numam-dpdk/drivers/net/qede/qede_ethdev.c
Harish Patil daee4e07fc net/qede: fix to re-enable LRO during device start
Move LRO configuration from dev_configure to dev_start so that
LRO configuration can be re-enabled following a port restart.

Fixes: 9a6d30ae6d ("net/qede: refactoring vport handling code")
Cc: stable@dpdk.org

Signed-off-by: Harish Patil <harish.patil@cavium.com>
2017-10-26 02:33:00 +02:00

2914 lines
82 KiB
C

/*
* Copyright (c) 2016 QLogic Corporation.
* All rights reserved.
* www.qlogic.com
*
* See LICENSE.qede_pmd for copyright and licensing details.
*/
#include "qede_ethdev.h"
#include <rte_alarm.h>
#include <rte_version.h>
/* Globals */
static const struct qed_eth_ops *qed_ops;
static int64_t timer_period = 1;
/* VXLAN tunnel classification mapping */
const struct _qede_vxlan_tunn_types {
uint16_t rte_filter_type;
enum ecore_filter_ucast_type qede_type;
enum ecore_tunn_clss qede_tunn_clss;
const char *string;
} qede_tunn_types[] = {
{
ETH_TUNNEL_FILTER_OMAC,
ECORE_FILTER_MAC,
ECORE_TUNN_CLSS_MAC_VLAN,
"outer-mac"
},
{
ETH_TUNNEL_FILTER_TENID,
ECORE_FILTER_VNI,
ECORE_TUNN_CLSS_MAC_VNI,
"vni"
},
{
ETH_TUNNEL_FILTER_IMAC,
ECORE_FILTER_INNER_MAC,
ECORE_TUNN_CLSS_INNER_MAC_VLAN,
"inner-mac"
},
{
ETH_TUNNEL_FILTER_IVLAN,
ECORE_FILTER_INNER_VLAN,
ECORE_TUNN_CLSS_INNER_MAC_VLAN,
"inner-vlan"
},
{
ETH_TUNNEL_FILTER_OMAC | ETH_TUNNEL_FILTER_TENID,
ECORE_FILTER_MAC_VNI_PAIR,
ECORE_TUNN_CLSS_MAC_VNI,
"outer-mac and vni"
},
{
ETH_TUNNEL_FILTER_OMAC | ETH_TUNNEL_FILTER_IMAC,
ECORE_FILTER_UNUSED,
MAX_ECORE_TUNN_CLSS,
"outer-mac and inner-mac"
},
{
ETH_TUNNEL_FILTER_OMAC | ETH_TUNNEL_FILTER_IVLAN,
ECORE_FILTER_UNUSED,
MAX_ECORE_TUNN_CLSS,
"outer-mac and inner-vlan"
},
{
ETH_TUNNEL_FILTER_TENID | ETH_TUNNEL_FILTER_IMAC,
ECORE_FILTER_INNER_MAC_VNI_PAIR,
ECORE_TUNN_CLSS_INNER_MAC_VNI,
"vni and inner-mac",
},
{
ETH_TUNNEL_FILTER_TENID | ETH_TUNNEL_FILTER_IVLAN,
ECORE_FILTER_UNUSED,
MAX_ECORE_TUNN_CLSS,
"vni and inner-vlan",
},
{
ETH_TUNNEL_FILTER_IMAC | ETH_TUNNEL_FILTER_IVLAN,
ECORE_FILTER_INNER_PAIR,
ECORE_TUNN_CLSS_INNER_MAC_VLAN,
"inner-mac and inner-vlan",
},
{
ETH_TUNNEL_FILTER_OIP,
ECORE_FILTER_UNUSED,
MAX_ECORE_TUNN_CLSS,
"outer-IP"
},
{
ETH_TUNNEL_FILTER_IIP,
ECORE_FILTER_UNUSED,
MAX_ECORE_TUNN_CLSS,
"inner-IP"
},
{
RTE_TUNNEL_FILTER_IMAC_IVLAN,
ECORE_FILTER_UNUSED,
MAX_ECORE_TUNN_CLSS,
"IMAC_IVLAN"
},
{
RTE_TUNNEL_FILTER_IMAC_IVLAN_TENID,
ECORE_FILTER_UNUSED,
MAX_ECORE_TUNN_CLSS,
"IMAC_IVLAN_TENID"
},
{
RTE_TUNNEL_FILTER_IMAC_TENID,
ECORE_FILTER_UNUSED,
MAX_ECORE_TUNN_CLSS,
"IMAC_TENID"
},
{
RTE_TUNNEL_FILTER_OMAC_TENID_IMAC,
ECORE_FILTER_UNUSED,
MAX_ECORE_TUNN_CLSS,
"OMAC_TENID_IMAC"
},
};
struct rte_qede_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
uint64_t offset;
};
static const struct rte_qede_xstats_name_off qede_xstats_strings[] = {
{"rx_unicast_bytes",
offsetof(struct ecore_eth_stats_common, rx_ucast_bytes)},
{"rx_multicast_bytes",
offsetof(struct ecore_eth_stats_common, rx_mcast_bytes)},
{"rx_broadcast_bytes",
offsetof(struct ecore_eth_stats_common, rx_bcast_bytes)},
{"rx_unicast_packets",
offsetof(struct ecore_eth_stats_common, rx_ucast_pkts)},
{"rx_multicast_packets",
offsetof(struct ecore_eth_stats_common, rx_mcast_pkts)},
{"rx_broadcast_packets",
offsetof(struct ecore_eth_stats_common, rx_bcast_pkts)},
{"tx_unicast_bytes",
offsetof(struct ecore_eth_stats_common, tx_ucast_bytes)},
{"tx_multicast_bytes",
offsetof(struct ecore_eth_stats_common, tx_mcast_bytes)},
{"tx_broadcast_bytes",
offsetof(struct ecore_eth_stats_common, tx_bcast_bytes)},
{"tx_unicast_packets",
offsetof(struct ecore_eth_stats_common, tx_ucast_pkts)},
{"tx_multicast_packets",
offsetof(struct ecore_eth_stats_common, tx_mcast_pkts)},
{"tx_broadcast_packets",
offsetof(struct ecore_eth_stats_common, tx_bcast_pkts)},
{"rx_64_byte_packets",
offsetof(struct ecore_eth_stats_common, rx_64_byte_packets)},
{"rx_65_to_127_byte_packets",
offsetof(struct ecore_eth_stats_common,
rx_65_to_127_byte_packets)},
{"rx_128_to_255_byte_packets",
offsetof(struct ecore_eth_stats_common,
rx_128_to_255_byte_packets)},
{"rx_256_to_511_byte_packets",
offsetof(struct ecore_eth_stats_common,
rx_256_to_511_byte_packets)},
{"rx_512_to_1023_byte_packets",
offsetof(struct ecore_eth_stats_common,
rx_512_to_1023_byte_packets)},
{"rx_1024_to_1518_byte_packets",
offsetof(struct ecore_eth_stats_common,
rx_1024_to_1518_byte_packets)},
{"tx_64_byte_packets",
offsetof(struct ecore_eth_stats_common, tx_64_byte_packets)},
{"tx_65_to_127_byte_packets",
offsetof(struct ecore_eth_stats_common,
tx_65_to_127_byte_packets)},
{"tx_128_to_255_byte_packets",
offsetof(struct ecore_eth_stats_common,
tx_128_to_255_byte_packets)},
{"tx_256_to_511_byte_packets",
offsetof(struct ecore_eth_stats_common,
tx_256_to_511_byte_packets)},
{"tx_512_to_1023_byte_packets",
offsetof(struct ecore_eth_stats_common,
tx_512_to_1023_byte_packets)},
{"tx_1024_to_1518_byte_packets",
offsetof(struct ecore_eth_stats_common,
tx_1024_to_1518_byte_packets)},
{"rx_mac_crtl_frames",
offsetof(struct ecore_eth_stats_common, rx_mac_crtl_frames)},
{"tx_mac_control_frames",
offsetof(struct ecore_eth_stats_common, tx_mac_ctrl_frames)},
{"rx_pause_frames",
offsetof(struct ecore_eth_stats_common, rx_pause_frames)},
{"tx_pause_frames",
offsetof(struct ecore_eth_stats_common, tx_pause_frames)},
{"rx_priority_flow_control_frames",
offsetof(struct ecore_eth_stats_common, rx_pfc_frames)},
{"tx_priority_flow_control_frames",
offsetof(struct ecore_eth_stats_common, tx_pfc_frames)},
{"rx_crc_errors",
offsetof(struct ecore_eth_stats_common, rx_crc_errors)},
{"rx_align_errors",
offsetof(struct ecore_eth_stats_common, rx_align_errors)},
{"rx_carrier_errors",
offsetof(struct ecore_eth_stats_common, rx_carrier_errors)},
{"rx_oversize_packet_errors",
offsetof(struct ecore_eth_stats_common, rx_oversize_packets)},
{"rx_jabber_errors",
offsetof(struct ecore_eth_stats_common, rx_jabbers)},
{"rx_undersize_packet_errors",
offsetof(struct ecore_eth_stats_common, rx_undersize_packets)},
{"rx_fragments", offsetof(struct ecore_eth_stats_common, rx_fragments)},
{"rx_host_buffer_not_available",
offsetof(struct ecore_eth_stats_common, no_buff_discards)},
/* Number of packets discarded because they are bigger than MTU */
{"rx_packet_too_big_discards",
offsetof(struct ecore_eth_stats_common,
packet_too_big_discard)},
{"rx_ttl_zero_discards",
offsetof(struct ecore_eth_stats_common, ttl0_discard)},
{"rx_multi_function_tag_filter_discards",
offsetof(struct ecore_eth_stats_common, mftag_filter_discards)},
{"rx_mac_filter_discards",
offsetof(struct ecore_eth_stats_common, mac_filter_discards)},
{"rx_hw_buffer_truncates",
offsetof(struct ecore_eth_stats_common, brb_truncates)},
{"rx_hw_buffer_discards",
offsetof(struct ecore_eth_stats_common, brb_discards)},
{"tx_error_drop_packets",
offsetof(struct ecore_eth_stats_common, tx_err_drop_pkts)},
{"rx_mac_bytes", offsetof(struct ecore_eth_stats_common, rx_mac_bytes)},
{"rx_mac_unicast_packets",
offsetof(struct ecore_eth_stats_common, rx_mac_uc_packets)},
{"rx_mac_multicast_packets",
offsetof(struct ecore_eth_stats_common, rx_mac_mc_packets)},
{"rx_mac_broadcast_packets",
offsetof(struct ecore_eth_stats_common, rx_mac_bc_packets)},
{"rx_mac_frames_ok",
offsetof(struct ecore_eth_stats_common, rx_mac_frames_ok)},
{"tx_mac_bytes", offsetof(struct ecore_eth_stats_common, tx_mac_bytes)},
{"tx_mac_unicast_packets",
offsetof(struct ecore_eth_stats_common, tx_mac_uc_packets)},
{"tx_mac_multicast_packets",
offsetof(struct ecore_eth_stats_common, tx_mac_mc_packets)},
{"tx_mac_broadcast_packets",
offsetof(struct ecore_eth_stats_common, tx_mac_bc_packets)},
{"lro_coalesced_packets",
offsetof(struct ecore_eth_stats_common, tpa_coalesced_pkts)},
{"lro_coalesced_events",
offsetof(struct ecore_eth_stats_common, tpa_coalesced_events)},
{"lro_aborts_num",
offsetof(struct ecore_eth_stats_common, tpa_aborts_num)},
{"lro_not_coalesced_packets",
offsetof(struct ecore_eth_stats_common,
tpa_not_coalesced_pkts)},
{"lro_coalesced_bytes",
offsetof(struct ecore_eth_stats_common,
tpa_coalesced_bytes)},
};
static const struct rte_qede_xstats_name_off qede_bb_xstats_strings[] = {
{"rx_1519_to_1522_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
rx_1519_to_1522_byte_packets)},
{"rx_1519_to_2047_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
rx_1519_to_2047_byte_packets)},
{"rx_2048_to_4095_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
rx_2048_to_4095_byte_packets)},
{"rx_4096_to_9216_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
rx_4096_to_9216_byte_packets)},
{"rx_9217_to_16383_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
rx_9217_to_16383_byte_packets)},
{"tx_1519_to_2047_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
tx_1519_to_2047_byte_packets)},
{"tx_2048_to_4095_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
tx_2048_to_4095_byte_packets)},
{"tx_4096_to_9216_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
tx_4096_to_9216_byte_packets)},
{"tx_9217_to_16383_byte_packets",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb,
tx_9217_to_16383_byte_packets)},
{"tx_lpi_entry_count",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb, tx_lpi_entry_count)},
{"tx_total_collisions",
offsetof(struct ecore_eth_stats, bb) +
offsetof(struct ecore_eth_stats_bb, tx_total_collisions)},
};
static const struct rte_qede_xstats_name_off qede_ah_xstats_strings[] = {
{"rx_1519_to_max_byte_packets",
offsetof(struct ecore_eth_stats, ah) +
offsetof(struct ecore_eth_stats_ah,
rx_1519_to_max_byte_packets)},
{"tx_1519_to_max_byte_packets",
offsetof(struct ecore_eth_stats, ah) +
offsetof(struct ecore_eth_stats_ah,
tx_1519_to_max_byte_packets)},
};
static const struct rte_qede_xstats_name_off qede_rxq_xstats_strings[] = {
{"rx_q_segments",
offsetof(struct qede_rx_queue, rx_segs)},
