0412cfeff9
Interrupt will not be received when disabling RX interrupt without synchronization mechanism sometimes which leads to wake up issue. Add spinlock to fix it. Fixes: b736d64787 ("examples/l3fwd-power: disable Rx interrupt when waking up") Cc: stable@dpdk.org Signed-off-by: Xiao Zhang <xiao.zhang@intel.com> Reviewed-by: Marvin Liu <yong.liu@intel.com> Acked-by: David Hunt <david.hunt@intel.com>
2545 lines
63 KiB
C
2545 lines
63 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2018 Intel Corporation
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <sys/types.h>
|
|
#include <string.h>
|
|
#include <sys/queue.h>
|
|
#include <stdarg.h>
|
|
#include <errno.h>
|
|
#include <getopt.h>
|
|
#include <unistd.h>
|
|
#include <signal.h>
|
|
#include <math.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_random.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_timer.h>
|
|
#include <rte_power.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_power_empty_poll.h>
|
|
#include <rte_metrics.h>
|
|
|
|
#include "perf_core.h"
|
|
#include "main.h"
|
|
|
|
#define RTE_LOGTYPE_L3FWD_POWER RTE_LOGTYPE_USER1
|
|
|
|
#define MAX_PKT_BURST 32
|
|
|
|
#define MIN_ZERO_POLL_COUNT 10
|
|
|
|
/* 100 ms interval */
|
|
#define TIMER_NUMBER_PER_SECOND 10
|
|
/* (10ms) */
|
|
#define INTERVALS_PER_SECOND 100
|
|
/* 100000 us */
|
|
#define SCALING_PERIOD (1000000/TIMER_NUMBER_PER_SECOND)
|
|
#define SCALING_DOWN_TIME_RATIO_THRESHOLD 0.25
|
|
|
|
#define APP_LOOKUP_EXACT_MATCH 0
|
|
#define APP_LOOKUP_LPM 1
|
|
#define DO_RFC_1812_CHECKS
|
|
|
|
#ifndef APP_LOOKUP_METHOD
|
|
#define APP_LOOKUP_METHOD APP_LOOKUP_LPM
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
#include <rte_hash.h>
|
|
#elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
#include <rte_lpm.h>
|
|
#else
|
|
#error "APP_LOOKUP_METHOD set to incorrect value"
|
|
#endif
|
|
|
|
#ifndef IPv6_BYTES
|
|
#define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
|
|
"%02x%02x:%02x%02x:%02x%02x:%02x%02x"
|
|
#define IPv6_BYTES(addr) \
|
|
addr[0], addr[1], addr[2], addr[3], \
|
|
addr[4], addr[5], addr[6], addr[7], \
|
|
addr[8], addr[9], addr[10], addr[11],\
|
|
addr[12], addr[13],addr[14], addr[15]
|
|
#endif
|
|
|
|
#define MAX_JUMBO_PKT_LEN 9600
|
|
|
|
#define IPV6_ADDR_LEN 16
|
|
|
|
#define MEMPOOL_CACHE_SIZE 256
|
|
|
|
/*
|
|
* This expression is used to calculate the number of mbufs needed depending on
|
|
* user input, taking into account memory for rx and tx hardware rings, cache
|
|
* per lcore and mtable per port per lcore. RTE_MAX is used to ensure that
|
|
* NB_MBUF never goes below a minimum value of 8192.
|
|
*/
|
|
|
|
#define NB_MBUF RTE_MAX ( \
|
|
(nb_ports*nb_rx_queue*nb_rxd + \
|
|
nb_ports*nb_lcores*MAX_PKT_BURST + \
|
|
nb_ports*n_tx_queue*nb_txd + \
|
|
nb_lcores*MEMPOOL_CACHE_SIZE), \
|
|
(unsigned)8192)
|
|
|
|
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
|
|
|
|
#define NB_SOCKETS 8
|
|
|
|
/* Configure how many packets ahead to prefetch, when reading packets */
|
|
#define PREFETCH_OFFSET 3
|
|
|
|
/*
|
|
* Configurable number of RX/TX ring descriptors
|
|
*/
|
|
#define RTE_TEST_RX_DESC_DEFAULT 1024
|
|
#define RTE_TEST_TX_DESC_DEFAULT 1024
|
|
|
|
/*
|
|
* These two thresholds were decided on by running the training algorithm on
|
|
* a 2.5GHz Xeon. These defaults can be overridden by supplying non-zero values
|
|
* for the med_threshold and high_threshold parameters on the command line.
|
|
*/
|
|
#define EMPTY_POLL_MED_THRESHOLD 350000UL
|
|
#define EMPTY_POLL_HGH_THRESHOLD 580000UL
|
|
|
|
|
|
|
|
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
|
|
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
|
|
|
|
/* ethernet addresses of ports */
|
|
static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
|
|
|
|
/* ethernet addresses of ports */
|
|
static rte_spinlock_t locks[RTE_MAX_ETHPORTS];
|
|
|
|
/* mask of enabled ports */
|
|
static uint32_t enabled_port_mask = 0;
|
|
/* Ports set in promiscuous mode off by default. */
|
|
static int promiscuous_on = 0;
|
|
/* NUMA is enabled by default. */
|
|
static int numa_on = 1;
|
|
static bool empty_poll_stop;
|
|
static bool empty_poll_train;
|
|
volatile bool quit_signal;
|
|
static struct ep_params *ep_params;
|
|
static struct ep_policy policy;
|
|
static long ep_med_edpi, ep_hgh_edpi;
|
|
/* timer to update telemetry every 500ms */
|
|
static struct rte_timer telemetry_timer;
|
|
|
|
/* stats index returned by metrics lib */
|
|
int telstats_index;
|
|
|
|
struct telstats_name {
|
|
char name[RTE_ETH_XSTATS_NAME_SIZE];
|
|
};
|
|
|
|
/* telemetry stats to be reported */
|
|
const struct telstats_name telstats_strings[] = {
|
|
{"empty_poll"},
|
|
{"full_poll"},
|
|
{"busy_percent"}
|
|
};
|
|
|
|
/* core busyness in percentage */
|
|
enum busy_rate {
|
|
ZERO = 0,
|
|
PARTIAL = 50,
|
|
FULL = 100
|
|
};
|
|
|
|
/* reference poll count to measure core busyness */
|
|
#define DEFAULT_COUNT 10000
|
|
/*
|
|
* reference CYCLES to be used to
|
|
* measure core busyness based on poll count
|
|
*/
|
|
#define MIN_CYCLES 1500000ULL
|
|
#define MAX_CYCLES 22000000ULL
|
|
|
|
/* (500ms) */
|
|
#define TELEMETRY_INTERVALS_PER_SEC 2
|
|
|
|
static int parse_ptype; /**< Parse packet type using rx callback, and */
|
|
/**< disabled by default */
|
|
|
|
enum appmode {
|
|
APP_MODE_LEGACY = 0,
|
|
APP_MODE_EMPTY_POLL,
|
|
APP_MODE_TELEMETRY
|
|
};
|
|
|
|
enum appmode app_mode;
|
|
|
|
enum freq_scale_hint_t
|
|
{
|
|
FREQ_LOWER = -1,
|
|
FREQ_CURRENT = 0,
|
|
FREQ_HIGHER = 1,
|
|
FREQ_HIGHEST = 2
|
|
};
|
|
|
|
struct lcore_rx_queue {
|
|
uint16_t port_id;
|
|
uint8_t queue_id;
|
|
enum freq_scale_hint_t freq_up_hint;
|
|
uint32_t zero_rx_packet_count;
|
|
uint32_t idle_hint;
|
|
} __rte_cache_aligned;
|
|
|
|
#define MAX_RX_QUEUE_PER_LCORE 16
|
|
#define MAX_TX_QUEUE_PER_PORT RTE_MAX_ETHPORTS
|
|
#define MAX_RX_QUEUE_PER_PORT 128
|
|
|
|
#define MAX_RX_QUEUE_INTERRUPT_PER_PORT 16
|
|
|
|
|
|
struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
|
|
static struct lcore_params lcore_params_array_default[] = {
|
|
{0, 0, 2},
|
|
{0, 1, 2},
|
|
{0, 2, 2},
|
|
{1, 0, 2},
|
|
{1, 1, 2},
|
|
{1, 2, 2},
|
|
{2, 0, 2},
|
|
{3, 0, 3},
|
|
{3, 1, 3},
|
|
};
|
|
|
|
struct lcore_params *lcore_params = lcore_params_array_default;
|
|
uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
|
|
sizeof(lcore_params_array_default[0]);
|
|
|
|
static struct rte_eth_conf port_conf = {
|
|
.rxmode = {
|
|
.mq_mode = ETH_MQ_RX_RSS,
|
|
.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
|
|
.split_hdr_size = 0,
|
|
.offloads = DEV_RX_OFFLOAD_CHECKSUM,
|
|
},
|
|
.rx_adv_conf = {
|
|
.rss_conf = {
|
|
.rss_key = NULL,
|
|
.rss_hf = ETH_RSS_UDP,
|
|
},
|
|
},
|
|
.txmode = {
|
|
.mq_mode = ETH_MQ_TX_NONE,
|
|
},
|
|
.intr_conf = {
|
|
.rxq = 1,
|
|
},
|
|
};
|
|
|
|
static struct rte_mempool * pktmbuf_pool[NB_SOCKETS];
|
|
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
|
|
#ifdef RTE_ARCH_X86
|
|
#include <rte_hash_crc.h>
|
|
#define DEFAULT_HASH_FUNC rte_hash_crc
|
|
#else
|
|
#include <rte_jhash.h>
|
|
#define DEFAULT_HASH_FUNC rte_jhash
|
|
#endif
|
|
|
|
struct ipv4_5tuple {
|
|
uint32_t ip_dst;
|
|
uint32_t ip_src;
|
|
uint16_t port_dst;
|
|
uint16_t port_src;
|
|
uint8_t proto;
|
|
} __attribute__((__packed__));
|
|
|
|
struct ipv6_5tuple {
|
|
uint8_t ip_dst[IPV6_ADDR_LEN];
|
|
uint8_t ip_src[IPV6_ADDR_LEN];
|
|
uint16_t port_dst;
|
|
uint16_t port_src;
|
|
uint8_t proto;
|
|
} __attribute__((__packed__));
|
|
|
|
struct ipv4_l3fwd_route {
|
|
struct ipv4_5tuple key;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
struct ipv6_l3fwd_route {
|
|
struct ipv6_5tuple key;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
|
|
{{RTE_IPV4(100,10,0,1), RTE_IPV4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
|
|
{{RTE_IPV4(100,20,0,2), RTE_IPV4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
|
|
{{RTE_IPV4(100,30,0,3), RTE_IPV4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
|
|
{{RTE_IPV4(100,40,0,4), RTE_IPV4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
|
|
};
|
|
|
|
static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
|
|
{
|
|
{
|
|
{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
|
{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
|
|
1, 10, IPPROTO_UDP
|
|
}, 4
|
|
},
|
|
};
|
|
|
|
typedef struct rte_hash lookup_struct_t;
|
|
static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
|
|
static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
|
|
|
|
#define L3FWD_HASH_ENTRIES 1024
|
|
|
|
#define IPV4_L3FWD_NUM_ROUTES \
|
|
(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
|
|
|
|
#define IPV6_L3FWD_NUM_ROUTES \
|
|
(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
|
|
|
|
static uint16_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
|
|
static uint16_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
struct ipv4_l3fwd_route {
|
|
uint32_t ip;
|
|
uint8_t depth;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
|
|
{RTE_IPV4(1,1,1,0), 24, 0},
|
|
{RTE_IPV4(2,1,1,0), 24, 1},
|
|
{RTE_IPV4(3,1,1,0), 24, 2},
|
|
{RTE_IPV4(4,1,1,0), 24, 3},
|
|
{RTE_IPV4(5,1,1,0), 24, 4},
|
|
{RTE_IPV4(6,1,1,0), 24, 5},
|
|
{RTE_IPV4(7,1,1,0), 24, 6},
|
|
{RTE_IPV4(8,1,1,0), 24, 7},
|
|
};
|
|
|
|
#define IPV4_L3FWD_NUM_ROUTES \
|
|
(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
|
|
|
|
#define IPV4_L3FWD_LPM_MAX_RULES 1024
|
|
|
|
typedef struct rte_lpm lookup_struct_t;
|
|
static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
|
|
#endif
|
|
|
|
struct lcore_conf {
|
|
uint16_t n_rx_queue;
|
|
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
|
|
uint16_t n_tx_port;
|
|
uint16_t tx_port_id[RTE_MAX_ETHPORTS];
|
|
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
|
|
struct rte_eth_dev_tx_buffer *tx_buffer[RTE_MAX_ETHPORTS];
|
|
lookup_struct_t * ipv4_lookup_struct;
|
|
lookup_struct_t * ipv6_lookup_struct;
|
|
} __rte_cache_aligned;
|
|
|
|
struct lcore_stats {
|
|
/* total sleep time in ms since last frequency scaling down */
|
|
uint32_t sleep_time;
|
|
/* number of long sleep recently */
|
|
uint32_t nb_long_sleep;
|
|
/* freq. scaling up trend */
|
|
uint32_t trend;
|
|
/* total packet processed recently */
|
|
uint64_t nb_rx_processed;
|
|
/* total iterations looped recently */
|
|
uint64_t nb_iteration_looped;
|
|
/*
|
|
* Represents empty and non empty polls
|
|
* of rte_eth_rx_burst();
|
|
* ep_nep[0] holds non empty polls
|
|
* i.e. 0 < nb_rx <= MAX_BURST
|
|
* ep_nep[1] holds empty polls.
