Viacheslav Ovsiienko 9bf26e1318 ethdev: move egress metadata to dynamic field
The dynamic mbuf fields were introduced by [1]. The egress metadata is
good candidate to be moved from statically allocated field tx_metadata to
dynamic one. Because mbufs are used in half-duplex fashion only, it is
safe to share this dynamic field with ingress metadata.

The shared dynamic field contains either egress (if application going to
transmit mbuf with tx_burst) or ingress (if mbuf is received with rx_burst)
metadata and can be accessed by RTE_FLOW_DYNF_METADATA() macro or with
rte_flow_dynf_metadata_set() and rte_flow_dynf_metadata_get() helper
routines. PKT_TX_DYNF_METADATA/PKT_RX_DYNF_METADATA flag will be set
along with the data.

The mbuf dynamic field must be registered by calling
rte_flow_dynf_metadata_register() prior accessing the data.

The availability of dynamic mbuf metadata field can be checked with
rte_flow_dynf_metadata_avail() routine.

DEV_TX_OFFLOAD_MATCH_METADATA offload and configuration flag is removed.
The metadata support in PMDs is engaged on dynamic field registration.

Metadata feature is getting complex. We might have some set of actions
and items that might be supported by PMDs in multiple combinations,
the supported values and masks are the subjects to query by perfroming
trials (with rte_flow_validate).

[1] http://patches.dpdk.org/patch/62040/

Signed-off-by: Viacheslav Ovsiienko <viacheslavo@mellanox.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: Olivier Matz <olivier.matz@6wind.com>
Acked-by: Ori Kam <orika@mellanox.com>
2019-11-08 23:15:05 +01:00