{"rx_q_hw_errors",
offsetof(struct qede_rx_queue, rx_hw_errors)},
{"rx_q_allocation_errors",
offsetof(struct qede_rx_queue, rx_alloc_errors)}
};
static void qede_interrupt_action(struct ecore_hwfn *p_hwfn)
{
ecore_int_sp_dpc((osal_int_ptr_t)(p_hwfn));
}
static void
qede_interrupt_handler(void *param)
{
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
qede_interrupt_action(ECORE_LEADING_HWFN(edev));
if (rte_intr_enable(eth_dev->intr_handle))
DP_ERR(edev, "rte_intr_enable failed\n");
}
static void
qede_alloc_etherdev(struct qede_dev *qdev, struct qed_dev_eth_info *info)
{
rte_memcpy(&qdev->dev_info, info, sizeof(*info));
qdev->ops = qed_ops;
}
#ifdef RTE_LIBRTE_QEDE_DEBUG_INFO
static void qede_print_adapter_info(struct qede_dev *qdev)
{
struct ecore_dev *edev = &qdev->edev;
struct qed_dev_info *info = &qdev->dev_info.common;
static char drv_ver[QEDE_PMD_DRV_VER_STR_SIZE];
static char ver_str[QEDE_PMD_DRV_VER_STR_SIZE];
DP_INFO(edev, "*********************************\n");
DP_INFO(edev, " DPDK version:%s\n", rte_version());
DP_INFO(edev, " Chip details : %s %c%d\n",
ECORE_IS_BB(edev) ? "BB" : "AH",
'A' + edev->chip_rev,
(int)edev->chip_metal);
snprintf(ver_str, QEDE_PMD_DRV_VER_STR_SIZE, "%d.%d.%d.%d",
info->fw_major, info->fw_minor, info->fw_rev, info->fw_eng);
snprintf(drv_ver, QEDE_PMD_DRV_VER_STR_SIZE, "%s_%s",
ver_str, QEDE_PMD_VERSION);
DP_INFO(edev, " Driver version : %s\n", drv_ver);
DP_INFO(edev, " Firmware version : %s\n", ver_str);
snprintf(ver_str, MCP_DRV_VER_STR_SIZE,
"%d.%d.%d.%d",
(info->mfw_rev >> 24) & 0xff,
(info->mfw_rev >> 16) & 0xff,
(info->mfw_rev >> 8) & 0xff, (info->mfw_rev) & 0xff);
DP_INFO(edev, " Management Firmware version : %s\n", ver_str);
DP_INFO(edev, " Firmware file : %s\n", fw_file);
DP_INFO(edev, "*********************************\n");
}
#endif
static int
qede_start_vport(struct qede_dev *qdev, uint16_t mtu)
{
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_start_params params;
struct ecore_hwfn *p_hwfn;
int rc;
int i;
memset(&params, 0, sizeof(params));
params.vport_id = 0;
params.mtu = mtu;
/* @DPDK - Disable FW placement */
params.zero_placement_offset = 1;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.concrete_fid = p_hwfn->hw_info.concrete_fid;
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_start(p_hwfn, &params);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Start V-PORT failed %d\n", rc);
return rc;
}
}
ecore_reset_vport_stats(edev);
DP_INFO(edev, "VPORT started with MTU = %u\n", mtu);
return 0;
}
static int
qede_stop_vport(struct ecore_dev *edev)
{
struct ecore_hwfn *p_hwfn;
uint8_t vport_id;
int rc;
int i;
vport_id = 0;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
rc = ecore_sp_vport_stop(p_hwfn, p_hwfn->hw_info.opaque_fid,
vport_id);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Stop V-PORT failed rc = %d\n", rc);
return rc;
}
}
return 0;
}
/* Activate or deactivate vport via vport-update */
int qede_activate_vport(struct rte_eth_dev *eth_dev, bool flg)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params params;
struct ecore_hwfn *p_hwfn;
uint8_t i;
int rc = -1;
memset(&params, 0, sizeof(struct ecore_sp_vport_update_params));
params.vport_id = 0;
params.update_vport_active_rx_flg = 1;
params.update_vport_active_tx_flg = 1;
params.vport_active_rx_flg = flg;
params.vport_active_tx_flg = flg;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to update vport\n");
break;
}
}
DP_INFO(edev, "vport %s\n", flg ? "activated" : "deactivated");
return rc;
}
static void
qede_update_sge_tpa_params(struct ecore_sge_tpa_params *sge_tpa_params,
uint16_t mtu, bool enable)
{
/* Enable LRO in split mode */
sge_tpa_params->tpa_ipv4_en_flg = enable;
sge_tpa_params->tpa_ipv6_en_flg = enable;
sge_tpa_params->tpa_ipv4_tunn_en_flg = false;
sge_tpa_params->tpa_ipv6_tunn_en_flg = false;
/* set if tpa enable changes */
sge_tpa_params->update_tpa_en_flg = 1;
/* set if tpa parameters should be handled */
sge_tpa_params->update_tpa_param_flg = enable;
sge_tpa_params->max_buffers_per_cqe = 20;
/* Enable TPA in split mode. In this mode each TPA segment
* starts on the new BD, so there is one BD per segment.
*/
sge_tpa_params->tpa_pkt_split_flg = 1;
sge_tpa_params->tpa_hdr_data_split_flg = 0;
sge_tpa_params->tpa_gro_consistent_flg = 0;
sge_tpa_params->tpa_max_aggs_num = ETH_TPA_MAX_AGGS_NUM;
sge_tpa_params->tpa_max_size = 0x7FFF;
sge_tpa_params->tpa_min_size_to_start = mtu / 2;
sge_tpa_params->tpa_min_size_to_cont = mtu / 2;
}
/* Enable/disable LRO via vport-update */
int qede_enable_tpa(struct rte_eth_dev *eth_dev, bool flg)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params params;
struct ecore_sge_tpa_params tpa_params;
struct ecore_hwfn *p_hwfn;
int rc;
int i;
memset(&params, 0, sizeof(struct ecore_sp_vport_update_params));
memset(&tpa_params, 0, sizeof(struct ecore_sge_tpa_params));
qede_update_sge_tpa_params(&tpa_params, qdev->mtu, flg);
params.vport_id = 0;
params.sge_tpa_params = &tpa_params;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to update LRO\n");
return -1;
}
}
qdev->enable_lro = flg;
DP_INFO(edev, "LRO is %s\n", flg ? "enabled" : "disabled");
return 0;
}
/* Update MTU via vport-update without doing port restart.
* The vport must be deactivated before calling this API.
*/
int qede_update_mtu(struct rte_eth_dev *eth_dev, uint16_t mtu)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params params;
struct ecore_hwfn *p_hwfn;
int rc;
int i;
memset(&params, 0, sizeof(struct ecore_sp_vport_update_params));
params.vport_id = 0;
params.mtu = mtu;
params.vport_id = 0;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to update MTU\n");
return -1;
}
}
DP_INFO(edev, "MTU updated to %u\n", mtu);
return 0;
}
static void qede_set_ucast_cmn_params(struct ecore_filter_ucast *ucast)
{
memset(ucast, 0, sizeof(struct ecore_filter_ucast));
ucast->is_rx_filter = true;
ucast->is_tx_filter = true;
/* ucast->assert_on_error = true; - For debug */
}
static int
qed_configure_filter_rx_mode(struct rte_eth_dev *eth_dev,
enum qed_filter_rx_mode_type type)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_filter_accept_flags flags;
memset(&flags, 0, sizeof(flags));
flags.update_rx_mode_config = 1;
flags.update_tx_mode_config = 1;
flags.rx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED |
ECORE_ACCEPT_MCAST_MATCHED |
ECORE_ACCEPT_BCAST;
flags.tx_accept_filter = ECORE_ACCEPT_UCAST_MATCHED |
ECORE_ACCEPT_MCAST_MATCHED |
ECORE_ACCEPT_BCAST;
if (type == QED_FILTER_RX_MODE_TYPE_PROMISC) {
flags.rx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED;
if (IS_VF(edev)) {
flags.tx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED;
DP_INFO(edev, "Enabling Tx unmatched flag for VF\n");
}
} else if (type == QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC) {
flags.rx_accept_filter |= ECORE_ACCEPT_MCAST_UNMATCHED;
} else if (type == (QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC |
QED_FILTER_RX_MODE_TYPE_PROMISC)) {
flags.rx_accept_filter |= ECORE_ACCEPT_UCAST_UNMATCHED |
ECORE_ACCEPT_MCAST_UNMATCHED;
}
return ecore_filter_accept_cmd(edev, 0, flags, false, false,
ECORE_SPQ_MODE_CB, NULL);
}
static int
qede_vxlan_enable(struct rte_eth_dev *eth_dev, uint8_t clss,
bool enable, bool mask)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
enum _ecore_status_t rc = ECORE_INVAL;
struct ecore_ptt *p_ptt;
struct ecore_tunnel_info tunn;
struct ecore_hwfn *p_hwfn;
int i;
memset(&tunn, 0, sizeof(struct ecore_tunnel_info));
tunn.vxlan.b_update_mode = enable;
tunn.vxlan.b_mode_enabled = mask;
tunn.b_update_rx_cls = true;
tunn.b_update_tx_cls = true;
tunn.vxlan.tun_cls = clss;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
p_ptt = IS_PF(edev) ? ecore_ptt_acquire(p_hwfn) : NULL;
rc = ecore_sp_pf_update_tunn_cfg(p_hwfn, p_ptt,
&tunn, ECORE_SPQ_MODE_CB, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to update tunn_clss %u\n",
tunn.vxlan.tun_cls);
break;
}
}
if (rc == ECORE_SUCCESS) {
qdev->vxlan.enable = enable;
qdev->vxlan.udp_port = (enable) ? QEDE_VXLAN_DEF_PORT : 0;
DP_INFO(edev, "vxlan is %s\n", enable ? "enabled" : "disabled");
}
return rc;
}
static int
qede_ucast_filter(struct rte_eth_dev *eth_dev, struct ecore_filter_ucast *ucast,
bool add)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qede_ucast_entry *tmp = NULL;
struct qede_ucast_entry *u;
struct ether_addr *mac_addr;
mac_addr = (struct ether_addr *)ucast->mac;
if (add) {
SLIST_FOREACH(tmp, &qdev->uc_list_head, list) {
if ((memcmp(mac_addr, &tmp->mac,
ETHER_ADDR_LEN) == 0) &&
ucast->vni == tmp->vni &&
ucast->vlan == tmp->vlan) {
DP_ERR(edev, "Unicast MAC is already added"
" with vlan = %u, vni = %u\n",
ucast->vlan, ucast->vni);
return -EEXIST;
}
}
u = rte_malloc(NULL, sizeof(struct qede_ucast_entry),
RTE_CACHE_LINE_SIZE);
if (!u) {
DP_ERR(edev, "Did not allocate memory for ucast\n");
return -ENOMEM;
}
ether_addr_copy(mac_addr, &u->mac);
u->vlan = ucast->vlan;
u->vni = ucast->vni;
SLIST_INSERT_HEAD(&qdev->uc_list_head, u, list);
qdev->num_uc_addr++;
} else {
SLIST_FOREACH(tmp, &qdev->uc_list_head, list) {
if ((memcmp(mac_addr, &tmp->mac,
ETHER_ADDR_LEN) == 0) &&
ucast->vlan == tmp->vlan &&
ucast->vni == tmp->vni)
break;
}
if (tmp == NULL) {
DP_INFO(edev, "Unicast MAC is not found\n");
return -EINVAL;
}
SLIST_REMOVE(&qdev->uc_list_head, tmp, qede_ucast_entry, list);
qdev->num_uc_addr--;
}
return 0;
}
static int
qede_mcast_filter(struct rte_eth_dev *eth_dev, struct ecore_filter_ucast *mcast,
bool add)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ether_addr *mac_addr;
struct qede_mcast_entry *tmp = NULL;
struct qede_mcast_entry *m;
mac_addr = (struct ether_addr *)mcast->mac;
if (add) {
SLIST_FOREACH(tmp, &qdev->mc_list_head, list) {
if (memcmp(mac_addr, &tmp->mac, ETHER_ADDR_LEN) == 0) {
DP_ERR(edev,
"Multicast MAC is already added\n");
return -EEXIST;
}
