numam-dpdk/app/test/test_memcpy_perf.c
Huawei Xie 693f715da4 remove extra parentheses in return statement
fix the error reported by checkpatch:
  "ERROR: return is not a function, parentheses are not required"

remove parentheses in return like:
  "return (logical expressions)"

remove parentheses in return a function like:
  "return (rte_mempool_lookup(...))"

Fixes: 6307b909b8 ("lib: remove extra parenthesis after return")

Signed-off-by: Huawei Xie <huawei.xie@intel.com>
2016-02-10 15:47:50 +01:00

359 lines
13 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_random.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include "test.h"
/*
* Set this to the maximum buffer size you want to test. If it is 0, then the
* values in the buf_sizes[] array below will be used.
*/
#define TEST_VALUE_RANGE 0
/* List of buffer sizes to test */
#if TEST_VALUE_RANGE == 0
static size_t buf_sizes[] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128,
129, 191, 192, 193, 255, 256, 257, 319, 320, 321, 383, 384, 385, 447, 448,
449, 511, 512, 513, 767, 768, 769, 1023, 1024, 1025, 1518, 1522, 1536, 1600,
2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632, 6144, 6656, 7168, 7680, 8192
};
/* MUST be as large as largest packet size above */
#define SMALL_BUFFER_SIZE 8192
#else /* TEST_VALUE_RANGE != 0 */
static size_t buf_sizes[TEST_VALUE_RANGE];
#define SMALL_BUFFER_SIZE TEST_VALUE_RANGE
#endif /* TEST_VALUE_RANGE == 0 */
/*
* Arrays of this size are used for measuring uncached memory accesses by
* picking a random location within the buffer. Make this smaller if there are
* memory allocation errors.
*/
#define LARGE_BUFFER_SIZE (100 * 1024 * 1024)
/* How many times to run timing loop for performance tests */
#define TEST_ITERATIONS 1000000
#define TEST_BATCH_SIZE 100
/* Data is aligned on this many bytes (power of 2) */
#ifdef RTE_MACHINE_CPUFLAG_AVX512F
#define ALIGNMENT_UNIT 64
#elif defined RTE_MACHINE_CPUFLAG_AVX2
#define ALIGNMENT_UNIT 32
#else /* RTE_MACHINE_CPUFLAG */
#define ALIGNMENT_UNIT 16
#endif /* RTE_MACHINE_CPUFLAG */
/*
* Pointers used in performance tests. The two large buffers are for uncached
* access where random addresses within the buffer are used for each
* memcpy. The two small buffers are for cached access.
*/
static uint8_t *large_buf_read, *large_buf_write;
static uint8_t *small_buf_read, *small_buf_write;
/* Initialise data buffers. */
static int
init_buffers(void)
{
unsigned i;
large_buf_read = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
if (large_buf_read == NULL)
goto error_large_buf_read;
large_buf_write = rte_malloc("memcpy", LARGE_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
if (large_buf_write == NULL)
goto error_large_buf_write;
small_buf_read = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
if (small_buf_read == NULL)
goto error_small_buf_read;
small_buf_write = rte_malloc("memcpy", SMALL_BUFFER_SIZE + ALIGNMENT_UNIT, ALIGNMENT_UNIT);
if (small_buf_write == NULL)
goto error_small_buf_write;
for (i = 0; i < LARGE_BUFFER_SIZE; i++)
large_buf_read[i] = rte_rand();
for (i = 0; i < SMALL_BUFFER_SIZE; i++)
small_buf_read[i] = rte_rand();
return 0;
error_small_buf_write:
rte_free(small_buf_read);
error_small_buf_read:
rte_free(large_buf_write);
error_large_buf_write:
rte_free(large_buf_read);
error_large_buf_read:
printf("ERROR: not enough memory\n");