|
|
* i.e. nb_rx == 0
|
|
*/
|
|
uint64_t ep_nep[2];
|
|
/*
|
|
* Represents full and empty+partial
|
|
* polls of rte_eth_rx_burst();
|
|
* ep_nep[0] holds empty+partial polls.
|
|
* i.e. 0 <= nb_rx < MAX_BURST
|
|
* ep_nep[1] holds full polls
|
|
* i.e. nb_rx == MAX_BURST
|
|
*/
|
|
uint64_t fp_nfp[2];
|
|
enum busy_rate br;
|
|
rte_spinlock_t telemetry_lock;
|
|
} __rte_cache_aligned;
|
|
|
|
static struct lcore_conf lcore_conf[RTE_MAX_LCORE] __rte_cache_aligned;
|
|
static struct lcore_stats stats[RTE_MAX_LCORE] __rte_cache_aligned;
|
|
static struct rte_timer power_timers[RTE_MAX_LCORE];
|
|
|
|
static inline uint32_t power_idle_heuristic(uint32_t zero_rx_packet_count);
|
|
static inline enum freq_scale_hint_t power_freq_scaleup_heuristic( \
|
|
unsigned int lcore_id, uint16_t port_id, uint16_t queue_id);
|
|
|
|
|
|
/*
|
|
* These defaults are using the max frequency index (1), a medium index (9)
|
|
* and a typical low frequency index (14). These can be adjusted to use
|
|
* different indexes using the relevant command line parameters.
|
|
*/
|
|
static uint8_t freq_tlb[] = {14, 9, 1};
|
|
|
|
static int is_done(void)
|
|
{
|
|
return quit_signal;
|
|
}
|
|
|
|
/* exit signal handler */
|
|
static void
|
|
signal_exit_now(int sigtype)
|
|
{
|
|
unsigned lcore_id;
|
|
unsigned int portid;
|
|
int ret;
|
|
|
|
if (sigtype == SIGINT) {
|
|
if (app_mode == APP_MODE_EMPTY_POLL ||
|
|
app_mode == APP_MODE_TELEMETRY)
|
|
quit_signal = true;
|
|
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
|
|
/* init power management library */
|
|
ret = rte_power_exit(lcore_id);
|
|
if (ret)
|
|
rte_exit(EXIT_FAILURE, "Power management "
|
|
"library de-initialization failed on "
|
|
"core%u\n", lcore_id);
|
|
}
|
|
|
|
if (app_mode != APP_MODE_EMPTY_POLL) {
|
|
RTE_ETH_FOREACH_DEV(portid) {
|
|
if ((enabled_port_mask & (1 << portid)) == 0)
|
|
continue;
|
|
|
|
rte_eth_dev_stop(portid);
|
|
rte_eth_dev_close(portid);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (app_mode != APP_MODE_EMPTY_POLL)
|
|
rte_exit(EXIT_SUCCESS, "User forced exit\n");
|
|
}
|
|
|
|
/* Freqency scale down timer callback */
|
|
static void
|
|
power_timer_cb(__attribute__((unused)) struct rte_timer *tim,
|
|
__attribute__((unused)) void *arg)
|
|
{
|
|
uint64_t hz;
|
|
float sleep_time_ratio;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
|
|
/* accumulate total execution time in us when callback is invoked */
|
|
sleep_time_ratio = (float)(stats[lcore_id].sleep_time) /
|
|
(float)SCALING_PERIOD;
|
|
/**
|
|
* check whether need to scale down frequency a step if it sleep a lot.
|
|
*/
|
|
if (sleep_time_ratio >= SCALING_DOWN_TIME_RATIO_THRESHOLD) {
|
|
if (rte_power_freq_down)
|
|
rte_power_freq_down(lcore_id);
|
|
}
|
|
else if ( (unsigned)(stats[lcore_id].nb_rx_processed /
|
|
stats[lcore_id].nb_iteration_looped) < MAX_PKT_BURST) {
|
|
/**
|
|
* scale down a step if average packet per iteration less
|
|
* than expectation.
|
|
*/
|
|
if (rte_power_freq_down)
|
|
rte_power_freq_down(lcore_id);
|
|
}
|
|
|
|
/**
|
|
* initialize another timer according to current frequency to ensure
|
|
* timer interval is relatively fixed.
|
|
*/
|
|
hz = rte_get_timer_hz();
|
|
rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND,
|
|
SINGLE, lcore_id, power_timer_cb, NULL);
|
|
|
|
stats[lcore_id].nb_rx_processed = 0;
|
|
stats[lcore_id].nb_iteration_looped = 0;
|
|
|
|
stats[lcore_id].sleep_time = 0;
|
|
}
|
|
|
|
/* Enqueue a single packet, and send burst if queue is filled */
|
|
static inline int
|
|
send_single_packet(struct rte_mbuf *m, uint16_t port)
|
|
{
|
|
uint32_t lcore_id;
|
|
struct lcore_conf *qconf;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
qconf = &lcore_conf[lcore_id];
|
|
|
|
rte_eth_tx_buffer(port, qconf->tx_queue_id[port],
|
|
qconf->tx_buffer[port], m);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DO_RFC_1812_CHECKS
|
|
static inline int
|
|
is_valid_ipv4_pkt(struct rte_ipv4_hdr *pkt, uint32_t link_len)
|
|
{
|
|
/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
|
|
/*
|
|
* 1. The packet length reported by the Link Layer must be large
|
|
* enough to hold the minimum length legal IP datagram (20 bytes).
|
|
*/
|
|
if (link_len < sizeof(struct rte_ipv4_hdr))
|
|
return -1;
|
|
|
|
/* 2. The IP checksum must be correct. */
|
|
/* this is checked in H/W */
|
|
|
|
/*
|
|
* 3. The IP version number must be 4. If the version number is not 4
|
|
* then the packet may be another version of IP, such as IPng or
|
|
* ST-II.
|
|
*/
|
|
if (((pkt->version_ihl) >> 4) != 4)
|
|
return -3;
|
|
/*
|
|
* 4. The IP header length field must be large enough to hold the
|
|
* minimum length legal IP datagram (20 bytes = 5 words).
|
|
*/
|
|
if ((pkt->version_ihl & 0xf) < 5)
|
|
return -4;
|
|
|
|
/*
|
|
* 5. The IP total length field must be large enough to hold the IP
|
|
* datagram header, whose length is specified in the IP header length
|
|
* field.