}
m = rte_malloc(NULL, sizeof(struct qede_mcast_entry),
RTE_CACHE_LINE_SIZE);
if (!m) {
DP_ERR(edev,
"Did not allocate memory for mcast\n");
return -ENOMEM;
}
ether_addr_copy(mac_addr, &m->mac);
SLIST_INSERT_HEAD(&qdev->mc_list_head, m, list);
qdev->num_mc_addr++;
} else {
SLIST_FOREACH(tmp, &qdev->mc_list_head, list) {
if (memcmp(mac_addr, &tmp->mac, ETHER_ADDR_LEN) == 0)
break;
}
if (tmp == NULL) {
DP_INFO(edev, "Multicast mac is not found\n");
return -EINVAL;
}
SLIST_REMOVE(&qdev->mc_list_head, tmp,
qede_mcast_entry, list);
qdev->num_mc_addr--;
}
return 0;
}
static enum _ecore_status_t
qede_mac_int_ops(struct rte_eth_dev *eth_dev, struct ecore_filter_ucast *ucast,
bool add)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
enum _ecore_status_t rc;
struct ecore_filter_mcast mcast;
struct qede_mcast_entry *tmp;
uint16_t j = 0;
/* Multicast */
if (is_multicast_ether_addr((struct ether_addr *)ucast->mac)) {
if (add) {
if (qdev->num_mc_addr >= ECORE_MAX_MC_ADDRS) {
DP_ERR(edev,
"Mcast filter table limit exceeded, "
"Please enable mcast promisc mode\n");
return -ECORE_INVAL;
}
}
rc = qede_mcast_filter(eth_dev, ucast, add);
if (rc == 0) {
DP_INFO(edev, "num_mc_addrs = %u\n", qdev->num_mc_addr);
memset(&mcast, 0, sizeof(mcast));
mcast.num_mc_addrs = qdev->num_mc_addr;
mcast.opcode = ECORE_FILTER_ADD;
SLIST_FOREACH(tmp, &qdev->mc_list_head, list) {
ether_addr_copy(&tmp->mac,
(struct ether_addr *)&mcast.mac[j]);
j++;
}
rc = ecore_filter_mcast_cmd(edev, &mcast,
ECORE_SPQ_MODE_CB, NULL);
}
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to add multicast filter"
" rc = %d, op = %d\n", rc, add);
}
} else { /* Unicast */
if (add) {
if (qdev->num_uc_addr >=
qdev->dev_info.num_mac_filters) {
DP_ERR(edev,
"Ucast filter table limit exceeded,"
" Please enable promisc mode\n");
return -ECORE_INVAL;
}
}
rc = qede_ucast_filter(eth_dev, ucast, add);
if (rc == 0)
rc = ecore_filter_ucast_cmd(edev, ucast,
ECORE_SPQ_MODE_CB, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "MAC filter failed, rc = %d, op = %d\n",
rc, add);
}
}
return rc;
}
static int
qede_mac_addr_add(struct rte_eth_dev *eth_dev, struct ether_addr *mac_addr,
__rte_unused uint32_t index, __rte_unused uint32_t pool)
{
struct ecore_filter_ucast ucast;
int re;
qede_set_ucast_cmn_params(&ucast);
ucast.type = ECORE_FILTER_MAC;
ether_addr_copy(mac_addr, (struct ether_addr *)&ucast.mac);
re = (int)qede_mac_int_ops(eth_dev, &ucast, 1);
return re;
}
static void
qede_mac_addr_remove(struct rte_eth_dev *eth_dev, uint32_t index)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct ecore_filter_ucast ucast;
PMD_INIT_FUNC_TRACE(edev);
if (index >= qdev->dev_info.num_mac_filters) {
DP_ERR(edev, "Index %u is above MAC filter limit %u\n",
index, qdev->dev_info.num_mac_filters);
return;
}
qede_set_ucast_cmn_params(&ucast);
ucast.opcode = ECORE_FILTER_REMOVE;
ucast.type = ECORE_FILTER_MAC;
/* Use the index maintained by rte */
ether_addr_copy(&eth_dev->data->mac_addrs[index],
(struct ether_addr *)&ucast.mac);
ecore_filter_ucast_cmd(edev, &ucast, ECORE_SPQ_MODE_CB, NULL);
}
static void
qede_mac_addr_set(struct rte_eth_dev *eth_dev, struct ether_addr *mac_addr)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
if (IS_VF(edev) && !ecore_vf_check_mac(ECORE_LEADING_HWFN(edev),
mac_addr->addr_bytes)) {
DP_ERR(edev, "Setting MAC address is not allowed\n");
ether_addr_copy(&qdev->primary_mac,
&eth_dev->data->mac_addrs[0]);
return;
}
qede_mac_addr_add(eth_dev, mac_addr, 0, 0);
}
static void qede_config_accept_any_vlan(struct qede_dev *qdev, bool flg)
{
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params params;
struct ecore_hwfn *p_hwfn;
uint8_t i;
int rc;
memset(&params, 0, sizeof(struct ecore_sp_vport_update_params));
params.vport_id = 0;
params.update_accept_any_vlan_flg = 1;
params.accept_any_vlan = flg;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to configure accept-any-vlan\n");
return;
}
}
DP_INFO(edev, "%s accept-any-vlan\n", flg ? "enabled" : "disabled");
}
static int qede_vlan_stripping(struct rte_eth_dev *eth_dev, bool flg)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params params;
struct ecore_hwfn *p_hwfn;
uint8_t i;
int rc;
memset(&params, 0, sizeof(struct ecore_sp_vport_update_params));
params.vport_id = 0;
params.update_inner_vlan_removal_flg = 1;
params.inner_vlan_removal_flg = flg;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to update vport\n");
return -1;
}
}
DP_INFO(edev, "VLAN stripping %s\n", flg ? "enabled" : "disabled");
return 0;
}
static int qede_vlan_filter_set(struct rte_eth_dev *eth_dev,
uint16_t vlan_id, int on)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qed_dev_eth_info *dev_info = &qdev->dev_info;
struct qede_vlan_entry *tmp = NULL;
struct qede_vlan_entry *vlan;
struct ecore_filter_ucast ucast;
int rc;
if (on) {
if (qdev->configured_vlans == dev_info->num_vlan_filters) {
DP_ERR(edev, "Reached max VLAN filter limit"
" enabling accept_any_vlan\n");
qede_config_accept_any_vlan(qdev, true);
return 0;
}
SLIST_FOREACH(tmp, &qdev->vlan_list_head, list) {
if (tmp->vid == vlan_id) {
DP_ERR(edev, "VLAN %u already configured\n",
vlan_id);
return -EEXIST;
}
}
vlan = rte_malloc(NULL, sizeof(struct qede_vlan_entry),
RTE_CACHE_LINE_SIZE);
if (!vlan) {
DP_ERR(edev, "Did not allocate memory for VLAN\n");
return -ENOMEM;
}
qede_set_ucast_cmn_params(&ucast);
ucast.opcode = ECORE_FILTER_ADD;
ucast.type = ECORE_FILTER_VLAN;
ucast.vlan = vlan_id;
rc = ecore_filter_ucast_cmd(edev, &ucast, ECORE_SPQ_MODE_CB,
NULL);
if (rc != 0) {
DP_ERR(edev, "Failed to add VLAN %u rc %d\n", vlan_id,
rc);
rte_free(vlan);
} else {
vlan->vid = vlan_id;
SLIST_INSERT_HEAD(&qdev->vlan_list_head, vlan, list);
qdev->configured_vlans++;
DP_INFO(edev, "VLAN %u added, configured_vlans %u\n",
vlan_id, qdev->configured_vlans);
}
} else {
SLIST_FOREACH(tmp, &qdev->vlan_list_head, list) {
if (tmp->vid == vlan_id)
break;
}
if (!tmp) {
if (qdev->configured_vlans == 0) {
DP_INFO(edev,
"No VLAN filters configured yet\n");
return 0;
}
DP_ERR(edev, "VLAN %u not configured\n", vlan_id);
return -EINVAL;
}
SLIST_REMOVE(&qdev->vlan_list_head, tmp, qede_vlan_entry, list);
qede_set_ucast_cmn_params(&ucast);
ucast.opcode = ECORE_FILTER_REMOVE;
ucast.type = ECORE_FILTER_VLAN;
ucast.vlan = vlan_id;
rc = ecore_filter_ucast_cmd(edev, &ucast, ECORE_SPQ_MODE_CB,
NULL);
if (rc != 0) {
DP_ERR(edev, "Failed to delete VLAN %u rc %d\n",
vlan_id, rc);
} else {
qdev->configured_vlans--;
DP_INFO(edev, "VLAN %u removed configured_vlans %u\n",
vlan_id, qdev->configured_vlans);
}
}
return rc;
}
static void qede_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct rte_eth_rxmode *rxmode = &eth_dev->data->dev_conf.rxmode;
if (mask & ETH_VLAN_STRIP_MASK) {
if (rxmode->hw_vlan_strip)
(void)qede_vlan_stripping(eth_dev, 1);
else
(void)qede_vlan_stripping(eth_dev, 0);
}
if (mask & ETH_VLAN_FILTER_MASK) {
/* VLAN filtering kicks in when a VLAN is added */
if (rxmode->hw_vlan_filter) {
qede_vlan_filter_set(eth_dev, 0, 1);
} else {
if (qdev->configured_vlans > 1) { /* Excluding VLAN0 */
DP_ERR(edev,
" Please remove existing VLAN filters"
" before disabling VLAN filtering\n");
/* Signal app that VLAN filtering is still
* enabled
*/
rxmode->hw_vlan_filter = true;
} else {
qede_vlan_filter_set(eth_dev, 0, 0);
}
}
}
if (mask & ETH_VLAN_EXTEND_MASK)
DP_INFO(edev, "No offloads are supported with VLAN Q-in-Q"
" and classification is based on outer tag only\n");
DP_INFO(edev, "vlan offload mask %d vlan-strip %d vlan-filter %d\n",
mask, rxmode->hw_vlan_strip, rxmode->hw_vlan_filter);
}
static void qede_prandom_bytes(uint32_t *buff)
{
uint8_t i;
srand((unsigned int)time(NULL));
for (i = 0; i < ECORE_RSS_KEY_SIZE; i++)
buff[i] = rand();
}
int qede_config_rss(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
#ifdef RTE_LIBRTE_QEDE_DEBUG_INFO
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
#endif
uint32_t def_rss_key[ECORE_RSS_KEY_SIZE];
struct rte_eth_rss_reta_entry64 reta_conf[2];
struct rte_eth_rss_conf rss_conf;
uint32_t i, id, pos, q;
rss_conf = eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
if (!rss_conf.rss_key) {
DP_INFO(edev, "Applying driver default key\n");
rss_conf.rss_key_len = ECORE_RSS_KEY_SIZE * sizeof(uint32_t);
qede_prandom_bytes(&def_rss_key[0]);
rss_conf.rss_key = (uint8_t *)&def_rss_key[0];
}
/* Configure RSS hash */
if (qede_rss_hash_update(eth_dev, &rss_conf))
return -EINVAL;
/* Configure default RETA */
memset(reta_conf, 0, sizeof(reta_conf));
for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++)
reta_conf[i / RTE_RETA_GROUP_SIZE].mask = UINT64_MAX;
for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++) {
id = i / RTE_RETA_GROUP_SIZE;
pos = i % RTE_RETA_GROUP_SIZE;
q = i % QEDE_RSS_COUNT(qdev);
reta_conf[id].reta[pos] = q;
}
if (qede_rss_reta_update(eth_dev, &reta_conf[0],
ECORE_RSS_IND_TABLE_SIZE))
return -EINVAL;
return 0;
}
static void qede_fastpath_start(struct ecore_dev *edev)
{
struct ecore_hwfn *p_hwfn;
int i;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
ecore_hw_start_fastpath(p_hwfn);
}
}
static int qede_dev_start(struct rte_eth_dev *eth_dev)
{
struct rte_eth_rxmode *rxmode = &eth_dev->data->dev_conf.rxmode;
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
PMD_INIT_FUNC_TRACE(edev);
/* Update MTU only if it has changed */
if (qdev->mtu != qdev->new_mtu) {
if (qede_update_mtu(eth_dev, qdev->new_mtu))
goto err;
qdev->mtu = qdev->new_mtu;
}
/* Configure TPA parameters */
if (rxmode->enable_lro) {
if (qede_enable_tpa(eth_dev, true))
return -EINVAL;
/* Enable scatter mode for LRO */
if (!rxmode->enable_scatter)
eth_dev->data->scattered_rx = 1;
}
/* Start queues */
if (qede_start_queues(eth_dev))
goto err;
/* Newer SR-IOV PF driver expects RX/TX queues to be started before
* enabling RSS. Hence RSS configuration is deferred upto this point.
