x26CE08
/* For X710 */
#define I40E_GL_SWR_PM_UP_THR_EF_VALUE 0x03030303
/* For XL710 */
#define I40E_GL_SWR_PM_UP_THR_SF_VALUE 0x06060606
#define I40E_GL_SWR_PM_UP_THR 0x269FBC
static void
i40e_configure_registers(struct i40e_hw *hw)
{
static struct {
uint32_t addr;
uint64_t val;
} reg_table[] = {
{I40E_GL_SWR_PRI_JOIN_MAP_0, I40E_GL_SWR_PRI_JOIN_MAP_0_VALUE},
{I40E_GL_SWR_PRI_JOIN_MAP_2, I40E_GL_SWR_PRI_JOIN_MAP_2_VALUE},
{I40E_GL_SWR_PM_UP_THR, 0}, /* Compute value dynamically */
};
uint64_t reg;
uint32_t i;
int ret;
for (i = 0; i < RTE_DIM(reg_table); i++) {
if (reg_table[i].addr == I40E_GL_SWR_PM_UP_THR) {
if (i40e_is_40G_device(hw->device_id)) /* For XL710 */
reg_table[i].val =
I40E_GL_SWR_PM_UP_THR_SF_VALUE;
else /* For X710 */
reg_table[i].val =
I40E_GL_SWR_PM_UP_THR_EF_VALUE;
}
ret = i40e_aq_debug_read_register(hw, reg_table[i].addr,
&reg, NULL);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to read from 0x%"PRIx32,
reg_table[i].addr);
break;
}
PMD_DRV_LOG(DEBUG, "Read from 0x%"PRIx32": 0x%"PRIx64,
reg_table[i].addr, reg);
if (reg == reg_table[i].val)
continue;
ret = i40e_aq_debug_write_register(hw, reg_table[i].addr,
reg_table[i].val, NULL);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to write 0x%"PRIx64" to the "
"address of 0x%"PRIx32, reg_table[i].val,
reg_table[i].addr);
break;
}
PMD_DRV_LOG(DEBUG, "Write 0x%"PRIx64" to the address of "
"0x%"PRIx32, reg_table[i].val, reg_table[i].addr);
}
}
#define I40E_VSI_TSR(_i) (0x00050800 + ((_i) * 4))
#define I40E_VSI_TSR_QINQ_CONFIG 0xc030
#define I40E_VSI_L2TAGSTXVALID(_i) (0x00042800 + ((_i) * 4))
#define I40E_VSI_L2TAGSTXVALID_QINQ 0xab
static int
i40e_config_qinq(struct i40e_hw *hw, struct i40e_vsi *vsi)
{
uint32_t reg;
int ret;
if (vsi->vsi_id >= I40E_MAX_NUM_VSIS) {
PMD_DRV_LOG(ERR, "VSI ID exceeds the maximum");
return -EINVAL;
}
/* Configure for double VLAN RX stripping */
reg = I40E_READ_REG(hw, I40E_VSI_TSR(vsi->vsi_id));
if ((reg & I40E_VSI_TSR_QINQ_CONFIG) != I40E_VSI_TSR_QINQ_CONFIG) {
reg |= I40E_VSI_TSR_QINQ_CONFIG;
ret = i40e_aq_debug_write_register(hw,
I40E_VSI_TSR(vsi->vsi_id),
reg, NULL);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to update VSI_TSR[%d]",
vsi->vsi_id);
return I40E_ERR_CONFIG;
}
}
/* Configure for double VLAN TX insertion */
reg = I40E_READ_REG(hw, I40E_VSI_L2TAGSTXVALID(vsi->vsi_id));
if ((reg & 0xff) != I40E_VSI_L2TAGSTXVALID_QINQ) {
reg = I40E_VSI_L2TAGSTXVALID_QINQ;
ret = i40e_aq_debug_write_register(hw,
I40E_VSI_L2TAGSTXVALID(
vsi->vsi_id), reg, NULL);
if (ret < 0) {
PMD_DRV_LOG(ERR, "Failed to update "
"VSI_L2TAGSTXVALID[%d]", vsi->vsi_id);
return I40E_ERR_CONFIG;
}
}
return 0;
}
/**
* i40e_aq_add_mirror_rule
* @hw: pointer to the hardware structure
* @seid: VEB seid to add mirror rule to
* @dst_id: destination vsi seid
* @entries: Buffer which contains the entities to be mirrored
* @count: number of entities contained in the buffer
* @rule_id:the rule_id of the rule to be added
*
* Add a mirror rule for a given veb.