|
|
*/
|
|
if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
|
|
return -5;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
static void
|
|
print_ipv4_key(struct ipv4_5tuple key)
|
|
{
|
|
printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, "
|
|
"proto = %d\n", (unsigned)key.ip_dst, (unsigned)key.ip_src,
|
|
key.port_dst, key.port_src, key.proto);
|
|
}
|
|
static void
|
|
print_ipv6_key(struct ipv6_5tuple key)
|
|
{
|
|
printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
|
|
"port dst = %d, port src = %d, proto = %d\n",
|
|
IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
|
|
key.port_dst, key.port_src, key.proto);
|
|
}
|
|
|
|
static inline uint16_t
|
|
get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
|
|
lookup_struct_t * ipv4_l3fwd_lookup_struct)
|
|
{
|
|
struct ipv4_5tuple key;
|
|
struct rte_tcp_hdr *tcp;
|
|
struct rte_udp_hdr *udp;
|
|
int ret = 0;
|
|
|
|
key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
|
|
key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
|
|
key.proto = ipv4_hdr->next_proto_id;
|
|
|
|
switch (ipv4_hdr->next_proto_id) {
|
|
case IPPROTO_TCP:
|
|
tcp = (struct rte_tcp_hdr *)((unsigned char *)ipv4_hdr +
|
|
sizeof(struct rte_ipv4_hdr));
|
|
key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
|
|
key.port_src = rte_be_to_cpu_16(tcp->src_port);
|
|
break;
|
|
|
|
case IPPROTO_UDP:
|
|
udp = (struct rte_udp_hdr *)((unsigned char *)ipv4_hdr +
|
|
sizeof(struct rte_ipv4_hdr));
|
|
key.port_dst = rte_be_to_cpu_16(udp->dst_port);
|
|
key.port_src = rte_be_to_cpu_16(udp->src_port);
|
|
break;
|
|
|
|
default:
|
|
key.port_dst = 0;
|
|
key.port_src = 0;
|
|
break;
|
|
}
|
|
|
|
/* Find destination port */
|
|
ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
|
|
return ((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
|
|
}
|
|
|
|
static inline uint16_t
|
|
get_ipv6_dst_port(struct rte_ipv6_hdr *ipv6_hdr, uint16_t portid,
|
|
lookup_struct_t *ipv6_l3fwd_lookup_struct)
|
|
{
|
|
struct ipv6_5tuple key;
|
|
struct rte_tcp_hdr *tcp;
|
|
struct rte_udp_hdr *udp;
|
|
int ret = 0;
|
|
|
|
memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
|
|
memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
|
|
|
|
key.proto = ipv6_hdr->proto;
|
|
|
|
switch (ipv6_hdr->proto) {
|
|
case IPPROTO_TCP:
|
|
tcp = (struct rte_tcp_hdr *)((unsigned char *) ipv6_hdr +
|
|
sizeof(struct rte_ipv6_hdr));
|
|
key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
|
|
key.port_src = rte_be_to_cpu_16(tcp->src_port);
|
|
break;
|
|
|
|
case IPPROTO_UDP:
|
|
udp = (struct rte_udp_hdr *)((unsigned char *) ipv6_hdr +
|
|
sizeof(struct rte_ipv6_hdr));
|
|
key.port_dst = rte_be_to_cpu_16(udp->dst_port);
|
|
key.port_src = rte_be_to_cpu_16(udp->src_port);
|
|
break;
|
|
|
|
default:
|
|
key.port_dst = 0;
|
|
key.port_src = 0;
|
|
break;
|
|
}
|
|
|
|
/* Find destination port */
|
|
ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
|
|
return ((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
|
|
}
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
static inline uint16_t
|
|
get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid,
|
|
lookup_struct_t *ipv4_l3fwd_lookup_struct)
|
|
{
|
|
uint32_t next_hop;
|
|
|
|
return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
|
|
rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
|
|
next_hop : portid);
|
|
}
|
|
#endif
|
|
|
|
static inline void
|
|
parse_ptype_one(struct rte_mbuf *m)
|
|
{
|
|
struct rte_ether_hdr *eth_hdr;
|
|
uint32_t packet_type = RTE_PTYPE_UNKNOWN;
|
|
uint16_t ether_type;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
|
|
ether_type = eth_hdr->ether_type;
|
|
if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
|
|
packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
|
|
else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
|
|
packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
|
|
|
|
m->packet_type = packet_type;
|
|
}
|
|
|
|
static uint16_t
|
|
cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
|
|
struct rte_mbuf *pkts[], uint16_t nb_pkts,
|
|
uint16_t max_pkts __rte_unused,
|
|
void *user_param __rte_unused)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < nb_pkts; ++i)
|
|
parse_ptype_one(pkts[i]);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
static int
|
|
add_cb_parse_ptype(uint16_t portid, uint16_t queueid)
|
|
{
|
|
printf("Port %d: softly parse packet type info\n", portid);
|
|
if (rte_eth_add_rx_callback(portid, queueid, cb_parse_ptype, NULL))
|
|
return 0;
|
|
|
|
printf("Failed to add rx callback: port=%d\n", portid);
|
|
return -1;
|
|
}
|
|
|
|
static inline void
|
|
l3fwd_simple_forward(struct rte_mbuf *m, uint16_t portid,
|
|
struct lcore_conf *qconf)
|
|
{
|
|
struct rte_ether_hdr *eth_hdr;
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
void *d_addr_bytes;
|
|
uint16_t dst_port;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
|
|
|
|
if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
|
|
/* Handle IPv4 headers.*/
|
|
ipv4_hdr =
|
|
rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
|
|
sizeof(struct rte_ether_hdr));
|
|
|
|
#ifdef DO_RFC_1812_CHECKS
|
|
/* Check to make sure the packet is valid (RFC1812) */
|
|
if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
|
|
rte_pktmbuf_free(m);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
|
|
qconf->ipv4_lookup_struct);
|
|
if (dst_port >= RTE_MAX_ETHPORTS ||
|
|
(enabled_port_mask & 1 << dst_port) == 0)
|
|
dst_port = portid;
|
|
|
|
/* 02:00:00:00:00:xx */
|
|
d_addr_bytes = ð_hdr->d_addr.addr_bytes[0];
|
|
*((uint64_t *)d_addr_bytes) =
|
|
0x000000000002 + ((uint64_t)dst_port << 40);
|
|
|
|
#ifdef DO_RFC_1812_CHECKS
|
|
/* Update time to live and header checksum */
|
|
--(ipv4_hdr->time_to_live);
|
|
++(ipv4_hdr->hdr_checksum);
|
|
#endif
|
|
|
|
/* src addr */
|
|
rte_ether_addr_copy(&ports_eth_addr[dst_port],
|
|
ð_hdr->s_addr);
|
|
|
|
send_single_packet(m, dst_port);
|
|
} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
|
|
/* Handle IPv6 headers.*/
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
struct rte_ipv6_hdr *ipv6_hdr;
|
|
|
|
ipv6_hdr =
|
|
rte_pktmbuf_mtod_offset(m, struct rte_ipv6_hdr *,
|
|
sizeof(struct rte_ether_hdr));
|
|
|
|
dst_port = get_ipv6_dst_port(ipv6_hdr, portid,
|
|
qconf->ipv6_lookup_struct);
|
|
|
|
if (dst_port >= RTE_MAX_ETHPORTS ||
|
|
(enabled_port_mask & 1 << dst_port) == 0)
|
|
dst_port = portid;
|
|
|
|
/* 02:00:00:00:00:xx */
|
|
d_addr_bytes = ð_hdr->d_addr.addr_bytes[0];
|
|
*((uint64_t *)d_addr_bytes) =
|
|
0x000000000002 + ((uint64_t)dst_port << 40);
|
|
|
|
/* src addr */
|
|
rte_ether_addr_copy(&ports_eth_addr[dst_port],
|
|
ð_hdr->s_addr);
|
|
|
|
send_single_packet(m, dst_port);
|
|
#else
|
|
/* We don't currently handle IPv6 packets in LPM mode. */
|
|
rte_pktmbuf_free(m);
|
|
#endif
|
|
} else
|
|
rte_pktmbuf_free(m);
|
|
|
|
}
|
|
|
|
#define MINIMUM_SLEEP_TIME 1
|
|
#define SUSPEND_THRESHOLD 300
|
|
|
|
static inline uint32_t
|
|
power_idle_heuristic(uint32_t zero_rx_packet_count)
|
|
{
|
|
/* If zero count is less than 100, sleep 1us */
|
|
if (zero_rx_packet_count < SUSPEND_THRESHOLD)
|
|
return MINIMUM_SLEEP_TIME;
|
|
/* If zero count is less than 1000, sleep 100 us which is the
|
|
minimum latency switching from C3/C6 to C0
|
|
*/
|
|
else
|
|
return SUSPEND_THRESHOLD;
|
|
}
|
|
|
|
static inline enum freq_scale_hint_t
|
|
power_freq_scaleup_heuristic(unsigned lcore_id,
|
|
uint16_t port_id,
|
|
uint16_t queue_id)
|
|
{
|
|
uint32_t rxq_count = rte_eth_rx_queue_count(port_id, queue_id);
|
|
/**
|
|
* HW Rx queue size is 128 by default, Rx burst read at maximum 32 entries
|
|
* per iteration
|
|
*/
|
|
#define FREQ_GEAR1_RX_PACKET_THRESHOLD MAX_PKT_BURST
|
|
#define FREQ_GEAR2_RX_PACKET_THRESHOLD (MAX_PKT_BURST*2)
|
|
#define FREQ_GEAR3_RX_PACKET_THRESHOLD (MAX_PKT_BURST*3)
|
|
#define FREQ_UP_TREND1_ACC 1
|
|
#define FREQ_UP_TREND2_ACC 100
|
|
#define FREQ_UP_THRESHOLD 10000
|
|
|
|
if (likely(rxq_count > FREQ_GEAR3_RX_PACKET_THRESHOLD)) {
|
|
stats[lcore_id].trend = 0;
|
|
return FREQ_HIGHEST;
|
|
} else if (likely(rxq_count > FREQ_GEAR2_RX_PACKET_THRESHOLD))
|
|
stats[lcore_id].trend += FREQ_UP_TREND2_ACC;
|
|
else if (likely(rxq_count > FREQ_GEAR1_RX_PACKET_THRESHOLD))
|
|
stats[lcore_id].trend += FREQ_UP_TREND1_ACC;
|
|
|
|
if (likely(stats[lcore_id].trend > FREQ_UP_THRESHOLD)) {
|
|
stats[lcore_id].trend = 0;
|
|
return FREQ_HIGHER;
|
|
}
|
|
|
|
return FREQ_CURRENT;
|
|
}
|
|
|
|
/**
|
|
* force polling thread sleep until one-shot rx interrupt triggers
|
|
* @param port_id
|
|
* Port id.
|
|
* @param queue_id
|
|
* Rx queue id.