* Also, we would like to retain similar behavior in PF case, so we
* don't do PF/VF specific check here.
*/
if (rxmode->mq_mode == ETH_MQ_RX_RSS)
if (qede_config_rss(eth_dev))
goto err;
/* Enable vport*/
if (qede_activate_vport(eth_dev, true))
goto err;
/* Bring-up the link */
qede_dev_set_link_state(eth_dev, true);
/* Start/resume traffic */
qede_fastpath_start(edev);
DP_INFO(edev, "Device started\n");
return 0;
err:
DP_ERR(edev, "Device start fails\n");
return -1; /* common error code is < 0 */
}
static void qede_dev_stop(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
PMD_INIT_FUNC_TRACE(edev);
/* Disable vport */
if (qede_activate_vport(eth_dev, false))
return;
if (qdev->enable_lro)
qede_enable_tpa(eth_dev, false);
/* Stop queues */
qede_stop_queues(eth_dev);
/* Disable traffic */
ecore_hw_stop_fastpath(edev); /* TBD - loop */
/* Bring the link down */
qede_dev_set_link_state(eth_dev, false);
DP_INFO(edev, "Device is stopped\n");
}
static int qede_dev_configure(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct rte_eth_rxmode *rxmode = &eth_dev->data->dev_conf.rxmode;
PMD_INIT_FUNC_TRACE(edev);
/* Check requirements for 100G mode */
if (ECORE_IS_CMT(edev)) {
if (eth_dev->data->nb_rx_queues < 2 ||
eth_dev->data->nb_tx_queues < 2) {
DP_ERR(edev, "100G mode needs min. 2 RX/TX queues\n");
return -EINVAL;
}
if ((eth_dev->data->nb_rx_queues % 2 != 0) ||
(eth_dev->data->nb_tx_queues % 2 != 0)) {
DP_ERR(edev,
"100G mode needs even no. of RX/TX queues\n");
return -EINVAL;
}
}
/* Sanity checks and throw warnings */
if (rxmode->enable_scatter)
eth_dev->data->scattered_rx = 1;
if (!rxmode->hw_strip_crc)
DP_INFO(edev, "L2 CRC stripping is always enabled in hw\n");
if (!rxmode->hw_ip_checksum)
DP_INFO(edev, "IP/UDP/TCP checksum offload is always enabled "
"in hw\n");
if (rxmode->header_split)
DP_INFO(edev, "Header split enable is not supported\n");
if (!(rxmode->mq_mode == ETH_MQ_RX_NONE || rxmode->mq_mode ==
ETH_MQ_RX_RSS)) {
DP_ERR(edev, "Unsupported multi-queue mode\n");
return -ENOTSUP;
}
/* Flow director mode check */
if (qede_check_fdir_support(eth_dev))
return -ENOTSUP;
/* Deallocate resources if held previously. It is needed only if the
* queue count has been changed from previous configuration. If its
* going to change then it means RX/TX queue setup will be called
* again and the fastpath pointers will be reinitialized there.
*/
if (qdev->num_tx_queues != eth_dev->data->nb_tx_queues ||
qdev->num_rx_queues != eth_dev->data->nb_rx_queues) {
qede_dealloc_fp_resc(eth_dev);
/* Proceed with updated queue count */
qdev->num_tx_queues = eth_dev->data->nb_tx_queues;
qdev->num_rx_queues = eth_dev->data->nb_rx_queues;
if (qede_alloc_fp_resc(qdev))
return -ENOMEM;
}
/* VF's MTU has to be set using vport-start where as
* PF's MTU can be updated via vport-update.
*/
if (IS_VF(edev)) {
if (qede_start_vport(qdev, rxmode->max_rx_pkt_len))
return -1;
} else {
if (qede_update_mtu(eth_dev, rxmode->max_rx_pkt_len))
return -1;
}
qdev->mtu = rxmode->max_rx_pkt_len;
qdev->new_mtu = qdev->mtu;
/* Enable VLAN offloads by default */
qede_vlan_offload_set(eth_dev, ETH_VLAN_STRIP_MASK |
ETH_VLAN_FILTER_MASK |
ETH_VLAN_EXTEND_MASK);
DP_INFO(edev, "Device configured with RSS=%d TSS=%d\n",
QEDE_RSS_COUNT(qdev), QEDE_TSS_COUNT(qdev));
return 0;
}
/* Info about HW descriptor ring limitations */
static const struct rte_eth_desc_lim qede_rx_desc_lim = {
.nb_max = 0x8000, /* 32K */
.nb_min = 128,
.nb_align = 128 /* lowest common multiple */
};
static const struct rte_eth_desc_lim qede_tx_desc_lim = {
.nb_max = 0x8000, /* 32K */
.nb_min = 256,
.nb_align = 256,
.nb_seg_max = ETH_TX_MAX_BDS_PER_LSO_PACKET,
.nb_mtu_seg_max = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET
};
static void
qede_dev_info_get(struct rte_eth_dev *eth_dev,
struct rte_eth_dev_info *dev_info)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct qed_link_output link;
uint32_t speed_cap = 0;
PMD_INIT_FUNC_TRACE(edev);
dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
dev_info->min_rx_bufsize = (uint32_t)QEDE_MIN_RX_BUFF_SIZE;
dev_info->max_rx_pktlen = (uint32_t)ETH_TX_MAX_NON_LSO_PKT_LEN;
dev_info->rx_desc_lim = qede_rx_desc_lim;
dev_info->tx_desc_lim = qede_tx_desc_lim;
if (IS_PF(edev))
dev_info->max_rx_queues = (uint16_t)RTE_MIN(
QEDE_MAX_RSS_CNT(qdev), QEDE_PF_NUM_CONNS / 2);
else
dev_info->max_rx_queues = (uint16_t)RTE_MIN(
QEDE_MAX_RSS_CNT(qdev), ECORE_MAX_VF_CHAINS_PER_PF);
dev_info->max_tx_queues = dev_info->max_rx_queues;
dev_info->max_mac_addrs = qdev->dev_info.num_mac_filters;
dev_info->max_vfs = 0;
dev_info->reta_size = ECORE_RSS_IND_TABLE_SIZE;
dev_info->hash_key_size = ECORE_RSS_KEY_SIZE * sizeof(uint32_t);
dev_info->flow_type_rss_offloads = (uint64_t)QEDE_RSS_OFFLOAD_ALL;
dev_info->default_txconf = (struct rte_eth_txconf) {
.txq_flags = QEDE_TXQ_FLAGS,
};
dev_info->rx_offload_capa = (DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_TCP_LRO);
dev_info->tx_offload_capa = (DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO);
memset(&link, 0, sizeof(struct qed_link_output));
qdev->ops->common->get_link(edev, &link);
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_1G)
speed_cap |= ETH_LINK_SPEED_1G;
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_10G)
speed_cap |= ETH_LINK_SPEED_10G;
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_25G)
speed_cap |= ETH_LINK_SPEED_25G;
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_40G)
speed_cap |= ETH_LINK_SPEED_40G;
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_50G)
speed_cap |= ETH_LINK_SPEED_50G;
if (link.adv_speed & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_BB_100G)
speed_cap |= ETH_LINK_SPEED_100G;
dev_info->speed_capa = speed_cap;
}
/* return 0 means link status changed, -1 means not changed */
static int
qede_link_update(struct rte_eth_dev *eth_dev, __rte_unused int wait_to_complete)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
uint16_t link_duplex;
struct qed_link_output link;
struct rte_eth_link *curr = &eth_dev->data->dev_link;
memset(&link, 0, sizeof(struct qed_link_output));
qdev->ops->common->get_link(edev, &link);
/* Link Speed */
curr->link_speed = link.speed;
/* Link Mode */
switch (link.duplex) {
case QEDE_DUPLEX_HALF:
link_duplex = ETH_LINK_HALF_DUPLEX;
break;
case QEDE_DUPLEX_FULL:
link_duplex = ETH_LINK_FULL_DUPLEX;
break;
case QEDE_DUPLEX_UNKNOWN:
default:
link_duplex = -1;
}
curr->link_duplex = link_duplex;
/* Link Status */
curr->link_status = (link.link_up) ? ETH_LINK_UP : ETH_LINK_DOWN;
/* AN */
curr->link_autoneg = (link.supported_caps & QEDE_SUPPORTED_AUTONEG) ?