return -1;
}
/* Cleanup data buffers */
static void
free_buffers(void)
{
rte_free(large_buf_read);
rte_free(large_buf_write);
rte_free(small_buf_read);
rte_free(small_buf_write);
}
/*
* Get a random offset into large array, with enough space needed to perform
* max copy size. Offset is aligned, uoffset is used for unalignment setting.
*/
static inline size_t
get_rand_offset(size_t uoffset)
{
return ((rte_rand() % (LARGE_BUFFER_SIZE - SMALL_BUFFER_SIZE)) &
~(ALIGNMENT_UNIT - 1)) + uoffset;
}
/* Fill in source and destination addresses. */
static inline void
fill_addr_arrays(size_t *dst_addr, int is_dst_cached, size_t dst_uoffset,
size_t *src_addr, int is_src_cached, size_t src_uoffset)
{
unsigned int i;
for (i = 0; i < TEST_BATCH_SIZE; i++) {
dst_addr[i] = (is_dst_cached) ? dst_uoffset : get_rand_offset(dst_uoffset);
src_addr[i] = (is_src_cached) ? src_uoffset : get_rand_offset(src_uoffset);
}
}
/*
* WORKAROUND: For some reason the first test doing an uncached write
* takes a very long time (~25 times longer than is expected). So we do
* it once without timing.
*/
static void
do_uncached_write(uint8_t *dst, int is_dst_cached,
const uint8_t *src, int is_src_cached, size_t size)
{
unsigned i, j;
size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE];
for (i = 0; i < (TEST_ITERATIONS / TEST_BATCH_SIZE); i++) {
fill_addr_arrays(dst_addrs, is_dst_cached, 0,
src_addrs, is_src_cached, 0);
for (j = 0; j < TEST_BATCH_SIZE; j++) {
rte_memcpy(dst+dst_addrs[j], src+src_addrs[j], size);
}
}
}
/*
* Run a single memcpy performance test. This is a macro to ensure that if
* the "size" parameter is a constant it won't be converted to a variable.
*/
#define SINGLE_PERF_TEST(dst, is_dst_cached, dst_uoffset, \
src, is_src_cached, src_uoffset, size) \
do { \
unsigned int iter, t; \
size_t dst_addrs[TEST_BATCH_SIZE], src_addrs[TEST_BATCH_SIZE]; \
uint64_t start_time, total_time = 0; \
uint64_t total_time2 = 0; \
for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \
src_addrs, is_src_cached, src_uoffset); \
start_time = rte_rdtsc(); \
for (t = 0; t < TEST_BATCH_SIZE; t++) \
rte_memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \
total_time += rte_rdtsc() - start_time; \
} \
for (iter = 0; iter < (TEST_ITERATIONS / TEST_BATCH_SIZE); iter++) { \
fill_addr_arrays(dst_addrs, is_dst_cached, dst_uoffset, \
src_addrs, is_src_cached, src_uoffset); \
start_time = rte_rdtsc(); \
for (t = 0; t < TEST_BATCH_SIZE; t++) \
memcpy(dst+dst_addrs[t], src+src_addrs[t], size); \
total_time2 += rte_rdtsc() - start_time; \
} \
printf("%8.0f -", (double)total_time /TEST_ITERATIONS); \
printf("%5.0f", (double)total_time2 / TEST_ITERATIONS); \
} while (0)
/* Run aligned memcpy tests for each cached/uncached permutation */
#define ALL_PERF_TESTS_FOR_SIZE(n) \
do { \
if (__builtin_constant_p(n)) \
printf("\nC%6u", (unsigned)n); \
else \
printf("\n%7u", (unsigned)n); \
SINGLE_PERF_TEST(small_buf_write, 1, 0, small_buf_read, 1, 0, n); \
SINGLE_PERF_TEST(large_buf_write, 0, 0, small_buf_read, 1, 0, n); \
SINGLE_PERF_TEST(small_buf_write, 1, 0, large_buf_read, 0, 0, n); \
SINGLE_PERF_TEST(large_buf_write, 0, 0, large_buf_read, 0, 0, n); \
} while (0)
/* Run unaligned memcpy tests for each cached/uncached permutation */
#define ALL_PERF_TESTS_FOR_SIZE_UNALIGNED(n) \
do { \
if (__builtin_constant_p(n)) \