|
|
* @return
|
|
* 0 on success
|
|
*/
|
|
static int
|
|
sleep_until_rx_interrupt(int num)
|
|
{
|
|
struct rte_epoll_event event[num];
|
|
int n, i;
|
|
uint16_t port_id;
|
|
uint8_t queue_id;
|
|
void *data;
|
|
|
|
RTE_LOG(INFO, L3FWD_POWER,
|
|
"lcore %u sleeps until interrupt triggers\n",
|
|
rte_lcore_id());
|
|
|
|
n = rte_epoll_wait(RTE_EPOLL_PER_THREAD, event, num, -1);
|
|
for (i = 0; i < n; i++) {
|
|
data = event[i].epdata.data;
|
|
port_id = ((uintptr_t)data) >> CHAR_BIT;
|
|
queue_id = ((uintptr_t)data) &
|
|
RTE_LEN2MASK(CHAR_BIT, uint8_t);
|
|
rte_spinlock_lock(&(locks[port_id]));
|
|
rte_eth_dev_rx_intr_disable(port_id, queue_id);
|
|
rte_spinlock_unlock(&(locks[port_id]));
|
|
RTE_LOG(INFO, L3FWD_POWER,
|
|
"lcore %u is waked up from rx interrupt on"
|
|
" port %d queue %d\n",
|
|
rte_lcore_id(), port_id, queue_id);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void turn_on_intr(struct lcore_conf *qconf)
|
|
{
|
|
int i;
|
|
struct lcore_rx_queue *rx_queue;
|
|
uint8_t queue_id;
|
|
uint16_t port_id;
|
|
|
|
for (i = 0; i < qconf->n_rx_queue; ++i) {
|
|
rx_queue = &(qconf->rx_queue_list[i]);
|
|
port_id = rx_queue->port_id;
|
|
queue_id = rx_queue->queue_id;
|
|
|
|
rte_spinlock_lock(&(locks[port_id]));
|
|
rte_eth_dev_rx_intr_enable(port_id, queue_id);
|
|
rte_spinlock_unlock(&(locks[port_id]));
|
|
}
|
|
}
|
|
|
|
static int event_register(struct lcore_conf *qconf)
|
|
{
|
|
struct lcore_rx_queue *rx_queue;
|
|
uint8_t queueid;
|
|
uint16_t portid;
|
|
uint32_t data;
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < qconf->n_rx_queue; ++i) {
|
|
rx_queue = &(qconf->rx_queue_list[i]);
|
|
portid = rx_queue->port_id;
|
|
queueid = rx_queue->queue_id;
|
|
data = portid << CHAR_BIT | queueid;
|
|
|
|
ret = rte_eth_dev_rx_intr_ctl_q(portid, queueid,
|
|
RTE_EPOLL_PER_THREAD,
|
|
RTE_INTR_EVENT_ADD,
|
|
(void *)((uintptr_t)data));
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/* main processing loop */
|
|
static int
|
|
main_telemetry_loop(__attribute__((unused)) void *dummy)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
unsigned int lcore_id;
|
|
uint64_t prev_tsc, diff_tsc, cur_tsc, prev_tel_tsc;
|
|
int i, j, nb_rx;
|
|
uint8_t queueid;
|
|
uint16_t portid;
|
|
struct lcore_conf *qconf;
|
|
struct lcore_rx_queue *rx_queue;
|
|
uint64_t ep_nep[2] = {0}, fp_nfp[2] = {0};
|
|
uint64_t poll_count;
|
|
enum busy_rate br;
|
|
|
|
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
|
|
US_PER_S * BURST_TX_DRAIN_US;
|
|
|
|
poll_count = 0;
|
|
prev_tsc = 0;
|
|
prev_tel_tsc = 0;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
qconf = &lcore_conf[lcore_id];
|
|
|
|
if (qconf->n_rx_queue == 0) {
|
|
RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
|
|
lcore_id);
|
|
return 0;
|
|
}
|
|
|
|
RTE_LOG(INFO, L3FWD_POWER, "entering main telemetry loop on lcore %u\n",
|
|
lcore_id);
|
|
|
|
for (i = 0; i < qconf->n_rx_queue; i++) {
|
|
portid = qconf->rx_queue_list[i].port_id;
|
|
queueid = qconf->rx_queue_list[i].queue_id;
|
|
RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
|
|
"rxqueueid=%hhu\n", lcore_id, portid, queueid);
|
|
}
|
|
|
|
while (!is_done()) {
|
|
|
|
cur_tsc = rte_rdtsc();
|
|
/*
|
|
* TX burst queue drain
|
|
*/
|
|
diff_tsc = cur_tsc - prev_tsc;
|
|
if (unlikely(diff_tsc > drain_tsc)) {
|
|
for (i = 0; i < qconf->n_tx_port; ++i) {
|
|
portid = qconf->tx_port_id[i];
|
|
rte_eth_tx_buffer_flush(portid,
|
|
qconf->tx_queue_id[portid],
|
|
qconf->tx_buffer[portid]);
|
|
}
|
|
prev_tsc = cur_tsc;
|
|
}
|
|
|
|
/*
|
|
* Read packet from RX queues
|
|
*/
|
|
for (i = 0; i < qconf->n_rx_queue; ++i) {
|
|
rx_queue = &(qconf->rx_queue_list[i]);
|
|
portid = rx_queue->port_id;
|
|
queueid = rx_queue->queue_id;
|
|
|
|
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
|
|
MAX_PKT_BURST);
|
|
ep_nep[nb_rx == 0]++;
|
|
fp_nfp[nb_rx == MAX_PKT_BURST]++;
|
|
poll_count++;
|
|
if (unlikely(nb_rx == 0))
|
|
continue;
|
|
|
|
/* Prefetch first packets */
|
|
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(
|
|
pkts_burst[j], void *));
|
|
}
|
|
|
|
/* Prefetch and forward already prefetched packets */
|
|
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
|
|
j + PREFETCH_OFFSET], void *));
|
|
l3fwd_simple_forward(pkts_burst[j], portid,
|
|
qconf);
|
|
}
|
|
|
|
/* Forward remaining prefetched packets */
|
|
for (; j < nb_rx; j++) {
|
|
l3fwd_simple_forward(pkts_burst[j], portid,
|
|
qconf);
|
|
}
|
|
}
|
|
if (unlikely(poll_count >= DEFAULT_COUNT)) {
|
|
diff_tsc = cur_tsc - prev_tel_tsc;
|
|
if (diff_tsc >= MAX_CYCLES) {
|
|
br = FULL;
|
|
} else if (diff_tsc > MIN_CYCLES &&
|
|
diff_tsc < MAX_CYCLES) {
|
|
br = (diff_tsc * 100) / MAX_CYCLES;
|
|
} else {
|
|
br = ZERO;
|
|
}
|
|
poll_count = 0;
|
|
prev_tel_tsc = cur_tsc;
|
|
/* update stats for telemetry */
|
|
rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
|
|
stats[lcore_id].ep_nep[0] = ep_nep[0];
|
|
stats[lcore_id].ep_nep[1] = ep_nep[1];
|
|
stats[lcore_id].fp_nfp[0] = fp_nfp[0];
|
|
stats[lcore_id].fp_nfp[1] = fp_nfp[1];
|
|
stats[lcore_id].br = br;
|
|
rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/* main processing loop */
|
|
static int
|
|
main_empty_poll_loop(__attribute__((unused)) void *dummy)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
unsigned int lcore_id;
|
|
uint64_t prev_tsc, diff_tsc, cur_tsc;
|
|
int i, j, nb_rx;
|
|
uint8_t queueid;
|
|
uint16_t portid;
|
|
struct lcore_conf *qconf;
|
|
struct lcore_rx_queue *rx_queue;
|
|
|
|
const uint64_t drain_tsc =
|
|
(rte_get_tsc_hz() + US_PER_S - 1) /
|
|
US_PER_S * BURST_TX_DRAIN_US;
|
|
|
|
prev_tsc = 0;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
qconf = &lcore_conf[lcore_id];
|
|
|
|
if (qconf->n_rx_queue == 0) {
|
|
RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n",
|
|
lcore_id);
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < qconf->n_rx_queue; i++) {
|
|
portid = qconf->rx_queue_list[i].port_id;
|
|
queueid = qconf->rx_queue_list[i].queue_id;
|
|
RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
|
|
"rxqueueid=%hhu\n", lcore_id, portid, queueid);
|
|
}
|
|
|
|
while (!is_done()) {
|
|
stats[lcore_id].nb_iteration_looped++;
|
|
|
|
cur_tsc = rte_rdtsc();
|
|
/*
|
|
* TX burst queue drain
|
|
*/
|
|
diff_tsc = cur_tsc - prev_tsc;
|
|
if (unlikely(diff_tsc > drain_tsc)) {
|
|
for (i = 0; i < qconf->n_tx_port; ++i) {
|
|
portid = qconf->tx_port_id[i];
|
|
rte_eth_tx_buffer_flush(portid,
|
|
qconf->tx_queue_id[portid],
|
|
qconf->tx_buffer[portid]);
|
|
}
|
|
prev_tsc = cur_tsc;
|
|
}
|
|
|
|
/*
|
|
* Read packet from RX queues
|
|
*/
|
|
for (i = 0; i < qconf->n_rx_queue; ++i) {
|
|
rx_queue = &(qconf->rx_queue_list[i]);
|
|
rx_queue->idle_hint = 0;
|
|
portid = rx_queue->port_id;
|
|
queueid = rx_queue->queue_id;
|
|
|
|
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
|
|
MAX_PKT_BURST);
|
|
|
|
stats[lcore_id].nb_rx_processed += nb_rx;
|
|
|
|
if (nb_rx == 0) {
|
|
|
|
rte_power_empty_poll_stat_update(lcore_id);
|
|
|
|
continue;
|
|
} else {
|
|
rte_power_poll_stat_update(lcore_id, nb_rx);
|
|
}
|
|
|
|
|
|
/* Prefetch first packets */
|
|
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(
|
|
pkts_burst[j], void *));
|
|
}
|
|
|
|
/* Prefetch and forward already prefetched packets */
|
|
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
|
|
j + PREFETCH_OFFSET],
|
|
void *));
|
|
l3fwd_simple_forward(pkts_burst[j], portid,
|
|
qconf);
|
|
}
|
|
|
|
/* Forward remaining prefetched packets */
|
|
for (; j < nb_rx; j++) {
|
|
l3fwd_simple_forward(pkts_burst[j], portid,
|
|
qconf);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/* main processing loop */
|
|
static int
|
|
main_loop(__attribute__((unused)) void *dummy)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
unsigned lcore_id;
|
|
uint64_t prev_tsc, diff_tsc, cur_tsc, tim_res_tsc, hz;
|
|
uint64_t prev_tsc_power = 0, cur_tsc_power, diff_tsc_power;
|
|
int i, j, nb_rx;
|
|
uint8_t queueid;
|
|
uint16_t portid;
|
|
struct lcore_conf *qconf;
|
|
struct lcore_rx_queue *rx_queue;
|
|
enum freq_scale_hint_t lcore_scaleup_hint;
|
|
uint32_t lcore_rx_idle_count = 0;
|
|
uint32_t lcore_idle_hint = 0;
|
|
int intr_en = 0;
|
|
|
|
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
|
|
|
|
prev_tsc = 0;
|
|
hz = rte_get_timer_hz();
|
|
tim_res_tsc = hz/TIMER_NUMBER_PER_SECOND;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
qconf = &lcore_conf[lcore_id];
|
|
|
|
if (qconf->n_rx_queue == 0) {
|
|
RTE_LOG(INFO, L3FWD_POWER, "lcore %u has nothing to do\n", lcore_id);
|
|
return 0;
|
|
}
|
|
|
|
RTE_LOG(INFO, L3FWD_POWER, "entering main loop on lcore %u\n", lcore_id);
|
|
|
|
for (i = 0; i < qconf->n_rx_queue; i++) {
|
|
portid = qconf->rx_queue_list[i].port_id;
|
|
queueid = qconf->rx_queue_list[i].queue_id;
|
|
RTE_LOG(INFO, L3FWD_POWER, " -- lcoreid=%u portid=%u "
|
|
"rxqueueid=%hhu\n", lcore_id, portid, queueid);
|
|
}
|
|
|
|
/* add into event wait list */
|
|
if (event_register(qconf) == 0)
|
|
intr_en = 1;
|
|
else
|
|
RTE_LOG(INFO, L3FWD_POWER, "RX interrupt won't enable.\n");
|
|
|
|
while (1) {
|
|
stats[lcore_id].nb_iteration_looped++;
|
|
|
|
cur_tsc = rte_rdtsc();
|
|
cur_tsc_power = cur_tsc;
|
|
|
|
/*
|
|
* TX burst queue drain
|
|
*/
|
|
diff_tsc = cur_tsc - prev_tsc;
|
|
if (unlikely(diff_tsc > drain_tsc)) {
|
|
for (i = 0; i < qconf->n_tx_port; ++i) {
|
|
portid = qconf->tx_port_id[i];
|
|
rte_eth_tx_buffer_flush(portid,
|
|
qconf->tx_queue_id[portid],
|
|
qconf->tx_buffer[portid]);
|
|
}
|
|
prev_tsc = cur_tsc;
|
|
}
|
|
|
|
diff_tsc_power = cur_tsc_power - prev_tsc_power;
|
|
if (diff_tsc_power > tim_res_tsc) {
|
|
rte_timer_manage();
|
|
prev_tsc_power = cur_tsc_power;
|
|
}
|
|
|
|
start_rx:
|
|
/*
|
|
* Read packet from RX queues
|
|
*/
|
|
lcore_scaleup_hint = FREQ_CURRENT;
|
|
lcore_rx_idle_count = 0;
|
|
for (i = 0; i < qconf->n_rx_queue; ++i) {
|
|
rx_queue = &(qconf->rx_queue_list[i]);
|
|
rx_queue->idle_hint = 0;
|
|
portid = rx_queue->port_id;
|
|
queueid = rx_queue->queue_id;
|
|
|
|
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
|
|
MAX_PKT_BURST);
|
|
|
|
stats[lcore_id].nb_rx_processed += nb_rx;
|
|
if (unlikely(nb_rx == 0)) {
|
|
/**
|
|
* no packet received from rx queue, try to
|
|
* sleep for a while forcing CPU enter deeper
|
|
* C states.