735 lines
20 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation.
* Copyright 2014 6WIND S.A.
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdarg.h>
#include <inttypes.h>
#include <errno.h>
#include <ctype.h>
#include <sys/queue.h>
#include <rte_compat.h>
#include <rte_debug.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_mbuf_pool_ops.h>
#include <rte_string_fns.h>
#include <rte_hexdump.h>
#include <rte_errno.h>
#include <rte_memcpy.h>
/*
* pktmbuf pool constructor, given as a callback function to
* rte_mempool_create(), or called directly if using
* rte_mempool_create_empty()/rte_mempool_populate()
*/
void
rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg)
{
struct rte_pktmbuf_pool_private *user_mbp_priv, *mbp_priv;
struct rte_pktmbuf_pool_private default_mbp_priv;
uint16_t roomsz;
RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf));
/* if no structure is provided, assume no mbuf private area */
user_mbp_priv = opaque_arg;
if (user_mbp_priv == NULL) {
default_mbp_priv.mbuf_priv_size = 0;
if (mp->elt_size > sizeof(struct rte_mbuf))
roomsz = mp->elt_size - sizeof(struct rte_mbuf);
else
roomsz = 0;
default_mbp_priv.mbuf_data_room_size = roomsz;
user_mbp_priv = &default_mbp_priv;
}
RTE_ASSERT(mp->elt_size >= sizeof(struct rte_mbuf) +
user_mbp_priv->mbuf_data_room_size +
user_mbp_priv->mbuf_priv_size);
mbp_priv = rte_mempool_get_priv(mp);
memcpy(mbp_priv, user_mbp_priv, sizeof(*mbp_priv));
}
/*
* pktmbuf constructor, given as a callback function to
* rte_mempool_obj_iter() or rte_mempool_create().
* Set the fields of a packet mbuf to their default values.
*/
void
rte_pktmbuf_init(struct rte_mempool *mp,
__attribute__((unused)) void *opaque_arg,
void *_m,
__attribute__((unused)) unsigned i)
{
struct rte_mbuf *m = _m;
uint32_t mbuf_size, buf_len, priv_size;
priv_size = rte_pktmbuf_priv_size(mp);
mbuf_size = sizeof(struct rte_mbuf) + priv_size;
buf_len = rte_pktmbuf_data_room_size(mp);
RTE_ASSERT(RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) == priv_size);
RTE_ASSERT(mp->elt_size >= mbuf_size);
RTE_ASSERT(buf_len <= UINT16_MAX);
memset(m, 0, mbuf_size);
/* start of buffer is after mbuf structure and priv data */
m->priv_size = priv_size;
m->buf_addr = (char *)m + mbuf_size;
m->buf_iova = rte_mempool_virt2iova(m) + mbuf_size;
m->buf_len = (uint16_t)buf_len;
/* keep some headroom between start of buffer and data */
m->data_off = RTE_MIN(RTE_PKTMBUF_HEADROOM, (uint16_t)m->buf_len);
/* init some constant fields */
m->pool = mp;
m->nb_segs = 1;
m->port = MBUF_INVALID_PORT;
rte_mbuf_refcnt_set(m, 1);
m->next = NULL;
}
/* Helper to create a mbuf pool with given mempool ops name*/
struct rte_mempool *
rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
int socket_id, const char *ops_name)
{
struct rte_mempool *mp;
struct rte_pktmbuf_pool_private mbp_priv;
const char *mp_ops_name = ops_name;
unsigned elt_size;
int ret;
if (RTE_ALIGN(priv_size, RTE_MBUF_PRIV_ALIGN) != priv_size) {
RTE_LOG(ERR, MBUF, "mbuf priv_size=%u is not aligned\n",
priv_size);
rte_errno = EINVAL;
return NULL;
}
elt_size = sizeof(struct rte_mbuf) + (unsigned)priv_size +
(unsigned)data_room_size;
mbp_priv.mbuf_data_room_size = data_room_size;
mbp_priv.mbuf_priv_size = priv_size;
mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
sizeof(struct rte_pktmbuf_pool_private), socket_id, 0);
if (mp == NULL)
return NULL;
if (mp_ops_name == NULL)
mp_ops_name = rte_mbuf_best_mempool_ops();
ret = rte_mempool_set_ops_byname(mp, mp_ops_name, NULL);
if (ret != 0) {
RTE_LOG(ERR, MBUF, "error setting mempool handler\n");
rte_mempool_free(mp);
rte_errno = -ret;
return NULL;
}
rte_pktmbuf_pool_init(mp, &mbp_priv);
ret = rte_mempool_populate_default(mp);
if (ret < 0) {
rte_mempool_free(mp);
rte_errno = -ret;
return NULL;
}
rte_mempool_obj_iter(mp, rte_pktmbuf_init, NULL);
return mp;
}
/* helper to create a mbuf pool */
struct rte_mempool *
rte_pktmbuf_pool_create(const char *name, unsigned int n,
unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
int socket_id)
{
return rte_pktmbuf_pool_create_by_ops(name, n, cache_size, priv_size,
data_room_size, socket_id, NULL);
}
/* do some sanity checks on a mbuf: panic if it fails */
void
rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header)
{
const char *reason;
if (rte_mbuf_check(m, is_header, &reason))
rte_panic("%s\n", reason);
}
int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
