numam-dpdk/app/test/test_timer.c
Stephen Hemminger cb056611a8 eal: rename lcore master and slave
Replace master lcore with main lcore and
replace slave lcore with worker lcore.

Keep the old functions and macros but mark them as deprecated
for this release.

The "--master-lcore" command line option is also deprecated
and any usage will print a warning and use "--main-lcore"
as replacement.

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
2020-10-20 13:17:08 +02:00

602 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include "test.h"
/*
* Timer
* =====
*
* #. Stress test 1.
*
* The objective of the timer stress tests is to check that there are no
* race conditions in list and status management. This test launches,
* resets and stops the timer very often on many cores at the same
* time.
*
* - Only one timer is used for this test.
* - On each core, the rte_timer_manage() function is called from the main
* loop every 3 microseconds.
* - In the main loop, the timer may be reset (randomly, with a
* probability of 0.5 %) 100 microseconds later on a random core, or
* stopped (with a probability of 0.5 % also).
* - In callback, the timer is can be reset (randomly, with a
* probability of 0.5 %) 100 microseconds later on the same core or
* on another core (same probability), or stopped (same
* probability).
*
* # Stress test 2.
*
* The objective of this test is similar to the first in that it attempts
* to find if there are any race conditions in the timer library. However,
* it is less complex in terms of operations performed and duration, as it
* is designed to have a predictable outcome that can be tested.
*
* - A set of timers is initialized for use by the test
* - All cores then simultaneously are set to schedule all the timers at
* the same time, so conflicts should occur.
* - Then there is a delay while we wait for the timers to expire
* - Then the main lcore calls timer_manage() and we check that all
* timers have had their callbacks called exactly once - no more no less.
* - Then we repeat the process, except after setting up the timers, we have
* all cores randomly reschedule them.
* - Again we check that the expected number of callbacks has occurred when
* we call timer-manage.
*
* #. Basic test.
*
* This test performs basic functional checks of the timers. The test
* uses four different timers that are loaded and stopped under
* specific conditions in specific contexts.
*
* - Four timers are used for this test.
* - On each core, the rte_timer_manage() function is called from main loop
* every 3 microseconds.
*
* The autotest python script checks that the behavior is correct:
*
* - timer0
*
* - At initialization, timer0 is loaded by the main core, on main core
* in "single" mode (time = 1 second).
* - In the first 19 callbacks, timer0 is reloaded on the same core,
* then, it is explicitly stopped at the 20th call.
* - At t=25s, timer0 is reloaded once by timer2.
*
* - timer1
*
* - At initialization, timer1 is loaded by the main core, on the
* main core in "single" mode (time = 2 seconds).
* - In the first 9 callbacks, timer1 is reloaded on another
* core. After the 10th callback, timer1 is not reloaded anymore.
*
* - timer2
*
* - At initialization, timer2 is loaded by the main core, on the
* main core in "periodical" mode (time = 1 second).
* - In the callback, when t=25s, it stops timer3 and reloads timer0
* on the current core.
*
* - timer3
*
* - At initialization, timer3 is loaded by the main core, on
* another core in "periodical" mode (time = 1 second).
* - It is stopped at t=25s by timer2.