|
|
*/
|
|
rx_queue->zero_rx_packet_count++;
|
|
|
|
if (rx_queue->zero_rx_packet_count <=
|
|
MIN_ZERO_POLL_COUNT)
|
|
continue;
|
|
|
|
rx_queue->idle_hint = power_idle_heuristic(\
|
|
rx_queue->zero_rx_packet_count);
|
|
lcore_rx_idle_count++;
|
|
} else {
|
|
rx_queue->zero_rx_packet_count = 0;
|
|
|
|
/**
|
|
* do not scale up frequency immediately as
|
|
* user to kernel space communication is costly
|
|
* which might impact packet I/O for received
|
|
* packets.
|
|
*/
|
|
rx_queue->freq_up_hint =
|
|
power_freq_scaleup_heuristic(lcore_id,
|
|
portid, queueid);
|
|
}
|
|
|
|
/* Prefetch first packets */
|
|
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(
|
|
pkts_burst[j], void *));
|
|
}
|
|
|
|
/* Prefetch and forward already prefetched packets */
|
|
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
|
|
j + PREFETCH_OFFSET], void *));
|
|
l3fwd_simple_forward(pkts_burst[j], portid,
|
|
qconf);
|
|
}
|
|
|
|
/* Forward remaining prefetched packets */
|
|
for (; j < nb_rx; j++) {
|
|
l3fwd_simple_forward(pkts_burst[j], portid,
|
|
qconf);
|
|
}
|
|
}
|
|
|
|
if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
|
|
for (i = 1, lcore_scaleup_hint =
|
|
qconf->rx_queue_list[0].freq_up_hint;
|
|
i < qconf->n_rx_queue; ++i) {
|
|
rx_queue = &(qconf->rx_queue_list[i]);
|
|
if (rx_queue->freq_up_hint >
|
|
lcore_scaleup_hint)
|
|
lcore_scaleup_hint =
|
|
rx_queue->freq_up_hint;
|
|
}
|
|
|
|
if (lcore_scaleup_hint == FREQ_HIGHEST) {
|
|
if (rte_power_freq_max)
|
|
rte_power_freq_max(lcore_id);
|
|
} else if (lcore_scaleup_hint == FREQ_HIGHER) {
|
|
if (rte_power_freq_up)
|
|
rte_power_freq_up(lcore_id);
|
|
}
|
|
} else {
|
|
/**
|
|
* All Rx queues empty in recent consecutive polls,
|
|
* sleep in a conservative manner, meaning sleep as
|
|
* less as possible.
|
|
*/
|
|
for (i = 1, lcore_idle_hint =
|
|
qconf->rx_queue_list[0].idle_hint;
|
|
i < qconf->n_rx_queue; ++i) {
|
|
rx_queue = &(qconf->rx_queue_list[i]);
|
|
if (rx_queue->idle_hint < lcore_idle_hint)
|
|
lcore_idle_hint = rx_queue->idle_hint;
|
|
}
|
|
|
|
if (lcore_idle_hint < SUSPEND_THRESHOLD)
|
|
/**
|
|
* execute "pause" instruction to avoid context
|
|
* switch which generally take hundred of
|
|
* microseconds for short sleep.
|
|
*/
|
|
rte_delay_us(lcore_idle_hint);
|
|
else {
|
|
/* suspend until rx interrupt trigges */
|
|
if (intr_en) {
|
|
turn_on_intr(qconf);
|
|
sleep_until_rx_interrupt(
|
|
qconf->n_rx_queue);
|
|
/**
|
|
* start receiving packets immediately
|
|
*/
|
|
goto start_rx;
|
|
}
|
|
}
|
|
stats[lcore_id].sleep_time += lcore_idle_hint;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
check_lcore_params(void)
|
|
{
|
|
uint8_t queue, lcore;
|
|
uint16_t i;
|
|
int socketid;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
queue = lcore_params[i].queue_id;
|
|
if (queue >= MAX_RX_QUEUE_PER_PORT) {
|
|
printf("invalid queue number: %hhu\n", queue);
|
|
return -1;
|
|
}
|
|
lcore = lcore_params[i].lcore_id;
|
|
if (!rte_lcore_is_enabled(lcore)) {
|
|
printf("error: lcore %hhu is not enabled in lcore "
|
|
"mask\n", lcore);
|
|
return -1;
|
|
}
|
|
if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
|
|
(numa_on == 0)) {
|
|
printf("warning: lcore %hhu is on socket %d with numa "
|
|
"off\n", lcore, socketid);
|
|
}
|
|
if (app_mode == APP_MODE_TELEMETRY && lcore == rte_lcore_id()) {
|
|
printf("cannot enable master core %d in config for telemetry mode\n",
|
|
rte_lcore_id());
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
check_port_config(void)
|
|
{
|
|
unsigned portid;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
portid = lcore_params[i].port_id;
|
|
if ((enabled_port_mask & (1 << portid)) == 0) {
|
|
printf("port %u is not enabled in port mask\n",
|
|
portid);
|
|
return -1;
|
|
}
|
|
if (!rte_eth_dev_is_valid_port(portid)) {
|
|
printf("port %u is not present on the board\n",
|
|
portid);
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t
|
|
get_port_n_rx_queues(const uint16_t port)
|
|
{
|
|
int queue = -1;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
if (lcore_params[i].port_id == port &&
|
|
lcore_params[i].queue_id > queue)
|
|
queue = lcore_params[i].queue_id;
|
|
}
|
|
return (uint8_t)(++queue);
|
|
}
|
|
|
|
static int
|
|
init_lcore_rx_queues(void)
|
|
{
|
|
uint16_t i, nb_rx_queue;
|
|
uint8_t lcore;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
lcore = lcore_params[i].lcore_id;
|
|
nb_rx_queue = lcore_conf[lcore].n_rx_queue;
|
|
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
|
|
printf("error: too many queues (%u) for lcore: %u\n",
|
|
(unsigned)nb_rx_queue + 1, (unsigned)lcore);
|
|
return -1;
|
|
} else {
|
|
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
|
|
lcore_params[i].port_id;
|
|
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
|
|
lcore_params[i].queue_id;
|
|
lcore_conf[lcore].n_rx_queue++;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* display usage */
|
|
static void
|
|
print_usage(const char *prgname)
|
|
{
|
|
printf ("%s [EAL options] -- -p PORTMASK -P"
|
|
" [--config (port,queue,lcore)[,(port,queue,lcore]]"
|
|
" [--high-perf-cores CORELIST"
|
|
" [--perf-config (port,queue,hi_perf,lcore_index)[,(port,queue,hi_perf,lcore_index]]"
|
|
" [--enable-jumbo [--max-pkt-len PKTLEN]]\n"
|
|
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
|
|
" -P : enable promiscuous mode\n"
|
|
" --config (port,queue,lcore): rx queues configuration\n"
|
|
" --high-perf-cores CORELIST: list of high performance cores\n"
|
|
" --perf-config: similar as config, cores specified as indices"
|
|
" for bins containing high or regular performance cores\n"
|
|
" --no-numa: optional, disable numa awareness\n"
|
|
" --enable-jumbo: enable jumbo frame"
|
|
" which max packet len is PKTLEN in decimal (64-9600)\n"
|
|
" --parse-ptype: parse packet type by software\n"
|
|
" --empty-poll: enable empty poll detection"
|
|
" follow (training_flag, high_threshold, med_threshold)\n"
|
|
" --telemetry: enable telemetry mode, to update"
|
|
" empty polls, full polls, and core busyness to telemetry\n",
|
|
prgname);
|
|
}
|
|
|
|
static int parse_max_pkt_len(const char *pktlen)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long len;
|
|
|
|
/* parse decimal string */
|
|
len = strtoul(pktlen, &end, 10);
|
|
if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
|
|
return -1;
|
|
|
|
if (len == 0)
|
|
return -1;
|
|
|
|
return len;
|
|
}
|
|
|
|
static int
|
|
parse_portmask(const char *portmask)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long pm;
|
|
|
|
/* parse hexadecimal string */
|
|
pm = strtoul(portmask, &end, 16);
|
|
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
|
|
return -1;
|
|
|
|
if (pm == 0)
|
|
return -1;
|
|
|
|
return pm;
|
|
}
|
|
|
|
static int
|
|
parse_config(const char *q_arg)
|
|
{
|
|
char s[256];
|
|
const char *p, *p0 = q_arg;
|
|
char *end;
|
|
enum fieldnames {
|
|
FLD_PORT = 0,
|
|
FLD_QUEUE,
|
|
FLD_LCORE,
|
|
_NUM_FLD
|
|
};
|
|
unsigned long int_fld[_NUM_FLD];
|
|
char *str_fld[_NUM_FLD];
|
|
int i;
|
|
unsigned size;
|
|
|
|
nb_lcore_params = 0;
|
|
|
|
while ((p = strchr(p0,'(')) != NULL) {
|
|
++p;
|
|
if((p0 = strchr(p,')')) == NULL)
|
|
return -1;
|
|
|
|
size = p0 - p;
|
|
if(size >= sizeof(s))
|
|
return -1;
|
|
|
|
snprintf(s, sizeof(s), "%.*s", size, p);
|
|
if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') !=
|
|
_NUM_FLD)
|
|
return -1;
|
|
for (i = 0; i < _NUM_FLD; i++){
|
|
errno = 0;
|
|
int_fld[i] = strtoul(str_fld[i], &end, 0);
|
|
if (errno != 0 || end == str_fld[i] || int_fld[i] >
|
|
255)
|
|
return -1;
|
|
}
|
|
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
|
|
printf("exceeded max number of lcore params: %hu\n",
|
|
nb_lcore_params);
|
|
return -1;
|
|
}
|
|
lcore_params_array[nb_lcore_params].port_id =
|
|
(uint8_t)int_fld[FLD_PORT];
|
|
lcore_params_array[nb_lcore_params].queue_id =
|
|
(uint8_t)int_fld[FLD_QUEUE];
|
|
lcore_params_array[nb_lcore_params].lcore_id =
|
|
(uint8_t)int_fld[FLD_LCORE];
|
|
++nb_lcore_params;
|
|
}
|
|
lcore_params = lcore_params_array;
|
|
|
|
return 0;
|
|
}
|
|
static int
|
|
parse_ep_config(const char *q_arg)
|
|
{
|
|
char s[256];
|
|
const char *p = q_arg;
|
|
char *end;
|
|
int num_arg;
|
|
|
|
char *str_fld[3];
|
|
|
|
int training_flag;
|
|
int med_edpi;
|
|
int hgh_edpi;
|
|
|
|
ep_med_edpi = EMPTY_POLL_MED_THRESHOLD;
|
|