*
**/
static enum i40e_status_code
i40e_aq_add_mirror_rule(struct i40e_hw *hw,
uint16_t seid, uint16_t dst_id,
uint16_t rule_type, uint16_t *entries,
uint16_t count, uint16_t *rule_id)
{
struct i40e_aq_desc desc;
struct i40e_aqc_add_delete_mirror_rule cmd;
struct i40e_aqc_add_delete_mirror_rule_completion *resp =
(struct i40e_aqc_add_delete_mirror_rule_completion *)
&desc.params.raw;
uint16_t buff_len;
enum i40e_status_code status;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_add_mirror_rule);
memset(&cmd, 0, sizeof(cmd));
buff_len = sizeof(uint16_t) * count;
desc.datalen = rte_cpu_to_le_16(buff_len);
if (buff_len > 0)
desc.flags |= rte_cpu_to_le_16(
(uint16_t)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD));
cmd.rule_type = rte_cpu_to_le_16(rule_type <<
I40E_AQC_MIRROR_RULE_TYPE_SHIFT);
cmd.num_entries = rte_cpu_to_le_16(count);
cmd.seid = rte_cpu_to_le_16(seid);
cmd.destination = rte_cpu_to_le_16(dst_id);
rte_memcpy(&desc.params.raw, &cmd, sizeof(cmd));
status = i40e_asq_send_command(hw, &desc, entries, buff_len, NULL);
PMD_DRV_LOG(INFO, "i40e_aq_add_mirror_rule, aq_status %d,"
"rule_id = %u"
" mirror_rules_used = %u, mirror_rules_free = %u,",
hw->aq.asq_last_status, resp->rule_id,
resp->mirror_rules_used, resp->mirror_rules_free);
*rule_id = rte_le_to_cpu_16(resp->rule_id);
return status;
}
/**
* i40e_aq_del_mirror_rule
* @hw: pointer to the hardware structure
* @seid: VEB seid to add mirror rule to
* @entries: Buffer which contains the entities to be mirrored
* @count: number of entities contained in the buffer
* @rule_id:the rule_id of the rule to be delete
*
* Delete a mirror rule for a given veb.
*
**/
static enum i40e_status_code
i40e_aq_del_mirror_rule(struct i40e_hw *hw,
uint16_t seid, uint16_t rule_type, uint16_t *entries,
uint16_t count, uint16_t rule_id)
{
struct i40e_aq_desc desc;
struct i40e_aqc_add_delete_mirror_rule cmd;
uint16_t buff_len = 0;
enum i40e_status_code status;
void *buff = NULL;
i40e_fill_default_direct_cmd_desc(&desc,
i40e_aqc_opc_delete_mirror_rule);
memset(&cmd, 0, sizeof(cmd));
if (rule_type == I40E_AQC_MIRROR_RULE_TYPE_VLAN) {
desc.flags |= rte_cpu_to_le_16((uint16_t)(I40E_AQ_FLAG_BUF |
I40E_AQ_FLAG_RD));
cmd.num_entries = count;
buff_len = sizeof(uint16_t) * count;
desc.datalen = rte_cpu_to_le_16(buff_len);
buff = (void *)entries;
} else
/* rule id is filled in destination field for deleting mirror rule */
cmd.destination = rte_cpu_to_le_16(rule_id);
cmd.rule_type = rte_cpu_to_le_16(rule_type <<
I40E_AQC_MIRROR_RULE_TYPE_SHIFT);
cmd.seid = rte_cpu_to_le_16(seid);
rte_memcpy(&desc.params.raw, &cmd, sizeof(cmd));
status = i40e_asq_send_command(hw, &desc, buff, buff_len, NULL);
return status;
}
/**
* i40e_mirror_rule_set
* @dev: pointer to the hardware structure
* @mirror_conf: mirror rule info
* @sw_id: mirror rule's sw_id
* @on: enable/disable
*
* set a mirror rule.