ETH_LINK_AUTONEG : ETH_LINK_FIXED;
DP_INFO(edev, "Link - Speed %u Mode %u AN %u Status %u\n",
curr->link_speed, curr->link_duplex,
curr->link_autoneg, curr->link_status);
/* return 0 means link status changed, -1 means not changed */
return ((curr->link_status == link.link_up) ? -1 : 0);
}
static void qede_promiscuous_enable(struct rte_eth_dev *eth_dev)
{
#ifdef RTE_LIBRTE_QEDE_DEBUG_INIT
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
PMD_INIT_FUNC_TRACE(edev);
#endif
enum qed_filter_rx_mode_type type = QED_FILTER_RX_MODE_TYPE_PROMISC;
if (rte_eth_allmulticast_get(eth_dev->data->port_id) == 1)
type |= QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
qed_configure_filter_rx_mode(eth_dev, type);
}
static void qede_promiscuous_disable(struct rte_eth_dev *eth_dev)
{
#ifdef RTE_LIBRTE_QEDE_DEBUG_INIT
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
PMD_INIT_FUNC_TRACE(edev);
#endif
if (rte_eth_allmulticast_get(eth_dev->data->port_id) == 1)
qed_configure_filter_rx_mode(eth_dev,
QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC);
else
qed_configure_filter_rx_mode(eth_dev,
QED_FILTER_RX_MODE_TYPE_REGULAR);
}
static void qede_poll_sp_sb_cb(void *param)
{
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
int rc;
qede_interrupt_action(ECORE_LEADING_HWFN(edev));
qede_interrupt_action(&edev->hwfns[1]);
rc = rte_eal_alarm_set(timer_period * US_PER_S,
qede_poll_sp_sb_cb,
(void *)eth_dev);
if (rc != 0) {
DP_ERR(edev, "Unable to start periodic"
" timer rc %d\n", rc);
assert(false && "Unable to start periodic timer");
}
}
static void qede_dev_close(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
PMD_INIT_FUNC_TRACE(edev);
/* dev_stop() shall cleanup fp resources in hw but without releasing
* dma memories and sw structures so that dev_start() can be called
* by the app without reconfiguration. However, in dev_close() we
* can release all the resources and device can be brought up newly
*/
if (eth_dev->data->dev_started)
qede_dev_stop(eth_dev);
qede_stop_vport(edev);
qede_fdir_dealloc_resc(eth_dev);
qede_dealloc_fp_resc(eth_dev);
eth_dev->data->nb_rx_queues = 0;
eth_dev->data->nb_tx_queues = 0;
qdev->ops->common->slowpath_stop(edev);
qdev->ops->common->remove(edev);
rte_intr_disable(&pci_dev->intr_handle);
rte_intr_callback_unregister(&pci_dev->intr_handle,
qede_interrupt_handler, (void *)eth_dev);
if (ECORE_IS_CMT(edev))
rte_eal_alarm_cancel(qede_poll_sp_sb_cb, (void *)eth_dev);
}
static int
qede_get_stats(struct rte_eth_dev *eth_dev, struct rte_eth_stats *eth_stats)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct ecore_eth_stats stats;
unsigned int i = 0, j = 0, qid;
unsigned int rxq_stat_cntrs, txq_stat_cntrs;
struct qede_tx_queue *txq;
ecore_get_vport_stats(edev, &stats);
/* RX Stats */
eth_stats->ipackets = stats.common.rx_ucast_pkts +
stats.common.rx_mcast_pkts + stats.common.rx_bcast_pkts;
eth_stats->ibytes = stats.common.rx_ucast_bytes +
stats.common.rx_mcast_bytes + stats.common.rx_bcast_bytes;
eth_stats->ierrors = stats.common.rx_crc_errors +
stats.common.rx_align_errors +
stats.common.rx_carrier_errors +
stats.common.rx_oversize_packets +
stats.common.rx_jabbers + stats.common.rx_undersize_packets;
eth_stats->rx_nombuf = stats.common.no_buff_discards;
eth_stats->imissed = stats.common.mftag_filter_discards +
stats.common.mac_filter_discards +
stats.common.no_buff_discards +
stats.common.brb_truncates + stats.common.brb_discards;
/* TX stats */
eth_stats->opackets = stats.common.tx_ucast_pkts +
stats.common.tx_mcast_pkts + stats.common.tx_bcast_pkts;
eth_stats->obytes = stats.common.tx_ucast_bytes +
stats.common.tx_mcast_bytes + stats.common.tx_bcast_bytes;
eth_stats->oerrors = stats.common.tx_err_drop_pkts;
/* Queue stats */
rxq_stat_cntrs = RTE_MIN(QEDE_RSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS);
txq_stat_cntrs = RTE_MIN(QEDE_TSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS);
if ((rxq_stat_cntrs != (unsigned int)QEDE_RSS_COUNT(qdev)) ||
(txq_stat_cntrs != (unsigned int)QEDE_TSS_COUNT(qdev)))
DP_VERBOSE(edev, ECORE_MSG_DEBUG,
"Not all the queue stats will be displayed. Set"
" RTE_ETHDEV_QUEUE_STAT_CNTRS config param"
" appropriately and retry.\n");
for_each_rss(qid) {
eth_stats->q_ipackets[i] =
*(uint64_t *)(
((char *)(qdev->fp_array[qid].rxq)) +
offsetof(struct qede_rx_queue,
rcv_pkts));
eth_stats->q_errors[i] =
*(uint64_t *)(
((char *)(qdev->fp_array[qid].rxq)) +
offsetof(struct qede_rx_queue,
rx_hw_errors)) +
*(uint64_t *)(
((char *)(qdev->fp_array[qid].rxq)) +
offsetof(struct qede_rx_queue,
rx_alloc_errors));
i++;
if (i == rxq_stat_cntrs)
break;
}
for_each_tss(qid) {
txq = qdev->fp_array[qid].txq;
eth_stats->q_opackets[j] =
*((uint64_t *)(uintptr_t)
(((uint64_t)(uintptr_t)(txq)) +
offsetof(struct qede_tx_queue,
xmit_pkts)));
j++;
if (j == txq_stat_cntrs)
break;
}
return 0;
}
static unsigned
qede_get_xstats_count(struct qede_dev *qdev) {
if (ECORE_IS_BB(&qdev->edev))
return RTE_DIM(qede_xstats_strings) +
RTE_DIM(qede_bb_xstats_strings) +
(RTE_DIM(qede_rxq_xstats_strings) *
RTE_MIN(QEDE_RSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS));
else
return RTE_DIM(qede_xstats_strings) +
RTE_DIM(qede_ah_xstats_strings) +
(RTE_DIM(qede_rxq_xstats_strings) *
RTE_MIN(QEDE_RSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS));
}
static int
qede_get_xstats_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
__rte_unused unsigned int limit)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
const unsigned int stat_cnt = qede_get_xstats_count(qdev);
unsigned int i, qid, stat_idx = 0;
unsigned int rxq_stat_cntrs;
if (xstats_names != NULL) {
for (i = 0; i < RTE_DIM(qede_xstats_strings); i++) {
snprintf(xstats_names[stat_idx].name,
sizeof(xstats_names[stat_idx].name),
"%s",
qede_xstats_strings[i].name);
stat_idx++;
}
if (ECORE_IS_BB(edev)) {
for (i = 0; i < RTE_DIM(qede_bb_xstats_strings); i++) {
snprintf(xstats_names[stat_idx].name,
sizeof(xstats_names[stat_idx].name),
"%s",
qede_bb_xstats_strings[i].name);
stat_idx++;
}
} else {
for (i = 0; i < RTE_DIM(qede_ah_xstats_strings); i++) {
snprintf(xstats_names[stat_idx].name,
sizeof(xstats_names[stat_idx].name),
"%s",
qede_ah_xstats_strings[i].name);
stat_idx++;
}
}
rxq_stat_cntrs = RTE_MIN(QEDE_RSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS);
for (qid = 0; qid < rxq_stat_cntrs; qid++) {
for (i = 0; i < RTE_DIM(qede_rxq_xstats_strings); i++) {
snprintf(xstats_names[stat_idx].name,
sizeof(xstats_names[stat_idx].name),
"%.4s%d%s",
qede_rxq_xstats_strings[i].name, qid,
qede_rxq_xstats_strings[i].name + 4);
stat_idx++;
}
}
}
return stat_cnt;
}
static int
qede_get_xstats(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
unsigned int n)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
struct ecore_eth_stats stats;
const unsigned int num = qede_get_xstats_count(qdev);
unsigned int i, qid, stat_idx = 0;
unsigned int rxq_stat_cntrs;
if (n < num)
return num;
ecore_get_vport_stats(edev, &stats);
for (i = 0; i < RTE_DIM(qede_xstats_strings); i++) {
xstats[stat_idx].value = *(uint64_t *)(((char *)&stats) +
qede_xstats_strings[i].offset);
xstats[stat_idx].id = stat_idx;
stat_idx++;
}
if (ECORE_IS_BB(edev)) {
for (i = 0; i < RTE_DIM(qede_bb_xstats_strings); i++) {
xstats[stat_idx].value =
*(uint64_t *)(((char *)&stats) +
qede_bb_xstats_strings[i].offset);
xstats[stat_idx].id = stat_idx;
stat_idx++;
}
} else {
for (i = 0; i < RTE_DIM(qede_ah_xstats_strings); i++) {
xstats[stat_idx].value =
*(uint64_t *)(((char *)&stats) +
qede_ah_xstats_strings[i].offset);
xstats[stat_idx].id = stat_idx;
stat_idx++;
}
}
rxq_stat_cntrs = RTE_MIN(QEDE_RSS_COUNT(qdev),
RTE_ETHDEV_QUEUE_STAT_CNTRS);
for (qid = 0; qid < rxq_stat_cntrs; qid++) {
for_each_rss(qid) {
for (i = 0; i < RTE_DIM(qede_rxq_xstats_strings); i++) {
xstats[stat_idx].value = *(uint64_t *)(
((char *)(qdev->fp_array[qid].rxq)) +
qede_rxq_xstats_strings[i].offset);
xstats[stat_idx].id = stat_idx;
stat_idx++;
}
}
}
return stat_idx;
}
static void
qede_reset_xstats(struct rte_eth_dev *dev)
{
struct qede_dev *qdev = dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
ecore_reset_vport_stats(edev);
}
int qede_dev_set_link_state(struct rte_eth_dev *eth_dev, bool link_up)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qed_link_params link_params;
int rc;
DP_INFO(edev, "setting link state %d\n", link_up);
memset(&link_params, 0, sizeof(link_params));
link_params.link_up = link_up;
rc = qdev->ops->common->set_link(edev, &link_params);
if (rc != ECORE_SUCCESS)
DP_ERR(edev, "Unable to set link state %d\n", link_up);
return rc;
}
static int qede_dev_set_link_up(struct rte_eth_dev *eth_dev)
{
return qede_dev_set_link_state(eth_dev, true);
}
static int qede_dev_set_link_down(struct rte_eth_dev *eth_dev)
{
return qede_dev_set_link_state(eth_dev, false);
}
static void qede_reset_stats(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
ecore_reset_vport_stats(edev);
}
static void qede_allmulticast_enable(struct rte_eth_dev *eth_dev)
{
enum qed_filter_rx_mode_type type =
QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
if (rte_eth_promiscuous_get(eth_dev->data->port_id) == 1)
type |= QED_FILTER_RX_MODE_TYPE_PROMISC;
qed_configure_filter_rx_mode(eth_dev, type);
}
static void qede_allmulticast_disable(struct rte_eth_dev *eth_dev)
{
if (rte_eth_promiscuous_get(eth_dev->data->port_id) == 1)
qed_configure_filter_rx_mode(eth_dev,
QED_FILTER_RX_MODE_TYPE_PROMISC);
else
qed_configure_filter_rx_mode(eth_dev,
QED_FILTER_RX_MODE_TYPE_REGULAR);
}
static int qede_flow_ctrl_set(struct rte_eth_dev *eth_dev,
struct rte_eth_fc_conf *fc_conf)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qed_link_output current_link;
struct qed_link_params params;
memset(&current_link, 0, sizeof(current_link));
qdev->ops->common->get_link(edev, &current_link);
memset(&params, 0, sizeof(params));
params.override_flags |= QED_LINK_OVERRIDE_PAUSE_CONFIG;
if (fc_conf->autoneg) {
if (!(current_link.supported_caps & QEDE_SUPPORTED_AUTONEG)) {
DP_ERR(edev, "Autoneg not supported\n");
return -EINVAL;
}
params.pause_config |= QED_LINK_PAUSE_AUTONEG_ENABLE;
}
/* Pause is assumed to be supported (SUPPORTED_Pause) */
if (fc_conf->mode == RTE_FC_FULL)
params.pause_config |= (QED_LINK_PAUSE_TX_ENABLE |
QED_LINK_PAUSE_RX_ENABLE);
if (fc_conf->mode == RTE_FC_TX_PAUSE)
