Intel dada9ef6ed remove version in all files
Signed-off-by: Intel
2013-07-05 11:59:50 +02:00

507 lines
13 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_string_fns.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_lpm.h>
#include "main.h"
static struct rte_eth_conf port_conf = {
.rxmode = {
.split_hdr_size = 0,
.header_split = 0, /**< Header Split disabled */
.hw_ip_checksum = 1, /**< IP checksum offload enabled */
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
.hw_strip_crc = 0, /**< CRC stripped by hardware */
},
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = ETH_RSS_IPV4,
},
},
.txmode = {
},
};
static struct rte_eth_rxconf rx_conf = {
.rx_thresh = {
.pthresh = APP_DEFAULT_NIC_RX_PTHRESH,
.hthresh = APP_DEFAULT_NIC_RX_HTHRESH,
.wthresh = APP_DEFAULT_NIC_RX_WTHRESH,
},
.rx_free_thresh = APP_DEFAULT_NIC_RX_FREE_THRESH,
};
static struct rte_eth_txconf tx_conf = {
.tx_thresh = {
.pthresh = APP_DEFAULT_NIC_TX_PTHRESH,
.hthresh = APP_DEFAULT_NIC_TX_HTHRESH,
.wthresh = APP_DEFAULT_NIC_TX_WTHRESH,
},
.tx_free_thresh = APP_DEFAULT_NIC_TX_FREE_THRESH,
.tx_rs_thresh = APP_DEFAULT_NIC_TX_RS_THRESH,
};
static void
app_assign_worker_ids(void)
{
uint32_t lcore, worker_id;
/* Assign ID for each worker */
worker_id = 0;
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_worker *lp_worker = &app.lcore_params[lcore].worker;
if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
continue;
}
lp_worker->worker_id = worker_id;
worker_id ++;
}
}
static void
app_init_mbuf_pools(void)
{
uint32_t socket, lcore;
/* Init the buffer pools */
for (socket = 0; socket < APP_MAX_SOCKETS; socket ++) {
char name[32];
if (app_is_socket_used(socket) == 0) {
continue;
}
rte_snprintf(name, sizeof(name), "mbuf_pool_%u", socket);
printf("Creating the mbuf pool for socket %u ...\n", socket);
app.pools[socket] = rte_mempool_create(
name,
APP_DEFAULT_MEMPOOL_BUFFERS,
APP_DEFAULT_MBUF_SIZE,
APP_DEFAULT_MEMPOOL_CACHE_SIZE,
sizeof(struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL,
socket,
0);
if (app.pools[socket] == NULL) {
rte_panic("Cannot create mbuf pool on socket %u\n", socket);
}
}
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
if (app.lcore_params[lcore].type == e_APP_LCORE_DISABLED) {
continue;
}
socket = rte_lcore_to_socket_id(lcore);
app.lcore_params[lcore].pool = app.pools[socket];
}
}
static void
app_init_lpm_tables(void)
{
uint32_t socket, lcore;
/* Init the LPM tables */
for (socket = 0; socket < APP_MAX_SOCKETS; socket ++) {
char name[32];
uint32_t rule;
if (app_is_socket_used(socket) == 0) {
continue;
}
rte_snprintf(name, sizeof(name), "lpm_table_%u", socket);
printf("Creating the LPM table for socket %u ...\n", socket);
app.lpm_tables[socket] = rte_lpm_create(
name,
socket,
APP_MAX_LPM_RULES,
RTE_LPM_MEMZONE);
if (app.lpm_tables[socket] == NULL) {
rte_panic("Unable to create LPM table on socket %u\n", socket);
}
for (rule = 0; rule < app.n_lpm_rules; rule ++) {
int ret;
ret = rte_lpm_add(app.lpm_tables[socket],
app.lpm_rules[rule].ip,
app.lpm_rules[rule].depth,
app.lpm_rules[rule].if_out);
if (ret < 0) {
rte_panic("Unable to add entry %u (%x/%u => %u) to the LPM table on socket %u (%d)\n",
rule, app.lpm_rules[rule].ip,