*
**/
static int
i40e_mirror_rule_set(struct rte_eth_dev *dev,
struct rte_eth_mirror_conf *mirror_conf,
uint8_t sw_id, uint8_t on)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_mirror_rule *it, *mirr_rule = NULL;
struct i40e_mirror_rule *parent = NULL;
uint16_t seid, dst_seid, rule_id;
uint16_t i, j = 0;
int ret;
PMD_DRV_LOG(DEBUG, "i40e_mirror_rule_set: sw_id = %d.", sw_id);
if (pf->main_vsi->veb == NULL || pf->vfs == NULL) {
PMD_DRV_LOG(ERR, "mirror rule can not be configured"
" without veb or vfs.");
return -ENOSYS;
}
if (pf->nb_mirror_rule > I40E_MAX_MIRROR_RULES) {
PMD_DRV_LOG(ERR, "mirror table is full.");
return -ENOSPC;
}
if (mirror_conf->dst_pool > pf->vf_num) {
PMD_DRV_LOG(ERR, "invalid destination pool %u.",
mirror_conf->dst_pool);
return -EINVAL;
}
seid = pf->main_vsi->veb->seid;
TAILQ_FOREACH(it, &pf->mirror_list, rules) {
if (sw_id <= it->index) {
mirr_rule = it;
break;
}
parent = it;
}
if (mirr_rule && sw_id == mirr_rule->index) {
if (on) {
PMD_DRV_LOG(ERR, "mirror rule exists.");
return -EEXIST;
} else {
ret = i40e_aq_del_mirror_rule(hw, seid,
mirr_rule->rule_type,
mirr_rule->entries,
mirr_rule->num_entries, mirr_rule->id);
if (ret < 0) {
PMD_DRV_LOG(ERR, "failed to remove mirror rule:"
" ret = %d, aq_err = %d.",
ret, hw->aq.asq_last_status);
return -ENOSYS;
}
TAILQ_REMOVE(&pf->mirror_list, mirr_rule, rules);
rte_free(mirr_rule);
pf->nb_mirror_rule--;
return 0;
}
} else if (!on) {
PMD_DRV_LOG(ERR, "mirror rule doesn't exist.");
return -ENOENT;
}
mirr_rule = rte_zmalloc("i40e_mirror_rule",
sizeof(struct i40e_mirror_rule) , 0);
if (!mirr_rule) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
switch (mirror_conf->rule_type) {
case ETH_MIRROR_VLAN:
for (i = 0, j = 0; i < ETH_MIRROR_MAX_VLANS; i++) {
if (mirror_conf->vlan.vlan_mask & (1ULL << i)) {
mirr_rule->entries[j] =
mirror_conf->vlan.vlan_id[i];
j++;
}
}
if (j == 0) {
PMD_DRV_LOG(ERR, "vlan is not specified.");
rte_free(mirr_rule);
return -EINVAL;
}
mirr_rule->rule_type = I40E_AQC_MIRROR_RULE_TYPE_VLAN;
break;
case ETH_MIRROR_VIRTUAL_POOL_UP:
case ETH_MIRROR_VIRTUAL_POOL_DOWN:
/* check if the specified pool bit is out of range */
if (mirror_conf->pool_mask > (uint64_t)(1ULL << (pf->vf_num + 1))) {
PMD_DRV_LOG(ERR, "pool mask is out of range.");
rte_free(mirr_rule);
return -EINVAL;
}
for (i = 0, j = 0; i < pf->vf_num; i++) {
if (mirror_conf->pool_mask & (1ULL << i)) {
mirr_rule->entries[j] = pf->vfs[i].vsi->seid;
j++;
}
}
if (mirror_conf->pool_mask & (1ULL << pf->vf_num)) {
/* add pf vsi to entries */
mirr_rule->entries[j] = pf->main_vsi_seid;
j++;
}
if (j == 0) {
PMD_DRV_LOG(ERR, "pool is not specified.");
rte_free(mirr_rule);
return -EINVAL;
}
/* egress and ingress in aq commands means from switch but not port */
mirr_rule->rule_type =
(mirror_conf->rule_type == ETH_MIRROR_VIRTUAL_POOL_UP) ?
I40E_AQC_MIRROR_RULE_TYPE_VPORT_EGRESS :
I40E_AQC_MIRROR_RULE_TYPE_VPORT_INGRESS;
break;
case ETH_MIRROR_UPLINK_PORT:
/* egress and ingress in aq commands means from switch but not port*/
mirr_rule->rule_type = I40E_AQC_MIRROR_RULE_TYPE_ALL_EGRESS;
break;
case ETH_MIRROR_DOWNLINK_PORT:
mirr_rule->rule_type = I40E_AQC_MIRROR_RULE_TYPE_ALL_INGRESS;
break;
default:
PMD_DRV_LOG(ERR, "unsupported mirror type %d.",
mirror_conf->rule_type);
rte_free(mirr_rule);
return -EINVAL;
}
/* If the dst_pool is equal to vf_num, consider it as PF */
if (mirror_conf->dst_pool == pf->vf_num)
dst_seid = pf->main_vsi_seid;
else
dst_seid = pf->vfs[mirror_conf->dst_pool].vsi->seid;
ret = i40e_aq_add_mirror_rule(hw, seid, dst_seid,
mirr_rule->rule_type, mirr_rule->entries,
j, &rule_id);
if (ret < 0) {
PMD_DRV_LOG(ERR, "failed to add mirror rule:"
" ret = %d, aq_err = %d.",
ret, hw->aq.asq_last_status);
rte_free(mirr_rule);
return -ENOSYS;
}
mirr_rule->index = sw_id;
mirr_rule->num_entries = j;
mirr_rule->id = rule_id;
mirr_rule->dst_vsi_seid = dst_seid;
if (parent)
TAILQ_INSERT_AFTER(&pf->mirror_list, parent, mirr_rule, rules);
else
TAILQ_INSERT_HEAD(&pf->mirror_list, mirr_rule, rules);
pf->nb_mirror_rule++;
return 0;
}
/**
* i40e_mirror_rule_reset
* @dev: pointer to the device
* @sw_id: mirror rule's sw_id
*
* reset a mirror rule.