ep_hgh_edpi = EMPTY_POLL_MED_THRESHOLD;
|
|
|
|
strlcpy(s, p, sizeof(s));
|
|
|
|
num_arg = rte_strsplit(s, sizeof(s), str_fld, 3, ',');
|
|
|
|
empty_poll_train = false;
|
|
|
|
if (num_arg == 0)
|
|
return 0;
|
|
|
|
if (num_arg == 3) {
|
|
|
|
training_flag = strtoul(str_fld[0], &end, 0);
|
|
med_edpi = strtoul(str_fld[1], &end, 0);
|
|
hgh_edpi = strtoul(str_fld[2], &end, 0);
|
|
|
|
if (training_flag == 1)
|
|
empty_poll_train = true;
|
|
|
|
if (med_edpi > 0)
|
|
ep_med_edpi = med_edpi;
|
|
|
|
if (med_edpi > 0)
|
|
ep_hgh_edpi = hgh_edpi;
|
|
|
|
} else {
|
|
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
#define CMD_LINE_OPT_PARSE_PTYPE "parse-ptype"
|
|
#define CMD_LINE_OPT_TELEMETRY "telemetry"
|
|
|
|
/* Parse the argument given in the command line of the application */
|
|
static int
|
|
parse_args(int argc, char **argv)
|
|
{
|
|
int opt, ret;
|
|
char **argvopt;
|
|
int option_index;
|
|
uint32_t limit;
|
|
char *prgname = argv[0];
|
|
static struct option lgopts[] = {
|
|
{"config", 1, 0, 0},
|
|
{"perf-config", 1, 0, 0},
|
|
{"high-perf-cores", 1, 0, 0},
|
|
{"no-numa", 0, 0, 0},
|
|
{"enable-jumbo", 0, 0, 0},
|
|
{"empty-poll", 1, 0, 0},
|
|
{CMD_LINE_OPT_PARSE_PTYPE, 0, 0, 0},
|
|
{CMD_LINE_OPT_TELEMETRY, 0, 0, 0},
|
|
{NULL, 0, 0, 0}
|
|
};
|
|
|
|
argvopt = argv;
|
|
|
|
while ((opt = getopt_long(argc, argvopt, "p:l:m:h:P",
|
|
lgopts, &option_index)) != EOF) {
|
|
|
|
switch (opt) {
|
|
/* portmask */
|
|
case 'p':
|
|
enabled_port_mask = parse_portmask(optarg);
|
|
if (enabled_port_mask == 0) {
|
|
printf("invalid portmask\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
break;
|
|
case 'P':
|
|
printf("Promiscuous mode selected\n");
|
|
promiscuous_on = 1;
|
|
break;
|
|
case 'l':
|
|
limit = parse_max_pkt_len(optarg);
|
|
freq_tlb[LOW] = limit;
|
|
break;
|
|
case 'm':
|
|
limit = parse_max_pkt_len(optarg);
|
|
freq_tlb[MED] = limit;
|
|
break;
|
|
case 'h':
|
|
limit = parse_max_pkt_len(optarg);
|
|
freq_tlb[HGH] = limit;
|
|
break;
|
|
/* long options */
|
|
case 0:
|
|
if (!strncmp(lgopts[option_index].name, "config", 6)) {
|
|
ret = parse_config(optarg);
|
|
if (ret) {
|
|
printf("invalid config\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name,
|
|
"perf-config", 11)) {
|
|
ret = parse_perf_config(optarg);
|
|
if (ret) {
|
|
printf("invalid perf-config\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name,
|
|
"high-perf-cores", 15)) {
|
|
ret = parse_perf_core_list(optarg);
|
|
if (ret) {
|
|
printf("invalid high-perf-cores\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name,
|
|
"no-numa", 7)) {
|
|
printf("numa is disabled \n");
|
|
numa_on = 0;
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name,
|
|
"empty-poll", 10)) {
|
|
if (app_mode == APP_MODE_TELEMETRY) {
|
|
printf(" empty-poll cannot be enabled as telemetry mode is enabled\n");
|
|
return -1;
|
|
}
|
|
app_mode = APP_MODE_EMPTY_POLL;
|
|
ret = parse_ep_config(optarg);
|
|
|
|
if (ret) {
|
|
printf("invalid empty poll config\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
printf("empty-poll is enabled\n");
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name,
|
|
CMD_LINE_OPT_TELEMETRY,
|
|
sizeof(CMD_LINE_OPT_TELEMETRY))) {
|
|
if (app_mode == APP_MODE_EMPTY_POLL) {
|
|
printf("telemetry mode cannot be enabled as empty poll mode is enabled\n");
|
|
return -1;
|
|
}
|
|
app_mode = APP_MODE_TELEMETRY;
|
|
printf("telemetry mode is enabled\n");
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name,
|
|
"enable-jumbo", 12)) {
|
|
struct option lenopts =
|
|
{"max-pkt-len", required_argument, \
|
|
0, 0};
|
|
|
|
printf("jumbo frame is enabled \n");
|
|
port_conf.rxmode.offloads |=
|
|
DEV_RX_OFFLOAD_JUMBO_FRAME;
|
|
port_conf.txmode.offloads |=
|
|
DEV_TX_OFFLOAD_MULTI_SEGS;
|
|
|
|
/**
|
|
* if no max-pkt-len set, use the default value
|
|
* RTE_ETHER_MAX_LEN
|
|
*/
|
|
if (0 == getopt_long(argc, argvopt, "",
|
|
&lenopts, &option_index)) {
|
|
ret = parse_max_pkt_len(optarg);
|
|
if ((ret < 64) ||
|
|
(ret > MAX_JUMBO_PKT_LEN)){
|
|
printf("invalid packet "
|
|
"length\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
port_conf.rxmode.max_rx_pkt_len = ret;
|
|
}
|
|
printf("set jumbo frame "
|
|
"max packet length to %u\n",
|
|
(unsigned int)port_conf.rxmode.max_rx_pkt_len);
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name,
|
|
CMD_LINE_OPT_PARSE_PTYPE,
|
|
sizeof(CMD_LINE_OPT_PARSE_PTYPE))) {
|
|
printf("soft parse-ptype is enabled\n");
|
|
parse_ptype = 1;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (optind >= 0)
|
|
argv[optind-1] = prgname;
|
|
|
|
ret = optind-1;
|
|
optind = 1; /* reset getopt lib */
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
|
|
{
|
|
char buf[RTE_ETHER_ADDR_FMT_SIZE];
|
|
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
|
|
printf("%s%s", name, buf);
|
|
}
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
static void
|
|
setup_hash(int socketid)
|
|
{
|
|
struct rte_hash_parameters ipv4_l3fwd_hash_params = {
|
|
.name = NULL,
|
|
.entries = L3FWD_HASH_ENTRIES,
|
|
.key_len = sizeof(struct ipv4_5tuple),
|
|
.hash_func = DEFAULT_HASH_FUNC,
|
|
.hash_func_init_val = 0,
|
|
};
|
|
|
|
struct rte_hash_parameters ipv6_l3fwd_hash_params = {
|
|
.name = NULL,
|
|
.entries = L3FWD_HASH_ENTRIES,
|
|
.key_len = sizeof(struct ipv6_5tuple),
|
|
.hash_func = DEFAULT_HASH_FUNC,
|
|
.hash_func_init_val = 0,
|
|
};
|
|
|
|
unsigned i;
|
|
int ret;
|
|
char s[64];
|
|
|
|
/* create ipv4 hash */
|
|
snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
|
|
ipv4_l3fwd_hash_params.name = s;
|
|
ipv4_l3fwd_hash_params.socket_id = socketid;
|
|
ipv4_l3fwd_lookup_struct[socketid] =
|
|
rte_hash_create(&ipv4_l3fwd_hash_params);
|
|
if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
|
|
"socket %d\n", socketid);
|
|
|
|
/* create ipv6 hash */
|
|
snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
|
|
ipv6_l3fwd_hash_params.name = s;
|
|
ipv6_l3fwd_hash_params.socket_id = socketid;
|
|
ipv6_l3fwd_lookup_struct[socketid] =
|
|
rte_hash_create(&ipv6_l3fwd_hash_params);
|
|
if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
|
|
"socket %d\n", socketid);
|
|
|
|
|
|
/* populate the ipv4 hash */
|
|
for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
|
|
ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
|
|
(void *) &ipv4_l3fwd_route_array[i].key);
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
|
|
"l3fwd hash on socket %d\n", i, socketid);
|
|
}
|
|
ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
|
|
printf("Hash: Adding key\n");
|
|
print_ipv4_key(ipv4_l3fwd_route_array[i].key);
|
|
}
|
|
|
|
/* populate the ipv6 hash */
|
|
for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
|
|
ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
|
|
(void *) &ipv6_l3fwd_route_array[i].key);
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
|
|
"l3fwd hash on socket %d\n", i, socketid);
|
|
}
|
|
ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
|
|
printf("Hash: Adding key\n");
|
|
print_ipv6_key(ipv6_l3fwd_route_array[i].key);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
static void
|
|
setup_lpm(int socketid)
|
|
{
|
|
unsigned i;
|
|
int ret;
|
|
char s[64];
|
|
|
|
/* create the LPM table */
|
|
struct rte_lpm_config lpm_ipv4_config;
|
|
|
|
lpm_ipv4_config.max_rules = IPV4_L3FWD_LPM_MAX_RULES;
|
|
lpm_ipv4_config.number_tbl8s = 256;
|
|
lpm_ipv4_config.flags = 0;
|
|
|
|
snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
|
|
ipv4_l3fwd_lookup_struct[socketid] =
|
|
rte_lpm_create(s, socketid, &lpm_ipv4_config);
|
|
if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
|
|
" on socket %d\n", socketid);
|
|
|
|
/* populate the LPM table */
|
|
for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
|
|
ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
|
|
ipv4_l3fwd_route_array[i].ip,
|
|
ipv4_l3fwd_route_array[i].depth,
|
|
ipv4_l3fwd_route_array[i].if_out);
|
|
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
|
|
"l3fwd LPM table on socket %d\n",
|
|
i, socketid);
|
|
}
|
|
|
|
printf("LPM: Adding route 0x%08x / %d (%d)\n",
|
|
(unsigned)ipv4_l3fwd_route_array[i].ip,
|
|
ipv4_l3fwd_route_array[i].depth,
|
|
ipv4_l3fwd_route_array[i].if_out);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
init_mem(unsigned nb_mbuf)
|
|
{
|
|
struct lcore_conf *qconf;
|
|
int socketid;
|
|
unsigned lcore_id;
|