*/
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <math.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_cycles.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_timer.h>
#include <rte_random.h>
#include <rte_malloc.h>
#include <rte_pause.h>
#define TEST_DURATION_S 1 /* in seconds */
#define NB_TIMER 4
#define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
static volatile uint64_t end_time;
static volatile int test_failed;
struct mytimerinfo {
struct rte_timer tim;
unsigned id;
unsigned count;
};
static struct mytimerinfo mytiminfo[NB_TIMER];
static void timer_basic_cb(struct rte_timer *tim, void *arg);
static void
mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
enum rte_timer_type type, unsigned tim_lcore,
rte_timer_cb_t fct)
{
rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
fct, timinfo);
}
/* timer callback for stress tests */
static void
timer_stress_cb(__rte_unused struct rte_timer *tim,
__rte_unused void *arg)
{
long r;
unsigned lcore_id = rte_lcore_id();
uint64_t hz = rte_get_timer_hz();
if (rte_timer_pending(tim))
return;
r = rte_rand();
if ((r & 0xff) == 0) {
mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
timer_stress_cb);
}
else if ((r & 0xff) == 1) {
mytimer_reset(&mytiminfo[0], hz, SINGLE,
rte_get_next_lcore(lcore_id, 0, 1),
timer_stress_cb);
}
else if ((r & 0xff) == 2) {
rte_timer_stop(&mytiminfo[0].tim);
}
}
static int
timer_stress_main_loop(__rte_unused void *arg)
{
uint64_t hz = rte_get_timer_hz();
unsigned lcore_id = rte_lcore_id();
uint64_t cur_time;
int64_t diff = 0;
long r;
while (diff >= 0) {
/* call the timer handler on each core */
rte_timer_manage();
/* simulate the processing of a packet
* (1 us = 2000 cycles at 2 Ghz) */
rte_delay_us(1);
/* randomly stop or reset timer */
r = rte_rand();
lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
if ((r & 0xff) == 0) {
/* 100 us */
mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
timer_stress_cb);
}
else if ((r & 0xff) == 1) {
rte_timer_stop_sync(&mytiminfo[0].tim);
}
cur_time = rte_get_timer_cycles();
diff = end_time - cur_time;
}
lcore_id = rte_lcore_id();
RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
return 0;
}
/* Need to synchronize worker lcores through multiple steps. */
enum { WORKER_WAITING = 1, WORKER_RUN_SIGNAL, WORKER_RUNNING, WORKER_FINISHED };
static rte_atomic16_t lcore_state[RTE_MAX_LCORE];
static void
main_init_workers(void)
{
unsigned i;
RTE_LCORE_FOREACH_WORKER(i) {
rte_atomic16_set(&lcore_state[i], WORKER_WAITING);
}
}
static void
main_start_workers(void)
{
unsigned i;
RTE_LCORE_FOREACH_WORKER(i) {
rte_atomic16_set(&lcore_state[i], WORKER_RUN_SIGNAL);
}
RTE_LCORE_FOREACH_WORKER(i) {
while (rte_atomic16_read(&lcore_state[i]) != WORKER_RUNNING)
rte_pause();
}
}
static void
main_wait_for_workers(void)
{
unsigned i;
RTE_LCORE_FOREACH_WORKER(i) {
while (rte_atomic16_read(&lcore_state[i]) != WORKER_FINISHED)
rte_pause();
}
}
static void
worker_wait_to_start(void)
{
unsigned lcore_id = rte_lcore_id();
while (rte_atomic16_read(&lcore_state[lcore_id]) != WORKER_RUN_SIGNAL)
rte_pause();
rte_atomic16_set(&lcore_state[lcore_id], WORKER_RUNNING);
}
static void
worker_finish(void)
{
unsigned lcore_id = rte_lcore_id();
rte_atomic16_set(&lcore_state[lcore_id], WORKER_FINISHED);
}
static volatile int cb_count = 0;
/* callback for second stress test. will only be called
* on main lcore
*/
static void
timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
{
cb_count++;
}
#define NB_STRESS2_TIMERS 8192
static int
timer_stress2_main_loop(__rte_unused void *arg)
{
static struct rte_timer *timers;
int i, ret;
uint64_t delay = rte_get_timer_hz() / 20;
unsigned int lcore_id = rte_lcore_id();
unsigned int main_lcore = rte_get_main_lcore();
int32_t my_collisions = 0;
static rte_atomic32_t collisions;