*
**/
static int
i40e_mirror_rule_reset(struct rte_eth_dev *dev, uint8_t sw_id)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_mirror_rule *it, *mirr_rule = NULL;
uint16_t seid;
int ret;
PMD_DRV_LOG(DEBUG, "i40e_mirror_rule_reset: sw_id = %d.", sw_id);
seid = pf->main_vsi->veb->seid;
TAILQ_FOREACH(it, &pf->mirror_list, rules) {
if (sw_id == it->index) {
mirr_rule = it;
break;
}
}
if (mirr_rule) {
ret = i40e_aq_del_mirror_rule(hw, seid,
mirr_rule->rule_type,
mirr_rule->entries,
mirr_rule->num_entries, mirr_rule->id);
if (ret < 0) {
PMD_DRV_LOG(ERR, "failed to remove mirror rule:"
" status = %d, aq_err = %d.",
ret, hw->aq.asq_last_status);
return -ENOSYS;
}
TAILQ_REMOVE(&pf->mirror_list, mirr_rule, rules);
rte_free(mirr_rule);
pf->nb_mirror_rule--;
} else {
PMD_DRV_LOG(ERR, "mirror rule doesn't exist.");
return -ENOENT;
}
return 0;
}
static int
i40e_timesync_enable(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_link *link = &dev->data->dev_link;
uint32_t tsync_ctl_l;
uint32_t tsync_ctl_h;
uint32_t tsync_inc_l;
uint32_t tsync_inc_h;
switch (link->link_speed) {
case ETH_LINK_SPEED_40G:
tsync_inc_l = I40E_PTP_40GB_INCVAL & 0xFFFFFFFF;
tsync_inc_h = I40E_PTP_40GB_INCVAL >> 32;
break;
case ETH_LINK_SPEED_10G:
tsync_inc_l = I40E_PTP_10GB_INCVAL & 0xFFFFFFFF;
tsync_inc_h = I40E_PTP_10GB_INCVAL >> 32;
break;
case ETH_LINK_SPEED_1000:
tsync_inc_l = I40E_PTP_1GB_INCVAL & 0xFFFFFFFF;
tsync_inc_h = I40E_PTP_1GB_INCVAL >> 32;
break;
default:
tsync_inc_l = 0x0;
tsync_inc_h = 0x0;
}
/* Clear timesync registers. */
I40E_READ_REG(hw, I40E_PRTTSYN_STAT_0);
I40E_READ_REG(hw, I40E_PRTTSYN_TXTIME_H);
I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_L(0));
I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_L(1));
I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_L(2));
I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_L(3));
I40E_READ_REG(hw, I40E_PRTTSYN_TXTIME_H);
/* Set the timesync increment value. */
I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_L, tsync_inc_l);
I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_H, tsync_inc_h);
/* Enable timestamping of PTP packets. */
tsync_ctl_l = I40E_READ_REG(hw, I40E_PRTTSYN_CTL0);
tsync_ctl_l |= I40E_PRTTSYN_TSYNENA;
tsync_ctl_h = I40E_READ_REG(hw, I40E_PRTTSYN_CTL1);
tsync_ctl_h |= I40E_PRTTSYN_TSYNENA;
tsync_ctl_h |= I40E_PRTTSYN_TSYNTYPE;
I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL0, tsync_ctl_l);
I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL1, tsync_ctl_h);
return 0;
}
static int
i40e_timesync_disable(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t tsync_ctl_l;
uint32_t tsync_ctl_h;
/* Disable timestamping of transmitted PTP packets. */
tsync_ctl_l = I40E_READ_REG(hw, I40E_PRTTSYN_CTL0);
tsync_ctl_l &= ~I40E_PRTTSYN_TSYNENA;
tsync_ctl_h = I40E_READ_REG(hw, I40E_PRTTSYN_CTL1);
tsync_ctl_h &= ~I40E_PRTTSYN_TSYNENA;
I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL0, tsync_ctl_l);
I40E_WRITE_REG(hw, I40E_PRTTSYN_CTL1, tsync_ctl_h);
/* Set the timesync increment value. */
I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_L, 0x0);
I40E_WRITE_REG(hw, I40E_PRTTSYN_INC_H, 0x0);
return 0;
}
static int
i40e_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp, uint32_t flags)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t sync_status;
uint32_t rx_stmpl;
uint32_t rx_stmph;
uint32_t index = flags & 0x03;
sync_status = I40E_READ_REG(hw, I40E_PRTTSYN_STAT_1);
if ((sync_status & (1 << index)) == 0)
return -EINVAL;
rx_stmpl = I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_L(index));
rx_stmph = I40E_READ_REG(hw, I40E_PRTTSYN_RXTIME_H(index));
timestamp->tv_sec = (uint64_t)(((uint64_t)rx_stmph << 32) | rx_stmpl);
timestamp->tv_nsec = 0;
return 0;
}