const char **reason)
{
unsigned int nb_segs, pkt_len;
if (m == NULL) {
*reason = "mbuf is NULL";
return -1;
}
/* generic checks */
if (m->pool == NULL) {
*reason = "bad mbuf pool";
return -1;
}
if (m->buf_iova == 0) {
*reason = "bad IO addr";
return -1;
}
if (m->buf_addr == NULL) {
*reason = "bad virt addr";
return -1;
}
uint16_t cnt = rte_mbuf_refcnt_read(m);
if ((cnt == 0) || (cnt == UINT16_MAX)) {
*reason = "bad ref cnt";
return -1;
}
/* nothing to check for sub-segments */
if (is_header == 0)
return 0;
/* data_len is supposed to be not more than pkt_len */
if (m->data_len > m->pkt_len) {
*reason = "bad data_len";
return -1;
}
nb_segs = m->nb_segs;
pkt_len = m->pkt_len;
do {
if (m->data_off > m->buf_len) {
*reason = "data offset too big in mbuf segment";
return -1;
}
if (m->data_off + m->data_len > m->buf_len) {
*reason = "data length too big in mbuf segment";
return -1;
}
nb_segs -= 1;
pkt_len -= m->data_len;
} while ((m = m->next) != NULL);
if (nb_segs) {
*reason = "bad nb_segs";
return -1;
}
if (pkt_len) {
*reason = "bad pkt_len";
return -1;
}
return 0;
}
/**
* @internal helper function for freeing a bulk of packet mbuf segments
* via an array holding the packet mbuf segments from the same mempool
* pending to be freed.
*
* @param m
* The packet mbuf segment to be freed.
* @param pending
* Pointer to the array of packet mbuf segments pending to be freed.
* @param nb_pending
* Pointer to the number of elements held in the array.
* @param pending_sz
* Number of elements the array can hold.
* Note: The compiler should optimize this parameter away when using a
* constant value, such as RTE_PKTMBUF_FREE_PENDING_SZ.
*/
static void
__rte_pktmbuf_free_seg_via_array(struct rte_mbuf *m,
struct rte_mbuf ** const pending, unsigned int * const nb_pending,
const unsigned int pending_sz)
{
m = rte_pktmbuf_prefree_seg(m);
if (likely(m != NULL)) {
if (*nb_pending == pending_sz ||
(*nb_pending > 0 && m->pool != pending[0]->pool)) {
rte_mempool_put_bulk(pending[0]->pool,
(void **)pending, *nb_pending);
*nb_pending = 0;
}
pending[(*nb_pending)++] = m;
}
}
/**
* Size of the array holding mbufs from the same mempool pending to be freed
* in bulk.
*/
#define RTE_PKTMBUF_FREE_PENDING_SZ 64
/* Free a bulk of packet mbufs back into their original mempools. */
void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count)
{
struct rte_mbuf *m, *m_next, *pending[RTE_PKTMBUF_FREE_PENDING_SZ];
unsigned int idx, nb_pending = 0;
for (idx = 0; idx < count; idx++) {
m = mbufs[idx];
if (unlikely(m == NULL))
continue;
__rte_mbuf_sanity_check(m, 1);
do {
m_next = m->next;
__rte_pktmbuf_free_seg_via_array(m,
pending, &nb_pending,
RTE_PKTMBUF_FREE_PENDING_SZ);
m = m_next;
} while (m != NULL);
}
if (nb_pending > 0)
rte_mempool_put_bulk(pending[0]->pool, (void **)pending, nb_pending);
}
/* Creates a shallow copy of mbuf */
struct rte_mbuf *
rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp)
{
struct rte_mbuf *mc, *mi, **prev;
uint32_t pktlen;
uint16_t nseg;
mc = rte_pktmbuf_alloc(mp);
if (unlikely(mc == NULL))
return NULL;
mi = mc;
prev = &mi->next;
pktlen = md->pkt_len;
nseg = 0;
do {
nseg++;
rte_pktmbuf_attach(mi, md);
*prev = mi;
prev = &mi->next;
} while ((md = md->next) != NULL &&
(mi = rte_pktmbuf_alloc(mp)) != NULL);
*prev = NULL;
mc->nb_segs = nseg;
mc->pkt_len = pktlen;
/* Allocation of new indirect segment failed */
if (unlikely(mi == NULL)) {
rte_pktmbuf_free(mc);
return NULL;
}
__rte_mbuf_sanity_check(mc, 1);
return mc;
}
/* convert multi-segment mbuf to single mbuf */
int
__rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
{
size_t seg_len, copy_len;
struct rte_mbuf *m;
struct rte_mbuf *m_next;
char *buffer;
/* Extend first segment to the total packet length */
copy_len = rte_pktmbuf_pkt_len(mbuf) - rte_pktmbuf_data_len(mbuf);
if (unlikely(copy_len > rte_pktmbuf_tailroom(mbuf)))
return -1;
buffer = rte_pktmbuf_mtod_offset(mbuf, char *, mbuf->data_len);
mbuf->data_len = (uint16_t)(mbuf->pkt_len);
/* Append data from next segments to the first one */
m = mbuf->next;
while (m != NULL) {
m_next = m->next;
seg_len = rte_pktmbuf_data_len(m);
rte_memcpy(buffer, rte_pktmbuf_mtod(m, char *), seg_len);
buffer += seg_len;
rte_pktmbuf_free_seg(m);
m = m_next;
}
mbuf->next = NULL;
mbuf->nb_segs = 1;
return 0;
}
/* Create a deep copy of mbuf */
struct rte_mbuf *
rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
uint32_t off, uint32_t len)