(uint32_t) app.lpm_rules[rule].depth,
(uint32_t) app.lpm_rules[rule].if_out,
socket,
ret);
}
}
}
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
continue;
}
socket = rte_lcore_to_socket_id(lcore);
app.lcore_params[lcore].worker.lpm_table = app.lpm_tables[socket];
}
}
static void
app_init_rings_rx(void)
{
uint32_t lcore;
/* Initialize the rings for the RX side */
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_io *lp_io = &app.lcore_params[lcore].io;
uint32_t socket_io, lcore_worker;
if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) ||
(lp_io->rx.n_nic_queues == 0)) {
continue;
}
socket_io = rte_lcore_to_socket_id(lcore);
for (lcore_worker = 0; lcore_worker < APP_MAX_LCORES; lcore_worker ++) {
char name[32];
struct app_lcore_params_worker *lp_worker = &app.lcore_params[lcore_worker].worker;
struct rte_ring *ring = NULL;
if (app.lcore_params[lcore_worker].type != e_APP_LCORE_WORKER) {
continue;
}
printf("Creating ring to connect I/O lcore %u (socket %u) with worker lcore %u ...\n",
lcore,
socket_io,
lcore_worker);
rte_snprintf(name, sizeof(name), "app_ring_rx_s%u_io%u_w%u",
socket_io,
lcore,
lcore_worker);
ring = rte_ring_create(
name,
app.ring_rx_size,
socket_io,
RING_F_SP_ENQ | RING_F_SC_DEQ);
if (ring == NULL) {
rte_panic("Cannot create ring to connect I/O core %u with worker core %u\n",
lcore,
lcore_worker);
}
lp_io->rx.rings[lp_io->rx.n_rings] = ring;
lp_io->rx.n_rings ++;
lp_worker->rings_in[lp_worker->n_rings_in] = ring;
lp_worker->n_rings_in ++;
}
}
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_io *lp_io = &app.lcore_params[lcore].io;
if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) ||
(lp_io->rx.n_nic_queues == 0)) {
continue;
}
if (lp_io->rx.n_rings != app_get_lcores_worker()) {
rte_panic("Algorithmic error (I/O RX rings)\n");
}
}
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_worker *lp_worker = &app.lcore_params[lcore].worker;
if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
continue;
}
if (lp_worker->n_rings_in != app_get_lcores_io_rx()) {
rte_panic("Algorithmic error (worker input rings)\n");
}
}
}
static void
app_init_rings_tx(void)
{
uint32_t lcore;
/* Initialize the rings for the TX side */
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_worker *lp_worker = &app.lcore_params[lcore].worker;
uint32_t port;
if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
continue;
}
for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
char name[32];
struct app_lcore_params_io *lp_io = NULL;
struct rte_ring *ring;
uint32_t socket_io, lcore_io;
if (app.nic_tx_port_mask[port] == 0) {
continue;
}
if (app_get_lcore_for_nic_tx((uint8_t) port, &lcore_io) < 0) {
rte_panic("Algorithmic error (no I/O core to handle TX of port %u)\n",
port);
}
lp_io = &app.lcore_params[lcore_io].io;
socket_io = rte_lcore_to_socket_id(lcore_io);
printf("Creating ring to connect worker lcore %u with TX port %u (through I/O lcore %u) (socket %u) ...\n",
lcore, port, lcore_io, socket_io);
rte_snprintf(name, sizeof(name), "app_ring_tx_s%u_w%u_p%u", socket_io, lcore, port);
ring = rte_ring_create(
name,
app.ring_tx_size,
socket_io,
RING_F_SP_ENQ | RING_F_SC_DEQ);
if (ring == NULL) {