params.pause_config |= QED_LINK_PAUSE_TX_ENABLE;
if (fc_conf->mode == RTE_FC_RX_PAUSE)
params.pause_config |= QED_LINK_PAUSE_RX_ENABLE;
params.link_up = true;
(void)qdev->ops->common->set_link(edev, &params);
return 0;
}
static int qede_flow_ctrl_get(struct rte_eth_dev *eth_dev,
struct rte_eth_fc_conf *fc_conf)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qed_link_output current_link;
memset(&current_link, 0, sizeof(current_link));
qdev->ops->common->get_link(edev, &current_link);
if (current_link.pause_config & QED_LINK_PAUSE_AUTONEG_ENABLE)
fc_conf->autoneg = true;
if (current_link.pause_config & (QED_LINK_PAUSE_RX_ENABLE |
QED_LINK_PAUSE_TX_ENABLE))
fc_conf->mode = RTE_FC_FULL;
else if (current_link.pause_config & QED_LINK_PAUSE_RX_ENABLE)
fc_conf->mode = RTE_FC_RX_PAUSE;
else if (current_link.pause_config & QED_LINK_PAUSE_TX_ENABLE)
fc_conf->mode = RTE_FC_TX_PAUSE;
else
fc_conf->mode = RTE_FC_NONE;
return 0;
}
static const uint32_t *
qede_dev_supported_ptypes_get(struct rte_eth_dev *eth_dev)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L3_IPV4,
RTE_PTYPE_L3_IPV6,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_TUNNEL_VXLAN,
RTE_PTYPE_L4_FRAG,
/* Inner */
RTE_PTYPE_INNER_L2_ETHER,
RTE_PTYPE_INNER_L2_ETHER_VLAN,
RTE_PTYPE_INNER_L3_IPV4,
RTE_PTYPE_INNER_L3_IPV6,
RTE_PTYPE_INNER_L4_TCP,
RTE_PTYPE_INNER_L4_UDP,
RTE_PTYPE_INNER_L4_FRAG,
RTE_PTYPE_UNKNOWN
};
if (eth_dev->rx_pkt_burst == qede_recv_pkts)
return ptypes;
return NULL;
}
static void qede_init_rss_caps(uint8_t *rss_caps, uint64_t hf)
{
*rss_caps = 0;
*rss_caps |= (hf & ETH_RSS_IPV4) ? ECORE_RSS_IPV4 : 0;
*rss_caps |= (hf & ETH_RSS_IPV6) ? ECORE_RSS_IPV6 : 0;
*rss_caps |= (hf & ETH_RSS_IPV6_EX) ? ECORE_RSS_IPV6 : 0;
*rss_caps |= (hf & ETH_RSS_NONFRAG_IPV4_TCP) ? ECORE_RSS_IPV4_TCP : 0;
*rss_caps |= (hf & ETH_RSS_NONFRAG_IPV6_TCP) ? ECORE_RSS_IPV6_TCP : 0;
*rss_caps |= (hf & ETH_RSS_IPV6_TCP_EX) ? ECORE_RSS_IPV6_TCP : 0;
*rss_caps |= (hf & ETH_RSS_NONFRAG_IPV4_UDP) ? ECORE_RSS_IPV4_UDP : 0;
*rss_caps |= (hf & ETH_RSS_NONFRAG_IPV6_UDP) ? ECORE_RSS_IPV6_UDP : 0;
}
int qede_rss_hash_update(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_conf *rss_conf)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params vport_update_params;
struct ecore_rss_params rss_params;
struct ecore_hwfn *p_hwfn;
uint32_t *key = (uint32_t *)rss_conf->rss_key;
uint64_t hf = rss_conf->rss_hf;
uint8_t len = rss_conf->rss_key_len;
uint8_t idx;
uint8_t i;
int rc;
memset(&vport_update_params, 0, sizeof(vport_update_params));
memset(&rss_params, 0, sizeof(rss_params));
DP_INFO(edev, "RSS hf = 0x%lx len = %u key = %p\n",
(unsigned long)hf, len, key);
if (hf != 0) {
/* Enabling RSS */
DP_INFO(edev, "Enabling rss\n");
/* RSS caps */
qede_init_rss_caps(&rss_params.rss_caps, hf);
rss_params.update_rss_capabilities = 1;
/* RSS hash key */
if (key) {
if (len > (ECORE_RSS_KEY_SIZE * sizeof(uint32_t))) {
DP_ERR(edev, "RSS key length exceeds limit\n");
return -EINVAL;
}
DP_INFO(edev, "Applying user supplied hash key\n");
rss_params.update_rss_key = 1;
memcpy(&rss_params.rss_key, key, len);
}
rss_params.rss_enable = 1;
}
rss_params.update_rss_config = 1;
/* tbl_size has to be set with capabilities */
rss_params.rss_table_size_log = 7;
vport_update_params.vport_id = 0;
/* pass the L2 handles instead of qids */
for (i = 0 ; i < ECORE_RSS_IND_TABLE_SIZE ; i++) {
idx = qdev->rss_ind_table[i];
rss_params.rss_ind_table[i] = qdev->fp_array[idx].rxq->handle;
}
vport_update_params.rss_params = &rss_params;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
vport_update_params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &vport_update_params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc) {
DP_ERR(edev, "vport-update for RSS failed\n");
return rc;
}
}
qdev->rss_enable = rss_params.rss_enable;
/* Update local structure for hash query */
qdev->rss_conf.rss_hf = hf;
qdev->rss_conf.rss_key_len = len;
if (qdev->rss_enable) {
if (qdev->rss_conf.rss_key == NULL) {
qdev->rss_conf.rss_key = (uint8_t *)malloc(len);
if (qdev->rss_conf.rss_key == NULL) {
DP_ERR(edev, "No memory to store RSS key\n");
return -ENOMEM;
}
}
if (key && len) {
DP_INFO(edev, "Storing RSS key\n");
memcpy(qdev->rss_conf.rss_key, key, len);
}
} else if (!qdev->rss_enable && len == 0) {
if (qdev->rss_conf.rss_key) {
free(qdev->rss_conf.rss_key);
qdev->rss_conf.rss_key = NULL;
DP_INFO(edev, "Free RSS key\n");
}
}
return 0;
}
static int qede_rss_hash_conf_get(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_conf *rss_conf)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
rss_conf->rss_hf = qdev->rss_conf.rss_hf;
rss_conf->rss_key_len = qdev->rss_conf.rss_key_len;
if (rss_conf->rss_key && qdev->rss_conf.rss_key)
memcpy(rss_conf->rss_key, qdev->rss_conf.rss_key,
rss_conf->rss_key_len);
return 0;
}
static bool qede_update_rss_parm_cmt(struct ecore_dev *edev,
struct ecore_rss_params *rss)
{
int i, fn;
bool rss_mode = 1; /* enable */
struct ecore_queue_cid *cid;
struct ecore_rss_params *t_rss;
/* In regular scenario, we'd simply need to take input handlers.
* But in CMT, we'd have to split the handlers according to the
* engine they were configured on. We'd then have to understand
* whether RSS is really required, since 2-queues on CMT doesn't
* require RSS.
*/
/* CMT should be round-robin */
for (i = 0; i < ECORE_RSS_IND_TABLE_SIZE; i++) {
cid = rss->rss_ind_table[i];
if (cid->p_owner == ECORE_LEADING_HWFN(edev))
t_rss = &rss[0];
else
t_rss = &rss[1];
t_rss->rss_ind_table[i / edev->num_hwfns] = cid;
}
t_rss = &rss[1];
t_rss->update_rss_ind_table = 1;
t_rss->rss_table_size_log = 7;
t_rss->update_rss_config = 1;
/* Make sure RSS is actually required */
for_each_hwfn(edev, fn) {
for (i = 1; i < ECORE_RSS_IND_TABLE_SIZE / edev->num_hwfns;
i++) {
if (rss[fn].rss_ind_table[i] !=
rss[fn].rss_ind_table[0])
break;
}
if (i == ECORE_RSS_IND_TABLE_SIZE / edev->num_hwfns) {
DP_INFO(edev,
"CMT - 1 queue per-hwfn; Disabling RSS\n");
rss_mode = 0;
goto out;
}
}
out:
t_rss->rss_enable = rss_mode;
return rss_mode;
}
int qede_rss_reta_update(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_sp_vport_update_params vport_update_params;
struct ecore_rss_params *params;
struct ecore_hwfn *p_hwfn;
uint16_t i, idx, shift;
uint8_t entry;
int rc = 0;
if (reta_size > ETH_RSS_RETA_SIZE_128) {
DP_ERR(edev, "reta_size %d is not supported by hardware\n",
reta_size);
return -EINVAL;
}
memset(&vport_update_params, 0, sizeof(vport_update_params));
params = rte_zmalloc("qede_rss", sizeof(*params) * edev->num_hwfns,
RTE_CACHE_LINE_SIZE);
if (params == NULL) {
DP_ERR(edev, "failed to allocate memory\n");
return -ENOMEM;
}
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift)) {
entry = reta_conf[idx].reta[shift];
/* Pass rxq handles to ecore */
params->rss_ind_table[i] =
qdev->fp_array[entry].rxq->handle;
/* Update the local copy for RETA query command */
qdev->rss_ind_table[i] = entry;
}
}
params->update_rss_ind_table = 1;
params->rss_table_size_log = 7;
params->update_rss_config = 1;
/* Fix up RETA for CMT mode device */
if (ECORE_IS_CMT(edev))
qdev->rss_enable = qede_update_rss_parm_cmt(edev,
params);
vport_update_params.vport_id = 0;
/* Use the current value of rss_enable */
params->rss_enable = qdev->rss_enable;
vport_update_params.rss_params = params;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
vport_update_params.opaque_fid = p_hwfn->hw_info.opaque_fid;
rc = ecore_sp_vport_update(p_hwfn, &vport_update_params,
ECORE_SPQ_MODE_EBLOCK, NULL);
if (rc) {
DP_ERR(edev, "vport-update for RSS failed\n");
goto out;
}
}
out:
rte_free(params);
return rc;
}
static int qede_rss_reta_query(struct rte_eth_dev *eth_dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
uint16_t i, idx, shift;
uint8_t entry;
if (reta_size > ETH_RSS_RETA_SIZE_128) {
DP_ERR(edev, "reta_size %d is not supported\n",
reta_size);
return -EINVAL;
}
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift)) {
entry = qdev->rss_ind_table[i];
reta_conf[idx].reta[shift] = entry;
}
}
return 0;
}
static int qede_set_mtu(struct rte_eth_dev *dev, uint16_t mtu)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct rte_eth_dev_info dev_info = {0};
struct qede_fastpath *fp;
uint32_t frame_size;
uint16_t rx_buf_size;
uint16_t bufsz;
int i;
PMD_INIT_FUNC_TRACE(edev);
qede_dev_info_get(dev, &dev_info);
frame_size = mtu + QEDE_ETH_OVERHEAD;
if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen)) {
DP_ERR(edev, "MTU %u out of range\n", mtu);
return -EINVAL;
}
if (!dev->data->scattered_rx &&
frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) {
DP_INFO(edev, "MTU greater than minimum RX buffer size of %u\n",
dev->data->min_rx_buf_size);
return -EINVAL;
}
/* Temporarily replace I/O functions with dummy ones. It cannot
* be set to NULL because rte_eth_rx_burst() doesn't check for NULL.
*/
dev->rx_pkt_burst = qede_rxtx_pkts_dummy;
dev->tx_pkt_burst = qede_rxtx_pkts_dummy;
qede_dev_stop(dev);
rte_delay_ms(1000);
qdev->mtu = mtu;
/* Fix up RX buf size for all queues of the port */
for_each_rss(i) {
fp = &qdev->fp_array[i];
bufsz = (uint16_t)rte_pktmbuf_data_room_size(
fp->rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
if (dev->data->scattered_rx)
rx_buf_size = bufsz + QEDE_ETH_OVERHEAD;
else
rx_buf_size = mtu + QEDE_ETH_OVERHEAD;
rx_buf_size = QEDE_CEIL_TO_CACHE_LINE_SIZE(rx_buf_size);
fp->rxq->rx_buf_size = rx_buf_size;
DP_INFO(edev, "buf_size adjusted to %u\n", rx_buf_size);
}
qede_dev_start(dev);
if (frame_size > ETHER_MAX_LEN)
dev->data->dev_conf.rxmode.jumbo_frame = 1;
else
dev->data->dev_conf.rxmode.jumbo_frame = 0;
/* update max frame size */
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
/* Reassign back */
dev->rx_pkt_burst = qede_recv_pkts;
dev->tx_pkt_burst = qede_xmit_pkts;
return 0;
}
static int
qede_conf_udp_dst_port(struct rte_eth_dev *eth_dev,
struct rte_eth_udp_tunnel *tunnel_udp,
bool add)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct ecore_tunnel_info tunn; /* @DPDK */
struct ecore_hwfn *p_hwfn;
struct ecore_ptt *p_ptt;
uint16_t udp_port;
int rc, i;
PMD_INIT_FUNC_TRACE(edev);
memset(&tunn, 0, sizeof(tunn));
if (tunnel_udp->prot_type == RTE_TUNNEL_TYPE_VXLAN) {
/* Enable VxLAN tunnel if needed before UDP port update using
* default MAC/VLAN classification.