static int
i40e_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t sync_status;
uint32_t tx_stmpl;
uint32_t tx_stmph;
sync_status = I40E_READ_REG(hw, I40E_PRTTSYN_STAT_0);
if ((sync_status & I40E_PRTTSYN_STAT_0_TXTIME_MASK) == 0)
return -EINVAL;
tx_stmpl = I40E_READ_REG(hw, I40E_PRTTSYN_TXTIME_L);
tx_stmph = I40E_READ_REG(hw, I40E_PRTTSYN_TXTIME_H);
timestamp->tv_sec = (uint64_t)(((uint64_t)tx_stmph << 32) | tx_stmpl);
timestamp->tv_nsec = 0;
return 0;
}
/*
* i40e_parse_dcb_configure - parse dcb configure from user
* @dev: the device being configured
* @dcb_cfg: pointer of the result of parse
* @*tc_map: bit map of enabled traffic classes
*
* Returns 0 on success, negative value on failure
*/
static int
i40e_parse_dcb_configure(struct rte_eth_dev *dev,
struct i40e_dcbx_config *dcb_cfg,
uint8_t *tc_map)
{
struct rte_eth_dcb_rx_conf *dcb_rx_conf;
uint8_t i, tc_bw, bw_lf;
memset(dcb_cfg, 0, sizeof(struct i40e_dcbx_config));
dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
if (dcb_rx_conf->nb_tcs > I40E_MAX_TRAFFIC_CLASS) {
PMD_INIT_LOG(ERR, "number of tc exceeds max.");
return -EINVAL;
}
/* assume each tc has the same bw */
tc_bw = I40E_MAX_PERCENT / dcb_rx_conf->nb_tcs;
for (i = 0; i < dcb_rx_conf->nb_tcs; i++)
dcb_cfg->etscfg.tcbwtable[i] = tc_bw;
/* to ensure the sum of tcbw is equal to 100 */
bw_lf = I40E_MAX_PERCENT % dcb_rx_conf->nb_tcs;
for (i = 0; i < bw_lf; i++)
dcb_cfg->etscfg.tcbwtable[i]++;
/* assume each tc has the same Transmission Selection Algorithm */
for (i = 0; i < dcb_rx_conf->nb_tcs; i++)
dcb_cfg->etscfg.tsatable[i] = I40E_IEEE_TSA_ETS;
for (i = 0; i < I40E_MAX_USER_PRIORITY; i++)
dcb_cfg->etscfg.prioritytable[i] =
dcb_rx_conf->dcb_tc[i];
/* FW needs one App to configure HW */
dcb_cfg->numapps = I40E_DEFAULT_DCB_APP_NUM;
dcb_cfg->app[0].selector = I40E_APP_SEL_ETHTYPE;
dcb_cfg->app[0].priority = I40E_DEFAULT_DCB_APP_PRIO;
dcb_cfg->app[0].protocolid = I40E_APP_PROTOID_FCOE;
if (dcb_rx_conf->nb_tcs == 0)
*tc_map = 1; /* tc0 only */
else
*tc_map = RTE_LEN2MASK(dcb_rx_conf->nb_tcs, uint8_t);
if (dev->data->dev_conf.dcb_capability_en & ETH_DCB_PFC_SUPPORT) {
dcb_cfg->pfc.willing = 0;
dcb_cfg->pfc.pfccap = I40E_MAX_TRAFFIC_CLASS;
dcb_cfg->pfc.pfcenable = *tc_map;
}
return 0;
}
/*
* i40e_vsi_get_bw_info - Query VSI BW Information
* @vsi: the VSI being queried
*
* Returns 0 on success, negative value on failure
*/
static int
i40e_vsi_get_bw_info(struct i40e_vsi *vsi)
{
struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0};
struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0};
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int i, ret;
uint32_t tc_bw_max;
/* Get the VSI level BW configuration */
ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL);
if (ret) {
PMD_INIT_LOG(ERR,
"couldn't get PF vsi bw config, err %s aq_err %s\n",
i40e_stat_str(hw, ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
return -EINVAL;
}
/* Get the VSI level BW configuration per TC */
ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config,
NULL);
if (ret) {
PMD_INIT_LOG(ERR,
"couldn't get PF vsi ets bw config, err %s aq_err %s\n",
i40e_stat_str(hw, ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
return -EINVAL;
}
if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) {
PMD_INIT_LOG(WARNING,
"Enabled TCs mismatch from querying VSI BW info"
" 0x%08x 0x%08x\n", bw_config.tc_valid_bits,
bw_ets_config.tc_valid_bits);
/* Still continuing */
}
vsi->bw_info.bw_limit = rte_le_to_cpu_16(bw_config.port_bw_limit);
vsi->bw_info.bw_max_quanta = bw_config.max_bw;
tc_bw_max = rte_le_to_cpu_16(bw_ets_config.tc_bw_max[0]) |
(rte_le_to_cpu_16(bw_ets_config.tc_bw_max[1]) << 16);
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