|
char s[64];
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
|
|
if (numa_on)
|
|
socketid = rte_lcore_to_socket_id(lcore_id);
|
|
else
|
|
socketid = 0;
|
|
|
|
if (socketid >= NB_SOCKETS) {
|
|
rte_exit(EXIT_FAILURE, "Socket %d of lcore %u is "
|
|
"out of range %d\n", socketid,
|
|
lcore_id, NB_SOCKETS);
|
|
}
|
|
if (pktmbuf_pool[socketid] == NULL) {
|
|
snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
|
|
pktmbuf_pool[socketid] =
|
|
rte_pktmbuf_pool_create(s, nb_mbuf,
|
|
MEMPOOL_CACHE_SIZE, 0,
|
|
RTE_MBUF_DEFAULT_BUF_SIZE,
|
|
socketid);
|
|
if (pktmbuf_pool[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Cannot init mbuf pool on socket %d\n",
|
|
socketid);
|
|
else
|
|
printf("Allocated mbuf pool on socket %d\n",
|
|
socketid);
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
setup_lpm(socketid);
|
|
#else
|
|
setup_hash(socketid);
|
|
#endif
|
|
}
|
|
qconf = &lcore_conf[lcore_id];
|
|
qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Check the link status of all ports in up to 9s, and print them finally */
|
|
static void
|
|
check_all_ports_link_status(uint32_t port_mask)
|
|
{
|
|
#define CHECK_INTERVAL 100 /* 100ms */
|
|
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
|
|
uint8_t count, all_ports_up, print_flag = 0;
|
|
uint16_t portid;
|
|
struct rte_eth_link link;
|
|
int ret;
|
|
|
|
printf("\nChecking link status");
|
|
fflush(stdout);
|
|
for (count = 0; count <= MAX_CHECK_TIME; count++) {
|
|
all_ports_up = 1;
|
|
RTE_ETH_FOREACH_DEV(portid) {
|
|
if ((port_mask & (1 << portid)) == 0)
|
|
continue;
|
|
memset(&link, 0, sizeof(link));
|
|
ret = rte_eth_link_get_nowait(portid, &link);
|
|
if (ret < 0) {
|
|
all_ports_up = 0;
|
|
if (print_flag == 1)
|
|
printf("Port %u link get failed: %s\n",
|
|
portid, rte_strerror(-ret));
|
|
continue;
|
|
}
|
|
/* print link status if flag set */
|
|
if (print_flag == 1) {
|
|
if (link.link_status)
|
|
printf("Port %d Link Up - speed %u "
|
|
"Mbps - %s\n", (uint8_t)portid,
|
|
(unsigned)link.link_speed,
|
|
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
|
|
("full-duplex") : ("half-duplex\n"));
|
|
else
|
|
printf("Port %d Link Down\n",
|
|
(uint8_t)portid);
|
|
continue;
|
|
}
|
|
/* clear all_ports_up flag if any link down */
|
|
if (link.link_status == ETH_LINK_DOWN) {
|
|
all_ports_up = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* after finally printing all link status, get out */
|
|
if (print_flag == 1)
|
|
break;
|
|
|
|
if (all_ports_up == 0) {
|
|
printf(".");
|
|
fflush(stdout);
|
|
rte_delay_ms(CHECK_INTERVAL);
|
|
}
|
|
|
|
/* set the print_flag if all ports up or timeout */
|
|
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
|
|
print_flag = 1;
|
|
printf("done\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
static int check_ptype(uint16_t portid)
|
|
{
|
|
int i, ret;
|
|
int ptype_l3_ipv4 = 0;
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
int ptype_l3_ipv6 = 0;
|
|
#endif
|
|
uint32_t ptype_mask = RTE_PTYPE_L3_MASK;
|
|
|
|
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
|
|
if (ret <= 0)
|
|
return 0;
|
|
|
|
uint32_t ptypes[ret];
|
|
|
|
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
|
|
for (i = 0; i < ret; ++i) {
|
|
if (ptypes[i] & RTE_PTYPE_L3_IPV4)
|
|
ptype_l3_ipv4 = 1;
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
if (ptypes[i] & RTE_PTYPE_L3_IPV6)
|
|
ptype_l3_ipv6 = 1;
|
|
#endif
|
|
}
|
|
|
|
if (ptype_l3_ipv4 == 0)
|
|
printf("port %d cannot parse RTE_PTYPE_L3_IPV4\n", portid);
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
if (ptype_l3_ipv6 == 0)
|
|
printf("port %d cannot parse RTE_PTYPE_L3_IPV6\n", portid);
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
if (ptype_l3_ipv4)
|
|
#else /* APP_LOOKUP_EXACT_MATCH */
|
|
if (ptype_l3_ipv4 && ptype_l3_ipv6)
|
|
#endif
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static int
|
|
init_power_library(void)
|
|
{
|
|
int ret = 0, lcore_id;
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id)) {
|
|
/* init power management library */
|
|
ret = rte_power_init(lcore_id);
|
|
if (ret)
|
|
RTE_LOG(ERR, POWER,
|
|
"Library initialization failed on core %u\n",
|
|
lcore_id);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
static void
|
|
update_telemetry(__attribute__((unused)) struct rte_timer *tim,
|
|
__attribute__((unused)) void *arg)
|
|
{
|
|
unsigned int lcore_id = rte_lcore_id();
|
|
struct lcore_conf *qconf;
|
|
uint64_t app_eps = 0, app_fps = 0, app_br = 0;
|
|
uint64_t values[3] = {0};
|
|
int ret;
|
|
uint64_t count = 0;
|
|
|
|
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
|
|
qconf = &lcore_conf[lcore_id];
|
|
if (qconf->n_rx_queue == 0)
|
|
continue;
|
|
count++;
|
|
rte_spinlock_lock(&stats[lcore_id].telemetry_lock);
|
|
app_eps += stats[lcore_id].ep_nep[1];
|
|
app_fps += stats[lcore_id].fp_nfp[1];
|
|
app_br += stats[lcore_id].br;
|
|
rte_spinlock_unlock(&stats[lcore_id].telemetry_lock);
|
|
}
|
|
|
|
if (count > 0) {
|
|
values[0] = app_eps/count;
|
|
values[1] = app_fps/count;
|
|
values[2] = app_br/count;
|
|
} else {
|
|
values[0] = 0;
|
|
values[1] = 0;
|
|
values[2] = 0;
|
|
}
|
|
|
|
ret = rte_metrics_update_values(RTE_METRICS_GLOBAL, telstats_index,
|
|
values, RTE_DIM(values));
|
|
if (ret < 0)
|
|
RTE_LOG(WARNING, POWER, "failed to update metrcis\n");
|
|
}
|
|
static void
|
|
telemetry_setup_timer(void)
|
|
{
|
|
int lcore_id = rte_lcore_id();
|
|
uint64_t hz = rte_get_timer_hz();
|
|
uint64_t ticks;
|
|
|
|
ticks = hz / TELEMETRY_INTERVALS_PER_SEC;
|
|
rte_timer_reset_sync(&telemetry_timer,
|
|
ticks,
|
|
PERIODICAL,
|
|
lcore_id,
|
|
update_telemetry,
|
|
NULL);
|
|
}
|
|
static void
|
|
empty_poll_setup_timer(void)
|
|
{
|
|
int lcore_id = rte_lcore_id();
|
|
uint64_t hz = rte_get_timer_hz();
|
|
|
|
struct ep_params *ep_ptr = ep_params;
|
|
|
|
ep_ptr->interval_ticks = hz / INTERVALS_PER_SECOND;
|
|
|
|
rte_timer_reset_sync(&ep_ptr->timer0,
|
|
ep_ptr->interval_ticks,
|
|
PERIODICAL,
|
|
lcore_id,
|
|
rte_empty_poll_detection,
|
|
(void *)ep_ptr);
|
|
|
|
}
|
|
static int
|
|
launch_timer(unsigned int lcore_id)
|
|
{
|
|
int64_t prev_tsc = 0, cur_tsc, diff_tsc, cycles_10ms;
|
|
|
|
RTE_SET_USED(lcore_id);
|
|
|
|
|
|
if (rte_get_master_lcore() != lcore_id) {
|
|
rte_panic("timer on lcore:%d which is not master core:%d\n",
|
|
lcore_id,
|
|
rte_get_master_lcore());
|
|
}
|
|
|
|
RTE_LOG(INFO, POWER, "Bring up the Timer\n");
|
|
|
|
if (app_mode == APP_MODE_EMPTY_POLL)
|
|
empty_poll_setup_timer();
|
|
else
|
|
telemetry_setup_timer();
|
|
|
|
cycles_10ms = rte_get_timer_hz() / 100;
|
|
|
|
while (!is_done()) {
|
|
cur_tsc = rte_rdtsc();
|
|
diff_tsc = cur_tsc - prev_tsc;
|
|
if (diff_tsc > cycles_10ms) {
|
|
rte_timer_manage();
|
|
prev_tsc = cur_tsc;
|
|
cycles_10ms = rte_get_timer_hz() / 100;
|
|
}
|
|
}
|
|
|
|
RTE_LOG(INFO, POWER, "Timer_subsystem is done\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
struct lcore_conf *qconf;
|
|
struct rte_eth_dev_info dev_info;
|
|
struct rte_eth_txconf *txconf;
|
|
int ret;
|
|
uint16_t nb_ports;
|
|
uint16_t queueid;
|
|
unsigned lcore_id;
|
|
uint64_t hz;
|
|
uint32_t n_tx_queue, nb_lcores;
|
|
uint32_t dev_rxq_num, dev_txq_num;
|
|
uint8_t nb_rx_queue, queue, socketid;
|
|
uint16_t portid;
|
|
uint8_t num_telstats = RTE_DIM(telstats_strings);
|
|
const char *ptr_strings[num_telstats];
|
|
|
|
/* catch SIGINT and restore cpufreq governor to ondemand */
|
|
signal(SIGINT, signal_exit_now);
|
|
|
|
/* init EAL */
|
|
ret = rte_eal_init(argc, argv);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
|
|
argc -= ret;
|
|
argv += ret;
|
|
|
|
/* init RTE timer library to be used late */
|
|
rte_timer_subsystem_init();
|
|
|
|
/* parse application arguments (after the EAL ones) */
|
|
ret = parse_args(argc, argv);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
|
|
|
|
if (init_power_library())
|
|
RTE_LOG(ERR, L3FWD_POWER, "init_power_library failed\n");
|
|
|
|
if (update_lcore_params() < 0)
|
|
rte_exit(EXIT_FAILURE, "update_lcore_params failed\n");
|
|
|
|
if (check_lcore_params() < 0)
|
|
rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
|
|
|
|
ret = init_lcore_rx_queues();
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
|
|
|
|
nb_ports = rte_eth_dev_count_avail();
|
|
|
|
if (check_port_config() < 0)
|
|
rte_exit(EXIT_FAILURE, "check_port_config failed\n");
|
|
|
|