if (lcore_id == main_lcore) {
cb_count = 0;
test_failed = 0;
rte_atomic32_set(&collisions, 0);
main_init_workers();
timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
if (timers == NULL) {
printf("Test Failed\n");
printf("- Cannot allocate memory for timers\n" );
test_failed = 1;
main_start_workers();
goto cleanup;
}
for (i = 0; i < NB_STRESS2_TIMERS; i++)
rte_timer_init(&timers[i]);
main_start_workers();
} else {
worker_wait_to_start();
if (test_failed)
goto cleanup;
}
/* have all cores schedule all timers on main lcore */
for (i = 0; i < NB_STRESS2_TIMERS; i++) {
ret = rte_timer_reset(&timers[i], delay, SINGLE, main_lcore,
timer_stress2_cb, NULL);
/* there will be collisions when multiple cores simultaneously
* configure the same timers */
if (ret != 0)
my_collisions++;
}
if (my_collisions != 0)
rte_atomic32_add(&collisions, my_collisions);
/* wait long enough for timers to expire */
rte_delay_ms(100);
/* all cores rendezvous */
if (lcore_id == main_lcore) {
main_wait_for_workers();
} else {
worker_finish();
}
/* now check that we get the right number of callbacks */
if (lcore_id == main_lcore) {
my_collisions = rte_atomic32_read(&collisions);
if (my_collisions != 0)
printf("- %d timer reset collisions (OK)\n", my_collisions);
rte_timer_manage();
if (cb_count != NB_STRESS2_TIMERS) {
printf("Test Failed\n");
printf("- Stress test 2, part 1 failed\n");
printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
cb_count);
test_failed = 1;
main_start_workers();
goto cleanup;
}
cb_count = 0;
/* proceed */
main_start_workers();
} else {
/* proceed */
worker_wait_to_start();
if (test_failed)
goto cleanup;
}
/* now test again, just stop and restart timers at random after init*/
for (i = 0; i < NB_STRESS2_TIMERS; i++)
rte_timer_reset(&timers[i], delay, SINGLE, main_lcore,
timer_stress2_cb, NULL);
/* pick random timer to reset, stopping them first half the time */
for (i = 0; i < 100000; i++) {
int r = rand() % NB_STRESS2_TIMERS;
if (i % 2)
rte_timer_stop(&timers[r]);
rte_timer_reset(&timers[r], delay, SINGLE, main_lcore,
timer_stress2_cb, NULL);
}
/* wait long enough for timers to expire */
rte_delay_ms(100);
/* now check that we get the right number of callbacks */
if (lcore_id == main_lcore) {
main_wait_for_workers();
rte_timer_manage();
if (cb_count != NB_STRESS2_TIMERS) {
printf("Test Failed\n");
printf("- Stress test 2, part 2 failed\n");
printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
cb_count);
test_failed = 1;
} else {
printf("Test OK\n");
}
}
cleanup:
if (lcore_id == main_lcore) {
main_wait_for_workers();
if (timers != NULL) {
rte_free(timers);
timers = NULL;
}
} else {
worker_finish();
}
return 0;
}
/* timer callback for basic tests */
static void
timer_basic_cb(struct rte_timer *tim, void *arg)
{
struct mytimerinfo *timinfo = arg;
uint64_t hz = rte_get_timer_hz();
unsigned lcore_id = rte_lcore_id();
uint64_t cur_time = rte_get_timer_cycles();
if (rte_timer_pending(tim))
return;
timinfo->count ++;
RTE_LOG(INFO, TESTTIMER,
"%"PRIu64": callback id=%u count=%u on core %u\n",
cur_time, timinfo->id, timinfo->count, lcore_id);
/* reload timer 0 on same core */
if (timinfo->id == 0 && timinfo->count < 20) {
mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
return;
}
/* reload timer 1 on next core */
if (timinfo->id == 1 && timinfo->count < 10) {
mytimer_reset(timinfo, hz*2, SINGLE,
rte_get_next_lcore(lcore_id, 0, 1),
timer_basic_cb);
return;
}
/* Explicitelly stop timer 0. Once stop() called, we can even
* erase the content of the structure: it is not referenced
* anymore by any code (in case of dynamic structure, it can
* be freed) */
if (timinfo->id == 0 && timinfo->count == 20) {
/* stop_sync() is not needed, because we know that the
* status of timer is only modified by this core */
rte_timer_stop(tim);