vsi->bw_info.bw_ets_share_credits[i] =
bw_ets_config.share_credits[i];
vsi->bw_info.bw_ets_limit_credits[i] =
rte_le_to_cpu_16(bw_ets_config.credits[i]);
/* 3 bits out of 4 for each TC */
vsi->bw_info.bw_ets_max_quanta[i] =
(uint8_t)((tc_bw_max >> (i * 4)) & 0x7);
PMD_INIT_LOG(DEBUG,
"%s: vsi seid = %d, TC = %d, qset = 0x%x\n",
__func__, vsi->seid, i, bw_config.qs_handles[i]);
}
return 0;
}
static int
i40e_vsi_update_queue_mapping(struct i40e_vsi *vsi,
struct i40e_aqc_vsi_properties_data *info,
uint8_t enabled_tcmap)
{
int ret, i, total_tc = 0;
uint16_t qpnum_per_tc, bsf, qp_idx;
struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(vsi);
ret = validate_tcmap_parameter(vsi, enabled_tcmap);
if (ret != I40E_SUCCESS)
return ret;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (enabled_tcmap & (1 << i))
total_tc++;
}
if (total_tc == 0)
total_tc = 1;
vsi->enabled_tc = enabled_tcmap;
qpnum_per_tc = dev_data->nb_rx_queues / total_tc;
/* Number of queues per enabled TC */
if (qpnum_per_tc == 0) {
PMD_INIT_LOG(ERR, " number of queues is less that tcs.");
return I40E_ERR_INVALID_QP_ID;
}
qpnum_per_tc = RTE_MIN(i40e_align_floor(qpnum_per_tc),
I40E_MAX_Q_PER_TC);
bsf = rte_bsf32(qpnum_per_tc);
/**
* Configure TC and queue mapping parameters, for enabled TC,
* allocate qpnum_per_tc queues to this traffic. For disabled TC,
* default queue will serve it.
*/
qp_idx = 0;
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (vsi->enabled_tc & (1 << i)) {
info->tc_mapping[i] = rte_cpu_to_le_16((qp_idx <<
I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
(bsf << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT));
qp_idx += qpnum_per_tc;
} else
info->tc_mapping[i] = 0;
}
/* Associate queue number with VSI, Keep vsi->nb_qps unchanged */
if (vsi->type == I40E_VSI_SRIOV) {
info->mapping_flags |=
rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_NONCONTIG);
for (i = 0; i < vsi->nb_qps; i++)
info->queue_mapping[i] =
rte_cpu_to_le_16(vsi->base_queue + i);
} else {
info->mapping_flags |=
rte_cpu_to_le_16(I40E_AQ_VSI_QUE_MAP_CONTIG);
info->queue_mapping[0] = rte_cpu_to_le_16(vsi->base_queue);
}
info->valid_sections |=
rte_cpu_to_le_16(I40E_AQ_VSI_PROP_QUEUE_MAP_VALID);
return I40E_SUCCESS;
}
/*
* i40e_vsi_config_tc - Configure VSI tc setting for given TC map
* @vsi: VSI to be configured
* @tc_map: enabled TC bitmap
*
* Returns 0 on success, negative value on failure
*/
static int
i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 tc_map)
{
struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
struct i40e_vsi_context ctxt;
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int ret = 0;
int i;
/* Check if enabled_tc is same as existing or new TCs */
if (vsi->enabled_tc == tc_map)
return ret;
/* configure tc bandwidth */
memset(&bw_data, 0, sizeof(bw_data));
bw_data.tc_valid_bits = tc_map;
/* Enable ETS TCs with equal BW Share for now across all VSIs */
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (tc_map & BIT_ULL(i))
bw_data.tc_bw_credits[i] = 1;
}
ret = i40e_aq_config_vsi_tc_bw(hw, vsi->seid, &bw_data, NULL);
if (ret) {
PMD_INIT_LOG(ERR, "AQ command Config VSI BW allocation"
" per TC failed = %d",
hw->aq.asq_last_status);
goto out;
}
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
vsi->info.qs_handle[i] = bw_data.qs_handles[i];
/* Update Queue Pairs Mapping for currently enabled UPs */
ctxt.seid = vsi->seid;
ctxt.pf_num = hw->pf_id;
ctxt.vf_num = 0;
ctxt.uplink_seid = vsi->uplink_seid;
ctxt.info = vsi->info;
i40e_get_cap(hw);
ret = i40e_vsi_update_queue_mapping(vsi, &ctxt.info, tc_map);
if (ret)
goto out;
/* Update the VSI after updating the VSI queue-mapping information */
ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to configure "
"TC queue mapping = %d",