nb_lcores = rte_lcore_count();
|
|
|
|
/* initialize all ports */
|
|
RTE_ETH_FOREACH_DEV(portid) {
|
|
struct rte_eth_conf local_port_conf = port_conf;
|
|
|
|
/* skip ports that are not enabled */
|
|
if ((enabled_port_mask & (1 << portid)) == 0) {
|
|
printf("\nSkipping disabled port %d\n", portid);
|
|
continue;
|
|
}
|
|
|
|
/* init port */
|
|
printf("Initializing port %d ... ", portid );
|
|
fflush(stdout);
|
|
|
|
ret = rte_eth_dev_info_get(portid, &dev_info);
|
|
if (ret != 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Error during getting device (port %u) info: %s\n",
|
|
portid, strerror(-ret));
|
|
|
|
dev_rxq_num = dev_info.max_rx_queues;
|
|
dev_txq_num = dev_info.max_tx_queues;
|
|
|
|
nb_rx_queue = get_port_n_rx_queues(portid);
|
|
if (nb_rx_queue > dev_rxq_num)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Cannot configure not existed rxq: "
|
|
"port=%d\n", portid);
|
|
|
|
n_tx_queue = nb_lcores;
|
|
if (n_tx_queue > dev_txq_num)
|
|
n_tx_queue = dev_txq_num;
|
|
printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
|
|
nb_rx_queue, (unsigned)n_tx_queue );
|
|
/* If number of Rx queue is 0, no need to enable Rx interrupt */
|
|
if (nb_rx_queue == 0)
|
|
local_port_conf.intr_conf.rxq = 0;
|
|
|
|
ret = rte_eth_dev_info_get(portid, &dev_info);
|
|
if (ret != 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Error during getting device (port %u) info: %s\n",
|
|
portid, strerror(-ret));
|
|
|
|
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
|
|
local_port_conf.txmode.offloads |=
|
|
DEV_TX_OFFLOAD_MBUF_FAST_FREE;
|
|
|
|
local_port_conf.rx_adv_conf.rss_conf.rss_hf &=
|
|
dev_info.flow_type_rss_offloads;
|
|
if (local_port_conf.rx_adv_conf.rss_conf.rss_hf !=
|
|
port_conf.rx_adv_conf.rss_conf.rss_hf) {
|
|
printf("Port %u modified RSS hash function based on hardware support,"
|
|
"requested:%#"PRIx64" configured:%#"PRIx64"\n",
|
|
portid,
|
|
port_conf.rx_adv_conf.rss_conf.rss_hf,
|
|
local_port_conf.rx_adv_conf.rss_conf.rss_hf);
|
|
}
|
|
|
|
ret = rte_eth_dev_configure(portid, nb_rx_queue,
|
|
(uint16_t)n_tx_queue, &local_port_conf);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Cannot configure device: "
|
|
"err=%d, port=%d\n", ret, portid);
|
|
|
|
ret = rte_eth_dev_adjust_nb_rx_tx_desc(portid, &nb_rxd,
|
|
&nb_txd);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Cannot adjust number of descriptors: err=%d, port=%d\n",
|
|
ret, portid);
|
|
|
|
ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Cannot get MAC address: err=%d, port=%d\n",
|
|
ret, portid);
|
|
|
|
print_ethaddr(" Address:", &ports_eth_addr[portid]);
|
|
printf(", ");
|
|
|
|
/* init memory */
|
|
ret = init_mem(NB_MBUF);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "init_mem failed\n");
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
|
|
/* Initialize TX buffers */
|
|
qconf = &lcore_conf[lcore_id];
|
|
qconf->tx_buffer[portid] = rte_zmalloc_socket("tx_buffer",
|
|
RTE_ETH_TX_BUFFER_SIZE(MAX_PKT_BURST), 0,
|
|
rte_eth_dev_socket_id(portid));
|
|
if (qconf->tx_buffer[portid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Can't allocate tx buffer for port %u\n",
|
|
portid);
|
|
|
|
rte_eth_tx_buffer_init(qconf->tx_buffer[portid], MAX_PKT_BURST);
|
|
}
|
|
|
|
/* init one TX queue per couple (lcore,port) */
|
|
queueid = 0;
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
|
|
if (queueid >= dev_txq_num)
|
|
continue;
|
|
|
|
if (numa_on)
|
|
socketid = \
|
|
(uint8_t)rte_lcore_to_socket_id(lcore_id);
|
|
else
|
|
socketid = 0;
|
|
|
|
printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
|
|
fflush(stdout);
|
|
|
|
txconf = &dev_info.default_txconf;
|
|
txconf->offloads = local_port_conf.txmode.offloads;
|
|
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
|
|
socketid, txconf);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"rte_eth_tx_queue_setup: err=%d, "
|
|
"port=%d\n", ret, portid);
|
|
|
|
qconf = &lcore_conf[lcore_id];
|
|
qconf->tx_queue_id[portid] = queueid;
|
|
queueid++;
|
|
|
|
qconf->tx_port_id[qconf->n_tx_port] = portid;
|
|
qconf->n_tx_port++;
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
|
|
if (app_mode == APP_MODE_LEGACY) {
|
|
/* init timer structures for each enabled lcore */
|
|
rte_timer_init(&power_timers[lcore_id]);
|
|
hz = rte_get_timer_hz();
|
|
rte_timer_reset(&power_timers[lcore_id],
|
|
hz/TIMER_NUMBER_PER_SECOND,
|
|
SINGLE, lcore_id,
|
|
power_timer_cb, NULL);
|
|
}
|
|
qconf = &lcore_conf[lcore_id];
|
|
printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
|
|
fflush(stdout);
|
|
/* init RX queues */
|
|
for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
|
|
struct rte_eth_rxconf rxq_conf;
|
|
|
|
portid = qconf->rx_queue_list[queue].port_id;
|
|
queueid = qconf->rx_queue_list[queue].queue_id;
|
|
|
|
if (numa_on)
|
|
socketid = \
|
|
(uint8_t)rte_lcore_to_socket_id(lcore_id);
|
|
else
|
|
socketid = 0;
|
|
|
|
printf("rxq=%d,%d,%d ", portid, queueid, socketid);
|
|
fflush(stdout);
|
|
|
|
ret = rte_eth_dev_info_get(portid, &dev_info);
|
|
if (ret != 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Error during getting device (port %u) info: %s\n",
|
|
portid, strerror(-ret));
|
|
|
|
rxq_conf = dev_info.default_rxconf;
|
|
rxq_conf.offloads = port_conf.rxmode.offloads;
|
|
ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
|
|
socketid, &rxq_conf,
|
|
pktmbuf_pool[socketid]);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"rte_eth_rx_queue_setup: err=%d, "
|
|
"port=%d\n", ret, portid);
|
|
|
|
if (parse_ptype) {
|
|
if (add_cb_parse_ptype(portid, queueid) < 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Fail to add ptype cb\n");
|
|
} else if (!check_ptype(portid))
|
|
rte_exit(EXIT_FAILURE,
|
|
"PMD can not provide needed ptypes\n");
|
|
}
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
/* start ports */
|
|
RTE_ETH_FOREACH_DEV(portid) {
|
|
if ((enabled_port_mask & (1 << portid)) == 0) {
|
|
continue;
|
|
}
|
|
/* Start device */
|
|
ret = rte_eth_dev_start(portid);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, "
|
|
"port=%d\n", ret, portid);
|
|
/*
|
|
* If enabled, put device in promiscuous mode.
|
|
* This allows IO forwarding mode to forward packets
|
|
* to itself through 2 cross-connected ports of the
|
|
* target machine.
|
|
*/
|
|
if (promiscuous_on) {
|
|
ret = rte_eth_promiscuous_enable(portid);
|
|
if (ret != 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"rte_eth_promiscuous_enable: err=%s, port=%u\n",
|
|
rte_strerror(-ret), portid);
|
|
}
|
|
/* initialize spinlock for each port */
|
|
rte_spinlock_init(&(locks[portid]));
|
|
}
|
|
|
|
check_all_ports_link_status(enabled_port_mask);
|
|
|
|
if (app_mode == APP_MODE_EMPTY_POLL) {
|
|
|
|
if (empty_poll_train) {
|
|
policy.state = TRAINING;
|
|
} else {
|
|
policy.state = MED_NORMAL;
|
|
policy.med_base_edpi = ep_med_edpi;
|
|
policy.hgh_base_edpi = ep_hgh_edpi;
|
|
}
|
|
|
|
ret = rte_power_empty_poll_stat_init(&ep_params,
|
|
freq_tlb,
|
|
&policy);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "empty poll init failed");
|
|
}
|
|
|
|
|
|
/* launch per-lcore init on every lcore */
|
|
if (app_mode == APP_MODE_LEGACY) {
|
|
rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
|
|
} else if (app_mode == APP_MODE_EMPTY_POLL) {
|
|
empty_poll_stop = false;
|
|
rte_eal_mp_remote_launch(main_empty_poll_loop, NULL,
|
|
SKIP_MASTER);
|
|
} else {
|
|
unsigned int i;
|
|
|
|
/* Init metrics library */
|
|
rte_metrics_init(rte_socket_id());
|
|
/** Register stats with metrics library */
|
|
for (i = 0; i < num_telstats; i++)
|
|
ptr_strings[i] = telstats_strings[i].name;
|
|
|
|
ret = rte_metrics_reg_names(ptr_strings, num_telstats);
|
|
if (ret >= 0)
|
|
telstats_index = ret;
|
|
else
|
|
rte_exit(EXIT_FAILURE, "failed to register metrics names");
|
|
|
|
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
|
|
rte_spinlock_init(&stats[lcore_id].telemetry_lock);
|
|
}
|
|
rte_timer_init(&telemetry_timer);
|
|
rte_eal_mp_remote_launch(main_telemetry_loop, NULL,
|
|
SKIP_MASTER);
|
|
}
|
|
|
|
if (app_mode == APP_MODE_EMPTY_POLL || app_mode == APP_MODE_TELEMETRY)
|
|
launch_timer(rte_lcore_id());
|
|
|
|
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
|
|
if (rte_eal_wait_lcore(lcore_id) < 0)
|
|
return -1;
|
|
}
|
|
|
|
if (app_mode == APP_MODE_EMPTY_POLL)
|
|
rte_power_empty_poll_stat_free();
|
|
|
|
return 0;
|
|
}
|