memset(tim, 0xAA, sizeof(struct rte_timer));
return;
}
/* stop timer3, and restart a new timer0 (it was removed 5
* seconds ago) for a single shot */
if (timinfo->id == 2 && timinfo->count == 25) {
rte_timer_stop_sync(&mytiminfo[3].tim);
/* need to reinit because structure was erased with 0xAA */
rte_timer_init(&mytiminfo[0].tim);
mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
timer_basic_cb);
}
}
static int
timer_basic_main_loop(__rte_unused void *arg)
{
uint64_t hz = rte_get_timer_hz();
unsigned lcore_id = rte_lcore_id();
uint64_t cur_time;
int64_t diff = 0;
/* launch all timers on core 0 */
if (lcore_id == rte_get_main_lcore()) {
mytimer_reset(&mytiminfo[0], hz/4, SINGLE, lcore_id,
timer_basic_cb);
mytimer_reset(&mytiminfo[1], hz/2, SINGLE, lcore_id,
timer_basic_cb);
mytimer_reset(&mytiminfo[2], hz/4, PERIODICAL, lcore_id,
timer_basic_cb);
mytimer_reset(&mytiminfo[3], hz/4, PERIODICAL,
rte_get_next_lcore(lcore_id, 0, 1),
timer_basic_cb);
}
while (diff >= 0) {
/* call the timer handler on each core */
rte_timer_manage();
/* simulate the processing of a packet
* (3 us = 6000 cycles at 2 Ghz) */
rte_delay_us(3);
cur_time = rte_get_timer_cycles();
diff = end_time - cur_time;
}
RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
return 0;
}
static int
timer_sanity_check(void)
{
#ifdef RTE_LIBEAL_USE_HPET
if (eal_timer_source != EAL_TIMER_HPET) {
printf("Not using HPET, can't sanity check timer sources\n");
return 0;
}
const uint64_t t_hz = rte_get_tsc_hz();
const uint64_t h_hz = rte_get_hpet_hz();
printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
const uint64_t tsc_start = rte_get_tsc_cycles();
const uint64_t hpet_start = rte_get_hpet_cycles();
rte_delay_ms(100); /* delay 1/10 second */
const uint64_t tsc_end = rte_get_tsc_cycles();
const uint64_t hpet_end = rte_get_hpet_cycles();
printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
tsc_end-tsc_start, hpet_end-hpet_start);
const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
/* get the percentage that the times differ by */
const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
time_diff);
if (time_diff > 0.1) {
printf("Error times differ by >0.1%%");
return -1;
}
#endif
return 0;
}
static int
test_timer(void)
{
unsigned i;
uint64_t cur_time;
uint64_t hz;
if (rte_lcore_count() < 2) {
printf("Not enough cores for timer_autotest, expecting at least 2\n");
return TEST_SKIPPED;
}
/* sanity check our timer sources and timer config values */
if (timer_sanity_check() < 0) {
printf("Timer sanity checks failed\n");
return TEST_FAILED;
}
/* init timer */
for (i=0; i<NB_TIMER; i++) {
memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
mytiminfo[i].id = i;
rte_timer_init(&mytiminfo[i].tim);
}
/* calculate the "end of test" time */
cur_time = rte_get_timer_cycles();
hz = rte_get_timer_hz();
end_time = cur_time + (hz * TEST_DURATION_S);
/* start other cores */
printf("Start timer stress tests\n");
rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MAIN);
rte_eal_mp_wait_lcore();
/* stop timer 0 used for stress test */
rte_timer_stop_sync(&mytiminfo[0].tim);
/* run a second, slightly different set of stress tests */
printf("\nStart timer stress tests 2\n");
test_failed = 0;
rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MAIN);
rte_eal_mp_wait_lcore();
if (test_failed)
return TEST_FAILED;
/* calculate the "end of test" time */
cur_time = rte_get_timer_cycles();
hz = rte_get_timer_hz();
end_time = cur_time + (hz * TEST_DURATION_S);
/* start other cores */
printf("\nStart timer basic tests\n");
rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MAIN);
rte_eal_mp_wait_lcore();
/* stop all timers */
for (i=0; i<NB_TIMER; i++) {
rte_timer_stop_sync(&mytiminfo[i].tim);
}
rte_timer_dump_stats(stdout);
return TEST_SUCCESS;
}
REGISTER_TEST_COMMAND(timer_autotest, test_timer);