hw->aq.asq_last_status);
goto out;
}
/* update the local VSI info with updated queue map */
(void)rte_memcpy(&vsi->info.tc_mapping, &ctxt.info.tc_mapping,
sizeof(vsi->info.tc_mapping));
(void)rte_memcpy(&vsi->info.queue_mapping,
&ctxt.info.queue_mapping,
sizeof(vsi->info.queue_mapping));
vsi->info.mapping_flags = ctxt.info.mapping_flags;
vsi->info.valid_sections = 0;
/* Update current VSI BW information */
ret = i40e_vsi_get_bw_info(vsi);
if (ret) {
PMD_INIT_LOG(ERR,
"Failed updating vsi bw info, err %s aq_err %s",
i40e_stat_str(hw, ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
goto out;
}
vsi->enabled_tc = tc_map;
out:
return ret;
}
/*
* i40e_dcb_hw_configure - program the dcb setting to hw
* @pf: pf the configuration is taken on
* @new_cfg: new configuration
* @tc_map: enabled TC bitmap
*
* Returns 0 on success, negative value on failure
*/
static enum i40e_status_code
i40e_dcb_hw_configure(struct i40e_pf *pf,
struct i40e_dcbx_config *new_cfg,
uint8_t tc_map)
{
struct i40e_hw *hw = I40E_PF_TO_HW(pf);
struct i40e_dcbx_config *old_cfg = &hw->local_dcbx_config;
struct i40e_vsi *main_vsi = pf->main_vsi;
struct i40e_vsi_list *vsi_list;
int i, ret;
uint32_t val;
/* Use the FW API if FW > v4.4*/
if (!((hw->aq.fw_maj_ver == 4) && (hw->aq.fw_min_ver >= 4))) {
PMD_INIT_LOG(ERR, "FW < v4.4, can not use FW LLDP API"
" to configure DCB");
return I40E_ERR_FIRMWARE_API_VERSION;
}
/* Check if need reconfiguration */
if (!memcmp(new_cfg, old_cfg, sizeof(struct i40e_dcbx_config))) {
PMD_INIT_LOG(ERR, "No Change in DCB Config required.");
return I40E_SUCCESS;
}
/* Copy the new config to the current config */
*old_cfg = *new_cfg;
old_cfg->etsrec = old_cfg->etscfg;
ret = i40e_set_dcb_config(hw);
if (ret) {
PMD_INIT_LOG(ERR,
"Set DCB Config failed, err %s aq_err %s\n",
i40e_stat_str(hw, ret),
i40e_aq_str(hw, hw->aq.asq_last_status));
return ret;
}
/* set receive Arbiter to RR mode and ETS scheme by default */
for (i = 0; i <= I40E_PRTDCB_RETSTCC_MAX_INDEX; i++) {
val = I40E_READ_REG(hw, I40E_PRTDCB_RETSTCC(i));
val &= ~(I40E_PRTDCB_RETSTCC_BWSHARE_MASK |
I40E_PRTDCB_RETSTCC_UPINTC_MODE_MASK |
I40E_PRTDCB_RETSTCC_ETSTC_SHIFT);
val |= ((uint32_t)old_cfg->etscfg.tcbwtable[i] <<
I40E_PRTDCB_RETSTCC_BWSHARE_SHIFT) &
I40E_PRTDCB_RETSTCC_BWSHARE_MASK;
val |= ((uint32_t)1 << I40E_PRTDCB_RETSTCC_UPINTC_MODE_SHIFT) &
I40E_PRTDCB_RETSTCC_UPINTC_MODE_MASK;
val |= ((uint32_t)1 << I40E_PRTDCB_RETSTCC_ETSTC_SHIFT) &
I40E_PRTDCB_RETSTCC_ETSTC_MASK;
I40E_WRITE_REG(hw, I40E_PRTDCB_RETSTCC(i), val);
}
/* get local mib to check whether it is configured correctly */
/* IEEE mode */
hw->local_dcbx_config.dcbx_mode = I40E_DCBX_MODE_IEEE;
/* Get Local DCB Config */
i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_LOCAL, 0,
&hw->local_dcbx_config);
/* Update each VSI */
i40e_vsi_config_tc(main_vsi, tc_map);
if (main_vsi->veb) {
TAILQ_FOREACH(vsi_list, &main_vsi->veb->head, list) {
/* Beside main VSI, only enable default
* TC for other VSIs
*/
ret = i40e_vsi_config_tc(vsi_list->vsi,
I40E_DEFAULT_TCMAP);
if (ret)
PMD_INIT_LOG(WARNING,
"Failed configuring TC for VSI seid=%d\n",
vsi_list->vsi->seid);
/* continue */
}
}
return I40E_SUCCESS;
}
/*
* i40e_dcb_init_configure - initial dcb config
* @dev: device being configured
* @sw_dcb: indicate whether dcb is sw configured or hw offload
*
* Returns 0 on success, negative value on failure
*/
static int
i40e_dcb_init_configure(struct rte_eth_dev *dev, bool sw_dcb)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int ret = 0;
if ((pf->flags & I40E_FLAG_DCB) == 0) {
PMD_INIT_LOG(ERR, "HW doesn't support DCB");
return -ENOTSUP;
}
/* DCB initialization:
* Update DCB configuration from the Firmware and configure
* LLDP MIB change event.