printf("\nC%6u", (unsigned)n); \
else \
printf("\n%7u", (unsigned)n); \
SINGLE_PERF_TEST(small_buf_write, 1, 1, small_buf_read, 1, 5, n); \
SINGLE_PERF_TEST(large_buf_write, 0, 1, small_buf_read, 1, 5, n); \
SINGLE_PERF_TEST(small_buf_write, 1, 1, large_buf_read, 0, 5, n); \
SINGLE_PERF_TEST(large_buf_write, 0, 1, large_buf_read, 0, 5, n); \
} while (0)
/* Run memcpy tests for constant length */
#define ALL_PERF_TEST_FOR_CONSTANT \
do { \
TEST_CONSTANT(6U); TEST_CONSTANT(64U); TEST_CONSTANT(128U); \
TEST_CONSTANT(192U); TEST_CONSTANT(256U); TEST_CONSTANT(512U); \
TEST_CONSTANT(768U); TEST_CONSTANT(1024U); TEST_CONSTANT(1536U); \
} while (0)
/* Run all memcpy tests for aligned constant cases */
static inline void
perf_test_constant_aligned(void)
{
#define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE
ALL_PERF_TEST_FOR_CONSTANT;
#undef TEST_CONSTANT
}
/* Run all memcpy tests for unaligned constant cases */
static inline void
perf_test_constant_unaligned(void)
{
#define TEST_CONSTANT ALL_PERF_TESTS_FOR_SIZE_UNALIGNED
ALL_PERF_TEST_FOR_CONSTANT;
#undef TEST_CONSTANT
}
/* Run all memcpy tests for aligned variable cases */
static inline void
perf_test_variable_aligned(void)
{
unsigned n = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
unsigned i;
for (i = 0; i < n; i++) {
ALL_PERF_TESTS_FOR_SIZE((size_t)buf_sizes[i]);
}
}
/* Run all memcpy tests for unaligned variable cases */
static inline void
perf_test_variable_unaligned(void)
{
unsigned n = sizeof(buf_sizes) / sizeof(buf_sizes[0]);
unsigned i;
for (i = 0; i < n; i++) {
ALL_PERF_TESTS_FOR_SIZE_UNALIGNED((size_t)buf_sizes[i]);
}
}
/* Run all memcpy tests */
static int
perf_test(void)
{
int ret;
ret = init_buffers();
if (ret != 0)
return ret;
#if TEST_VALUE_RANGE != 0
/* Set up buf_sizes array, if required */
unsigned i;
for (i = 0; i < TEST_VALUE_RANGE; i++)
buf_sizes[i] = i;
#endif
/* See function comment */
do_uncached_write(large_buf_write, 0, small_buf_read, 1, SMALL_BUFFER_SIZE);
printf("\n** rte_memcpy() - memcpy perf. tests (C = compile-time constant) **\n"
"======= ============== ============== ============== ==============\n"
" Size Cache to cache Cache to mem Mem to cache Mem to mem\n"
"(bytes) (ticks) (ticks) (ticks) (ticks)\n"
"------- -------------- -------------- -------------- --------------");
printf("\n========================== %2dB aligned ============================", ALIGNMENT_UNIT);
/* Do aligned tests where size is a variable */
perf_test_variable_aligned();
printf("\n------- -------------- -------------- -------------- --------------");
/* Do aligned tests where size is a compile-time constant */
perf_test_constant_aligned();
printf("\n=========================== Unaligned =============================");
/* Do unaligned tests where size is a variable */
perf_test_variable_unaligned();
printf("\n------- -------------- -------------- -------------- --------------");
/* Do unaligned tests where size is a compile-time constant */
perf_test_constant_unaligned();
printf("\n======= ============== ============== ============== ==============\n\n");
free_buffers();
return 0;
}
static int
test_memcpy_perf(void)
{
int ret;
ret = perf_test();
if (ret != 0)
return -1;
return 0;
}
static struct test_command memcpy_perf_cmd = {
.command = "memcpy_perf_autotest",
.callback = test_memcpy_perf,
};
REGISTER_TEST_COMMAND(memcpy_perf_cmd);