*/
if (add) {
if (qdev->vxlan.udp_port == tunnel_udp->udp_port) {
DP_INFO(edev,
"UDP port %u was already configured\n",
tunnel_udp->udp_port);
return ECORE_SUCCESS;
}
/* Enable VXLAN if it was not enabled while adding
* VXLAN filter.
*/
if (!qdev->vxlan.enable) {
rc = qede_vxlan_enable(eth_dev,
ECORE_TUNN_CLSS_MAC_VLAN, true, true);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Failed to enable VXLAN "
"prior to updating UDP port\n");
return rc;
}
}
udp_port = tunnel_udp->udp_port;
} else {
if (qdev->vxlan.udp_port != tunnel_udp->udp_port) {
DP_ERR(edev, "UDP port %u doesn't exist\n",
tunnel_udp->udp_port);
return ECORE_INVAL;
}
udp_port = 0;
}
tunn.vxlan_port.b_update_port = true;
tunn.vxlan_port.port = udp_port;
for_each_hwfn(edev, i) {
p_hwfn = &edev->hwfns[i];
p_ptt = IS_PF(edev) ? ecore_ptt_acquire(p_hwfn) : NULL;
rc = ecore_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
ECORE_SPQ_MODE_CB, NULL);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Unable to config UDP port %u\n",
tunn.vxlan_port.port);
if (IS_PF(edev))
ecore_ptt_release(p_hwfn, p_ptt);
return rc;
}
}
qdev->vxlan.udp_port = udp_port;
/* If the request is to delete UDP port and if the number of
* VXLAN filters have reached 0 then VxLAN offload can be be
* disabled.
*/
if (!add && qdev->vxlan.enable && qdev->vxlan.num_filters == 0)
return qede_vxlan_enable(eth_dev,
ECORE_TUNN_CLSS_MAC_VLAN, false, true);
}
return 0;
}
static int
qede_udp_dst_port_del(struct rte_eth_dev *eth_dev,
struct rte_eth_udp_tunnel *tunnel_udp)
{
return qede_conf_udp_dst_port(eth_dev, tunnel_udp, false);
}
static int
qede_udp_dst_port_add(struct rte_eth_dev *eth_dev,
struct rte_eth_udp_tunnel *tunnel_udp)
{
return qede_conf_udp_dst_port(eth_dev, tunnel_udp, true);
}
static void qede_get_ecore_tunn_params(uint32_t filter, uint32_t *type,
uint32_t *clss, char *str)
{
uint16_t j;
*clss = MAX_ECORE_TUNN_CLSS;
for (j = 0; j < RTE_DIM(qede_tunn_types); j++) {
if (filter == qede_tunn_types[j].rte_filter_type) {
*type = qede_tunn_types[j].qede_type;
*clss = qede_tunn_types[j].qede_tunn_clss;
strcpy(str, qede_tunn_types[j].string);
return;
}
}
}
static int
qede_set_ucast_tunn_cmn_param(struct ecore_filter_ucast *ucast,
const struct rte_eth_tunnel_filter_conf *conf,
uint32_t type)
{
/* Init commmon ucast params first */
qede_set_ucast_cmn_params(ucast);
/* Copy out the required fields based on classification type */
ucast->type = type;
switch (type) {
case ECORE_FILTER_VNI:
ucast->vni = conf->tenant_id;
break;
case ECORE_FILTER_INNER_VLAN:
ucast->vlan = conf->inner_vlan;
break;
case ECORE_FILTER_MAC:
memcpy(ucast->mac, conf->outer_mac.addr_bytes,
ETHER_ADDR_LEN);
break;
case ECORE_FILTER_INNER_MAC:
memcpy(ucast->mac, conf->inner_mac.addr_bytes,
ETHER_ADDR_LEN);
break;
case ECORE_FILTER_MAC_VNI_PAIR:
memcpy(ucast->mac, conf->outer_mac.addr_bytes,
ETHER_ADDR_LEN);
ucast->vni = conf->tenant_id;
break;
case ECORE_FILTER_INNER_MAC_VNI_PAIR:
memcpy(ucast->mac, conf->inner_mac.addr_bytes,
ETHER_ADDR_LEN);
ucast->vni = conf->tenant_id;
break;
case ECORE_FILTER_INNER_PAIR:
memcpy(ucast->mac, conf->inner_mac.addr_bytes,
ETHER_ADDR_LEN);
ucast->vlan = conf->inner_vlan;
break;
default:
return -EINVAL;
}
return ECORE_SUCCESS;
}
static int qede_vxlan_tunn_config(struct rte_eth_dev *eth_dev,
enum rte_filter_op filter_op,
const struct rte_eth_tunnel_filter_conf *conf)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
enum ecore_filter_ucast_type type;
enum ecore_tunn_clss clss = MAX_ECORE_TUNN_CLSS;
struct ecore_filter_ucast ucast = {0};
char str[80];
uint16_t filter_type = 0;
int rc;
PMD_INIT_FUNC_TRACE(edev);
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
if (IS_VF(edev))
return qede_vxlan_enable(eth_dev,
ECORE_TUNN_CLSS_MAC_VLAN, true, true);
filter_type = conf->filter_type;
/* Determine if the given filter classification is supported */
qede_get_ecore_tunn_params(filter_type, &type, &clss, str);
if (clss == MAX_ECORE_TUNN_CLSS) {
DP_ERR(edev, "Unsupported filter type\n");
return -EINVAL;
}
/* Init tunnel ucast params */
rc = qede_set_ucast_tunn_cmn_param(&ucast, conf, type);
if (rc != ECORE_SUCCESS) {
DP_ERR(edev, "Unsupported VxLAN filter type 0x%x\n",
conf->filter_type);
return rc;
}
DP_INFO(edev, "Rule: \"%s\", op %d, type 0x%x\n",
str, filter_op, ucast.type);
ucast.opcode = ECORE_FILTER_ADD;
/* Skip MAC/VLAN if filter is based on VNI */
if (!(filter_type & ETH_TUNNEL_FILTER_TENID)) {
rc = qede_mac_int_ops(eth_dev, &ucast, 1);
if (rc == 0) {
/* Enable accept anyvlan */
qede_config_accept_any_vlan(qdev, true);
}
} else {
rc = qede_ucast_filter(eth_dev, &ucast, 1);
if (rc == 0)
rc = ecore_filter_ucast_cmd(edev, &ucast,
ECORE_SPQ_MODE_CB, NULL);
}
if (rc != ECORE_SUCCESS)
return rc;
qdev->vxlan.num_filters++;
qdev->vxlan.filter_type = filter_type;
if (!qdev->vxlan.enable)
return qede_vxlan_enable(eth_dev, clss, true, true);
break;
case RTE_ETH_FILTER_DELETE:
if (IS_VF(edev))
return qede_vxlan_enable(eth_dev,
ECORE_TUNN_CLSS_MAC_VLAN, false, true);
ucast.opcode = ECORE_FILTER_REMOVE;
if (!(filter_type & ETH_TUNNEL_FILTER_TENID)) {
rc = qede_mac_int_ops(eth_dev, &ucast, 0);
} else {
rc = qede_ucast_filter(eth_dev, &ucast, 0);
if (rc == 0)
rc = ecore_filter_ucast_cmd(edev, &ucast,
ECORE_SPQ_MODE_CB, NULL);
}
if (rc != ECORE_SUCCESS)
return rc;
/* Disable VXLAN if VXLAN filters become 0 */
if (qdev->vxlan.num_filters == 0)
return qede_vxlan_enable(eth_dev, clss, false, true);
break;
default:
DP_ERR(edev, "Unsupported operation %d\n", filter_op);
return -EINVAL;
}
return 0;
}
int qede_dev_filter_ctrl(struct rte_eth_dev *eth_dev,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op,
void *arg)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct rte_eth_tunnel_filter_conf *filter_conf =
(struct rte_eth_tunnel_filter_conf *)arg;
switch (filter_type) {
case RTE_ETH_FILTER_TUNNEL:
switch (filter_conf->tunnel_type) {
case RTE_TUNNEL_TYPE_VXLAN:
DP_INFO(edev,
"Packet steering to the specified Rx queue"
" is not supported with VXLAN tunneling");
return(qede_vxlan_tunn_config(eth_dev, filter_op,
filter_conf));
/* Place holders for future tunneling support */
case RTE_TUNNEL_TYPE_GENEVE:
case RTE_TUNNEL_TYPE_TEREDO:
case RTE_TUNNEL_TYPE_NVGRE:
case RTE_TUNNEL_TYPE_IP_IN_GRE:
case RTE_L2_TUNNEL_TYPE_E_TAG:
DP_ERR(edev, "Unsupported tunnel type %d\n",
filter_conf->tunnel_type);
return -EINVAL;
case RTE_TUNNEL_TYPE_NONE:
default:
return 0;
}
break;
case RTE_ETH_FILTER_FDIR:
return qede_fdir_filter_conf(eth_dev, filter_op, arg);
case RTE_ETH_FILTER_NTUPLE:
return qede_ntuple_filter_conf(eth_dev, filter_op, arg);
case RTE_ETH_FILTER_MACVLAN:
case RTE_ETH_FILTER_ETHERTYPE:
case RTE_ETH_FILTER_FLEXIBLE:
case RTE_ETH_FILTER_SYN:
case RTE_ETH_FILTER_HASH:
case RTE_ETH_FILTER_L2_TUNNEL:
case RTE_ETH_FILTER_MAX:
default:
DP_ERR(edev, "Unsupported filter type %d\n",
filter_type);
return -EINVAL;
}
return 0;
}
static const struct eth_dev_ops qede_eth_dev_ops = {
.dev_configure = qede_dev_configure,
.dev_infos_get = qede_dev_info_get,
.rx_queue_setup = qede_rx_queue_setup,
.rx_queue_release = qede_rx_queue_release,
.tx_queue_setup = qede_tx_queue_setup,
.tx_queue_release = qede_tx_queue_release,
.dev_start = qede_dev_start,
.dev_set_link_up = qede_dev_set_link_up,
.dev_set_link_down = qede_dev_set_link_down,
.link_update = qede_link_update,
.promiscuous_enable = qede_promiscuous_enable,
.promiscuous_disable = qede_promiscuous_disable,
.allmulticast_enable = qede_allmulticast_enable,
.allmulticast_disable = qede_allmulticast_disable,
.dev_stop = qede_dev_stop,
.dev_close = qede_dev_close,
.stats_get = qede_get_stats,
.stats_reset = qede_reset_stats,
.xstats_get = qede_get_xstats,
.xstats_reset = qede_reset_xstats,
.xstats_get_names = qede_get_xstats_names,
.mac_addr_add = qede_mac_addr_add,
.mac_addr_remove = qede_mac_addr_remove,
.mac_addr_set = qede_mac_addr_set,
.vlan_offload_set = qede_vlan_offload_set,
.vlan_filter_set = qede_vlan_filter_set,
.flow_ctrl_set = qede_flow_ctrl_set,
.flow_ctrl_get = qede_flow_ctrl_get,
.dev_supported_ptypes_get = qede_dev_supported_ptypes_get,
.rss_hash_update = qede_rss_hash_update,
.rss_hash_conf_get = qede_rss_hash_conf_get,
.reta_update = qede_rss_reta_update,
.reta_query = qede_rss_reta_query,
.mtu_set = qede_set_mtu,
.filter_ctrl = qede_dev_filter_ctrl,
.udp_tunnel_port_add = qede_udp_dst_port_add,
.udp_tunnel_port_del = qede_udp_dst_port_del,
};
static const struct eth_dev_ops qede_eth_vf_dev_ops = {
.dev_configure = qede_dev_configure,
.dev_infos_get = qede_dev_info_get,
.rx_queue_setup = qede_rx_queue_setup,
.rx_queue_release = qede_rx_queue_release,
.tx_queue_setup = qede_tx_queue_setup,
.tx_queue_release = qede_tx_queue_release,
.dev_start = qede_dev_start,
.dev_set_link_up = qede_dev_set_link_up,
.dev_set_link_down = qede_dev_set_link_down,
.link_update = qede_link_update,
.promiscuous_enable = qede_promiscuous_enable,
.promiscuous_disable = qede_promiscuous_disable,
.allmulticast_enable = qede_allmulticast_enable,
.allmulticast_disable = qede_allmulticast_disable,
.dev_stop = qede_dev_stop,
.dev_close = qede_dev_close,
.stats_get = qede_get_stats,
.stats_reset = qede_reset_stats,
.xstats_get = qede_get_xstats,
.xstats_reset = qede_reset_xstats,
.xstats_get_names = qede_get_xstats_names,