rte_panic("Cannot create ring to connect worker core %u with TX port %u\n",
lcore,
port);
}
lp_worker->rings_out[port] = ring;
lp_io->tx.rings[port][lp_worker->worker_id] = ring;
}
}
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_io *lp_io = &app.lcore_params[lcore].io;
uint32_t i;
if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) ||
(lp_io->tx.n_nic_ports == 0)) {
continue;
}
for (i = 0; i < lp_io->tx.n_nic_ports; i ++){
uint32_t port, j;
port = lp_io->tx.nic_ports[i];
for (j = 0; j < app_get_lcores_worker(); j ++) {
if (lp_io->tx.rings[port][j] == NULL) {
rte_panic("Algorithmic error (I/O TX rings)\n");
}
}
}
}
}
static void
app_init_nics(void)
{
uint32_t socket, lcore;
uint8_t port, queue;
int ret;
/* Init driver */
printf("Initializing the PMD driver ...\n");
#ifdef RTE_LIBRTE_IGB_PMD
if (rte_igb_pmd_init() < 0) {
rte_panic("Cannot init IGB PMD\n");
}
#endif
#ifdef RTE_LIBRTE_IXGBE_PMD
if (rte_ixgbe_pmd_init() < 0) {
rte_panic("Cannot init IXGBE PMD\n");
}
#endif
if (rte_eal_pci_probe() < 0) {
rte_panic("Cannot probe PCI\n");
}
/* Init NIC ports and queues, then start the ports */
for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
struct rte_eth_link link;
struct rte_mempool *pool;
uint32_t n_rx_queues, n_tx_queues;
n_rx_queues = app_get_nic_rx_queues_per_port(port);
n_tx_queues = app.nic_tx_port_mask[port];
if ((n_rx_queues == 0) && (n_tx_queues == 0)) {
continue;
}
/* Init port */
printf("Initializing NIC port %u ...\n", (uint32_t) port);
ret = rte_eth_dev_configure(
port,
(uint8_t) n_rx_queues,
(uint8_t) n_tx_queues,
&port_conf);
if (ret < 0) {
rte_panic("Cannot init NIC port %u (%d)\n", (uint32_t) port, ret);
}
rte_eth_promiscuous_enable(port);
/* Init RX queues */
for (queue = 0; queue < APP_MAX_RX_QUEUES_PER_NIC_PORT; queue ++) {
if (app.nic_rx_queue_mask[port][queue] == 0) {
continue;
}
app_get_lcore_for_nic_rx(port, queue, &lcore);
socket = rte_lcore_to_socket_id(lcore);
pool = app.lcore_params[lcore].pool;
printf("Initializing NIC port %u RX queue %u ...\n",
(uint32_t) port,
(uint32_t) queue);
ret = rte_eth_rx_queue_setup(
port,
queue,
(uint16_t) app.nic_rx_ring_size,
socket,
&rx_conf,
pool);
if (ret < 0) {
rte_panic("Cannot init RX queue %u for port %u (%d)\n",
(uint32_t) queue,
(uint32_t) port,
ret);
}
}
/* Init TX queues */
if (app.nic_tx_port_mask[port] == 1) {
app_get_lcore_for_nic_tx(port, &lcore);
socket = rte_lcore_to_socket_id(lcore);
printf("Initializing NIC port %u TX queue 0 ...\n",
(uint32_t) port);
ret = rte_eth_tx_queue_setup(
port,
0,
(uint16_t) app.nic_tx_ring_size,
socket,
&tx_conf);
if (ret < 0) {
rte_panic("Cannot init TX queue 0 for port %d (%d)\n",
port,
ret);
}
}
/* Start port */
ret = rte_eth_dev_start(port);
if (ret < 0) {
rte_panic("Cannot start port %d (%d)\n", port, ret);
}
/* Get link status */
rte_eth_link_get(port, &link);
if (link.link_status) {
printf("Port %u is UP (%u Mbps)\n",
(uint32_t) port,
(unsigned) link.link_speed);
} else {
printf("Port %u is DOWN\n",
(uint32_t) port);
}
}
}
void
app_init(void)
{
app_assign_worker_ids();
app_init_mbuf_pools();
app_init_lpm_tables();
app_init_rings_rx();
app_init_rings_tx();
app_init_nics();
printf("Initialization completed.\n");
}