*/
if (sw_dcb == TRUE) {
ret = i40e_aq_stop_lldp(hw, TRUE, NULL);
if (ret != I40E_SUCCESS)
PMD_INIT_LOG(DEBUG, "Failed to stop lldp");
ret = i40e_init_dcb(hw);
/* if sw_dcb, lldp agent is stopped, the return from
* i40e_init_dcb we expect is failure with I40E_AQ_RC_EPERM
* adminq status.
*/
if (ret != I40E_SUCCESS &&
hw->aq.asq_last_status == I40E_AQ_RC_EPERM) {
memset(&hw->local_dcbx_config, 0,
sizeof(struct i40e_dcbx_config));
/* set dcb default configuration */
hw->local_dcbx_config.etscfg.willing = 0;
hw->local_dcbx_config.etscfg.maxtcs = 0;
hw->local_dcbx_config.etscfg.tcbwtable[0] = 100;
hw->local_dcbx_config.etscfg.tsatable[0] =
I40E_IEEE_TSA_ETS;
hw->local_dcbx_config.etsrec =
hw->local_dcbx_config.etscfg;
hw->local_dcbx_config.pfc.willing = 0;
hw->local_dcbx_config.pfc.pfccap =
I40E_MAX_TRAFFIC_CLASS;
/* FW needs one App to configure HW */
hw->local_dcbx_config.numapps = 1;
hw->local_dcbx_config.app[0].selector =
I40E_APP_SEL_ETHTYPE;
hw->local_dcbx_config.app[0].priority = 3;
hw->local_dcbx_config.app[0].protocolid =
I40E_APP_PROTOID_FCOE;
ret = i40e_set_dcb_config(hw);
if (ret) {
PMD_INIT_LOG(ERR, "default dcb config fails."
" err = %d, aq_err = %d.", ret,
hw->aq.asq_last_status);
return -ENOSYS;
}
} else {
PMD_INIT_LOG(ERR, "DCBX configuration failed, err = %d,"
" aq_err = %d.", ret,
hw->aq.asq_last_status);
return -ENOTSUP;
}
} else {
ret = i40e_aq_start_lldp(hw, NULL);
if (ret != I40E_SUCCESS)
PMD_INIT_LOG(DEBUG, "Failed to start lldp");
ret = i40e_init_dcb(hw);
if (!ret) {
if (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED) {
PMD_INIT_LOG(ERR, "HW doesn't support"
" DCBX offload.");
return -ENOTSUP;
}
} else {
PMD_INIT_LOG(ERR, "DCBX configuration failed, err = %d,"
" aq_err = %d.", ret,
hw->aq.asq_last_status);
return -ENOTSUP;
}
}
return 0;
}
/*
* i40e_dcb_setup - setup dcb related config
* @dev: device being configured
*
* Returns 0 on success, negative value on failure
*/
static int
i40e_dcb_setup(struct rte_eth_dev *dev)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_dcbx_config dcb_cfg;
uint8_t tc_map = 0;
int ret = 0;
if ((pf->flags & I40E_FLAG_DCB) == 0) {
PMD_INIT_LOG(ERR, "HW doesn't support DCB");
return -ENOTSUP;
}
if (pf->vf_num != 0 ||
(dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_VMDQ_FLAG))
PMD_INIT_LOG(DEBUG, " DCB only works on main vsi.");
ret = i40e_parse_dcb_configure(dev, &dcb_cfg, &tc_map);
if (ret) {
PMD_INIT_LOG(ERR, "invalid dcb config");
return -EINVAL;
}
ret = i40e_dcb_hw_configure(pf, &dcb_cfg, tc_map);
if (ret) {
PMD_INIT_LOG(ERR, "dcb sw configure fails");
return -ENOSYS;
}
return 0;
}
static int
i40e_dev_get_dcb_info(struct rte_eth_dev *dev,
struct rte_eth_dcb_info *dcb_info)
{
struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vsi *vsi = pf->main_vsi;
struct i40e_dcbx_config *dcb_cfg = &hw->local_dcbx_config;
uint16_t bsf, tc_mapping;
int i;
if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_DCB_FLAG)
dcb_info->nb_tcs = rte_bsf32(vsi->enabled_tc + 1);
else
dcb_info->nb_tcs = 1;
for (i = 0; i < I40E_MAX_USER_PRIORITY; i++)
dcb_info->prio_tc[i] = dcb_cfg->etscfg.prioritytable[i];
for (i = 0; i < dcb_info->nb_tcs; i++)
dcb_info->tc_bws[i] = dcb_cfg->etscfg.tcbwtable[i];
for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
if (vsi->enabled_tc & (1 << i)) {
tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
/* only main vsi support multi TCs */
dcb_info->tc_queue.tc_rxq[0][i].base =
(tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
dcb_info->tc_queue.tc_txq[0][i].base =
dcb_info->tc_queue.tc_rxq[0][i].base;
bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
dcb_info->tc_queue.tc_rxq[0][i].nb_queue = 1 << bsf;
dcb_info->tc_queue.tc_txq[0][i].nb_queue =
dcb_info->tc_queue.tc_rxq[0][i].nb_queue;
}
}
return 0;
}