.vlan_offload_set = qede_vlan_offload_set,
.vlan_filter_set = qede_vlan_filter_set,
.dev_supported_ptypes_get = qede_dev_supported_ptypes_get,
.rss_hash_update = qede_rss_hash_update,
.rss_hash_conf_get = qede_rss_hash_conf_get,
.reta_update = qede_rss_reta_update,
.reta_query = qede_rss_reta_query,
.mtu_set = qede_set_mtu,
.udp_tunnel_port_add = qede_udp_dst_port_add,
.udp_tunnel_port_del = qede_udp_dst_port_del,
};
static void qede_update_pf_params(struct ecore_dev *edev)
{
struct ecore_pf_params pf_params;
memset(&pf_params, 0, sizeof(struct ecore_pf_params));
pf_params.eth_pf_params.num_cons = QEDE_PF_NUM_CONNS;
pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
qed_ops->common->update_pf_params(edev, &pf_params);
}
static int qede_common_dev_init(struct rte_eth_dev *eth_dev, bool is_vf)
{
struct rte_pci_device *pci_dev;
struct rte_pci_addr pci_addr;
struct qede_dev *adapter;
struct ecore_dev *edev;
struct qed_dev_eth_info dev_info;
struct qed_slowpath_params params;
static bool do_once = true;
uint8_t bulletin_change;
uint8_t vf_mac[ETHER_ADDR_LEN];
uint8_t is_mac_forced;
bool is_mac_exist;
/* Fix up ecore debug level */
uint32_t dp_module = ~0 & ~ECORE_MSG_HW;
uint8_t dp_level = ECORE_LEVEL_VERBOSE;
int rc;
/* Extract key data structures */
adapter = eth_dev->data->dev_private;
edev = &adapter->edev;
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
pci_addr = pci_dev->addr;
PMD_INIT_FUNC_TRACE(edev);
snprintf(edev->name, NAME_SIZE, PCI_SHORT_PRI_FMT ":dpdk-port-%u",
pci_addr.bus, pci_addr.devid, pci_addr.function,
eth_dev->data->port_id);
eth_dev->rx_pkt_burst = qede_recv_pkts;
eth_dev->tx_pkt_burst = qede_xmit_pkts;
eth_dev->tx_pkt_prepare = qede_xmit_prep_pkts;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
DP_ERR(edev, "Skipping device init from secondary process\n");
return 0;
}
rte_eth_copy_pci_info(eth_dev, pci_dev);
/* @DPDK */
edev->vendor_id = pci_dev->id.vendor_id;
edev->device_id = pci_dev->id.device_id;
qed_ops = qed_get_eth_ops();
if (!qed_ops) {
DP_ERR(edev, "Failed to get qed_eth_ops_pass\n");
return -EINVAL;
}
DP_INFO(edev, "Starting qede probe\n");
rc = qed_ops->common->probe(edev, pci_dev, dp_module,
dp_level, is_vf);
if (rc != 0) {
DP_ERR(edev, "qede probe failed rc %d\n", rc);
return -ENODEV;
}
qede_update_pf_params(edev);
rte_intr_callback_register(&pci_dev->intr_handle,
qede_interrupt_handler, (void *)eth_dev);
if (rte_intr_enable(&pci_dev->intr_handle)) {
DP_ERR(edev, "rte_intr_enable() failed\n");
return -ENODEV;
}
/* Start the Slowpath-process */
memset(&params, 0, sizeof(struct qed_slowpath_params));
params.int_mode = ECORE_INT_MODE_MSIX;
params.drv_major = QEDE_PMD_VERSION_MAJOR;
params.drv_minor = QEDE_PMD_VERSION_MINOR;
params.drv_rev = QEDE_PMD_VERSION_REVISION;
params.drv_eng = QEDE_PMD_VERSION_PATCH;
strncpy((char *)params.name, QEDE_PMD_VER_PREFIX,
QEDE_PMD_DRV_VER_STR_SIZE);
/* For CMT mode device do periodic polling for slowpath events.
* This is required since uio device uses only one MSI-x
* interrupt vector but we need one for each engine.
*/
if (ECORE_IS_CMT(edev) && IS_PF(edev)) {
rc = rte_eal_alarm_set(timer_period * US_PER_S,
qede_poll_sp_sb_cb,
(void *)eth_dev);
if (rc != 0) {
DP_ERR(edev, "Unable to start periodic"
" timer rc %d\n", rc);
return -EINVAL;
}
}
rc = qed_ops->common->slowpath_start(edev, &params);
if (rc) {
DP_ERR(edev, "Cannot start slowpath rc = %d\n", rc);
rte_eal_alarm_cancel(qede_poll_sp_sb_cb,
(void *)eth_dev);
return -ENODEV;
}
rc = qed_ops->fill_dev_info(edev, &dev_info);
if (rc) {
DP_ERR(edev, "Cannot get device_info rc %d\n", rc);
qed_ops->common->slowpath_stop(edev);
qed_ops->common->remove(edev);
rte_eal_alarm_cancel(qede_poll_sp_sb_cb,
(void *)eth_dev);
return -ENODEV;
}
qede_alloc_etherdev(adapter, &dev_info);
adapter->ops->common->set_name(edev, edev->name);
if (!is_vf)
adapter->dev_info.num_mac_filters =
(uint32_t)RESC_NUM(ECORE_LEADING_HWFN(edev),
ECORE_MAC);
else
ecore_vf_get_num_mac_filters(ECORE_LEADING_HWFN(edev),
(uint32_t *)&adapter->dev_info.num_mac_filters);
/* Allocate memory for storing MAC addr */
eth_dev->data->mac_addrs = rte_zmalloc(edev->name,
(ETHER_ADDR_LEN *
adapter->dev_info.num_mac_filters),
RTE_CACHE_LINE_SIZE);
if (eth_dev->data->mac_addrs == NULL) {
DP_ERR(edev, "Failed to allocate MAC address\n");
qed_ops->common->slowpath_stop(edev);
qed_ops->common->remove(edev);
rte_eal_alarm_cancel(qede_poll_sp_sb_cb,
(void *)eth_dev);
return -ENOMEM;
}
if (!is_vf) {
ether_addr_copy((struct ether_addr *)edev->hwfns[0].
hw_info.hw_mac_addr,
&eth_dev->data->mac_addrs[0]);
ether_addr_copy(&eth_dev->data->mac_addrs[0],
&adapter->primary_mac);
} else {
ecore_vf_read_bulletin(ECORE_LEADING_HWFN(edev),
&bulletin_change);
if (bulletin_change) {
is_mac_exist =
ecore_vf_bulletin_get_forced_mac(
ECORE_LEADING_HWFN(edev),
vf_mac,
&is_mac_forced);
if (is_mac_exist && is_mac_forced) {
DP_INFO(edev, "VF macaddr received from PF\n");
ether_addr_copy((struct ether_addr *)&vf_mac,
&eth_dev->data->mac_addrs[0]);
ether_addr_copy(&eth_dev->data->mac_addrs[0],
&adapter->primary_mac);
} else {
DP_ERR(edev, "No VF macaddr assigned\n");
}
}
}
eth_dev->dev_ops = (is_vf) ? &qede_eth_vf_dev_ops : &qede_eth_dev_ops;
if (do_once) {
#ifdef RTE_LIBRTE_QEDE_DEBUG_INFO
qede_print_adapter_info(adapter);
#endif
do_once = false;
}
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
SLIST_INIT(&adapter->fdir_info.fdir_list_head);
SLIST_INIT(&adapter->vlan_list_head);
SLIST_INIT(&adapter->uc_list_head);
adapter->mtu = ETHER_MTU;
adapter->new_mtu = ETHER_MTU;
if (!is_vf)
if (qede_start_vport(adapter, adapter->mtu))
return -1;
DP_INFO(edev, "MAC address : %02x:%02x:%02x:%02x:%02x:%02x\n",
adapter->primary_mac.addr_bytes[0],
adapter->primary_mac.addr_bytes[1],
adapter->primary_mac.addr_bytes[2],
adapter->primary_mac.addr_bytes[3],
adapter->primary_mac.addr_bytes[4],
adapter->primary_mac.addr_bytes[5]);
DP_INFO(edev, "Device initialized\n");
return 0;
}
static int qedevf_eth_dev_init(struct rte_eth_dev *eth_dev)
{
return qede_common_dev_init(eth_dev, 1);
}
static int qede_eth_dev_init(struct rte_eth_dev *eth_dev)
{
return qede_common_dev_init(eth_dev, 0);
}
static int qede_dev_common_uninit(struct rte_eth_dev *eth_dev)
{
#ifdef RTE_LIBRTE_QEDE_DEBUG_INIT
struct qede_dev *qdev = eth_dev->data->dev_private;
struct ecore_dev *edev = &qdev->edev;
PMD_INIT_FUNC_TRACE(edev);
#endif
/* only uninitialize in the primary process */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
/* safe to close dev here */
qede_dev_close(eth_dev);
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
if (eth_dev->data->mac_addrs)
rte_free(eth_dev->data->mac_addrs);
eth_dev->data->mac_addrs = NULL;
return 0;
}
static int qede_eth_dev_uninit(struct rte_eth_dev *eth_dev)
{
return qede_dev_common_uninit(eth_dev);
}
static int qedevf_eth_dev_uninit(struct rte_eth_dev *eth_dev)
{
return qede_dev_common_uninit(eth_dev);
}
static const struct rte_pci_id pci_id_qedevf_map[] = {
#define QEDEVF_RTE_PCI_DEVICE(dev) RTE_PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, dev)
{
QEDEVF_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_NX2_VF)
},
{
QEDEVF_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_IOV)
},
{
QEDEVF_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_IOV)
},
{.vendor_id = 0,}
};
static const struct rte_pci_id pci_id_qede_map[] = {
#define QEDE_RTE_PCI_DEVICE(dev) RTE_PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, dev)
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_NX2_57980E)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_NX2_57980S)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_40)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_25)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_100)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_57980S_50)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_50G)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_10G)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_40G)
},
{
QEDE_RTE_PCI_DEVICE(PCI_DEVICE_ID_QLOGIC_AH_25G)
},
{.vendor_id = 0,}
};
static int qedevf_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct qede_dev), qedevf_eth_dev_init);
}
static int qedevf_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, qedevf_eth_dev_uninit);
}
static struct rte_pci_driver rte_qedevf_pmd = {
.id_table = pci_id_qedevf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = qedevf_eth_dev_pci_probe,
.remove = qedevf_eth_dev_pci_remove,
};
static int qede_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct qede_dev), qede_eth_dev_init);
}
static int qede_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, qede_eth_dev_uninit);
}
static struct rte_pci_driver rte_qede_pmd = {
.id_table = pci_id_qede_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = qede_eth_dev_pci_probe,
.remove = qede_eth_dev_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_qede, rte_qede_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_qede, pci_id_qede_map);
RTE_PMD_REGISTER_KMOD_DEP(net_qede, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_PMD_REGISTER_PCI(net_qede_vf, rte_qedevf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_qede_vf, pci_id_qedevf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_qede_vf, "* igb_uio | vfio-pci");