{
const struct rte_mbuf *seg = m;
struct rte_mbuf *mc, *m_last, **prev;
/* garbage in check */
__rte_mbuf_sanity_check(m, 1);
/* check for request to copy at offset past end of mbuf */
if (unlikely(off >= m->pkt_len))
return NULL;
mc = rte_pktmbuf_alloc(mp);
if (unlikely(mc == NULL))
return NULL;
/* truncate requested length to available data */
if (len > m->pkt_len - off)
len = m->pkt_len - off;
__rte_pktmbuf_copy_hdr(mc, m);
/* copied mbuf is not indirect or external */
mc->ol_flags = m->ol_flags & ~(IND_ATTACHED_MBUF|EXT_ATTACHED_MBUF);
prev = &mc->next;
m_last = mc;
while (len > 0) {
uint32_t copy_len;
/* skip leading mbuf segments */
while (off >= seg->data_len) {
off -= seg->data_len;
seg = seg->next;
}
/* current buffer is full, chain a new one */
if (rte_pktmbuf_tailroom(m_last) == 0) {
m_last = rte_pktmbuf_alloc(mp);
if (unlikely(m_last == NULL)) {
rte_pktmbuf_free(mc);
return NULL;
}
++mc->nb_segs;
*prev = m_last;
prev = &m_last->next;
}
/*
* copy the min of data in input segment (seg)
* vs space available in output (m_last)
*/
copy_len = RTE_MIN(seg->data_len - off, len);
if (copy_len > rte_pktmbuf_tailroom(m_last))
copy_len = rte_pktmbuf_tailroom(m_last);
/* append from seg to m_last */
rte_memcpy(rte_pktmbuf_mtod_offset(m_last, char *,
m_last->data_len),
rte_pktmbuf_mtod_offset(seg, char *, off),
copy_len);
/* update offsets and lengths */
m_last->data_len += copy_len;
mc->pkt_len += copy_len;
off += copy_len;
len -= copy_len;
}
/* garbage out check */
__rte_mbuf_sanity_check(mc, 1);
return mc;
}
/* dump a mbuf on console */
void
rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len)
{
unsigned int len;
unsigned int nb_segs;
__rte_mbuf_sanity_check(m, 1);
fprintf(f, "dump mbuf at %p, iova=%"PRIx64", buf_len=%u\n",
m, (uint64_t)m->buf_iova, (unsigned)m->buf_len);
fprintf(f, " pkt_len=%"PRIu32", ol_flags=%"PRIx64", nb_segs=%u, "
"in_port=%u\n", m->pkt_len, m->ol_flags,
(unsigned)m->nb_segs, (unsigned)m->port);
nb_segs = m->nb_segs;
while (m && nb_segs != 0) {
__rte_mbuf_sanity_check(m, 0);
fprintf(f, " segment at %p, data=%p, data_len=%u\n",
m, rte_pktmbuf_mtod(m, void *), (unsigned)m->data_len);
len = dump_len;
if (len > m->data_len)
len = m->data_len;
if (len != 0)
rte_hexdump(f, NULL, rte_pktmbuf_mtod(m, void *), len);
dump_len -= len;
m = m->next;
nb_segs --;
}
}
/* read len data bytes in a mbuf at specified offset (internal) */
const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
uint32_t len, void *buf)
{
const struct rte_mbuf *seg = m;
uint32_t buf_off = 0, copy_len;
if (off + len > rte_pktmbuf_pkt_len(m))
return NULL;
while (off >= rte_pktmbuf_data_len(seg)) {
off -= rte_pktmbuf_data_len(seg);
seg = seg->next;
}
if (off + len <= rte_pktmbuf_data_len(seg))
return rte_pktmbuf_mtod_offset(seg, char *, off);
/* rare case: header is split among several segments */
while (len > 0) {
copy_len = rte_pktmbuf_data_len(seg) - off;
if (copy_len > len)
copy_len = len;
rte_memcpy((char *)buf + buf_off,
rte_pktmbuf_mtod_offset(seg, char *, off), copy_len);
off = 0;
buf_off += copy_len;
len -= copy_len;
seg = seg->next;
}
return buf;
}
/*
* Get the name of a RX offload flag. Must be kept synchronized with flag
* definitions in rte_mbuf.h.
*/
const char *rte_get_rx_ol_flag_name(uint64_t mask)
{
switch (mask) {
case PKT_RX_VLAN: return "PKT_RX_VLAN";
case PKT_RX_RSS_HASH: return "PKT_RX_RSS_HASH";
case PKT_RX_FDIR: return "PKT_RX_FDIR";
case PKT_RX_L4_CKSUM_BAD: return "PKT_RX_L4_CKSUM_BAD";
case PKT_RX_L4_CKSUM_GOOD: return "PKT_RX_L4_CKSUM_GOOD";
case PKT_RX_L4_CKSUM_NONE: return "PKT_RX_L4_CKSUM_NONE";
case PKT_RX_IP_CKSUM_BAD: return "PKT_RX_IP_CKSUM_BAD";
case PKT_RX_IP_CKSUM_GOOD: return "PKT_RX_IP_CKSUM_GOOD";
case PKT_RX_IP_CKSUM_NONE: return "PKT_RX_IP_CKSUM_NONE";
case PKT_RX_EIP_CKSUM_BAD: return "PKT_RX_EIP_CKSUM_BAD";
case PKT_RX_VLAN_STRIPPED: return "PKT_RX_VLAN_STRIPPED";
case PKT_RX_IEEE1588_PTP: return "PKT_RX_IEEE1588_PTP";
case PKT_RX_IEEE1588_TMST: return "PKT_RX_IEEE1588_TMST";
case PKT_RX_FDIR_ID: return "PKT_RX_FDIR_ID";
case PKT_RX_FDIR_FLX: return "PKT_RX_FDIR_FLX";
case PKT_RX_QINQ_STRIPPED: return "PKT_RX_QINQ_STRIPPED";
case PKT_RX_QINQ: return "PKT_RX_QINQ";
case PKT_RX_LRO: return "PKT_RX_LRO";
case PKT_RX_TIMESTAMP: return "PKT_RX_TIMESTAMP";
case PKT_RX_SEC_OFFLOAD: return "PKT_RX_SEC_OFFLOAD";
case PKT_RX_SEC_OFFLOAD_FAILED: return "PKT_RX_SEC_OFFLOAD_FAILED";
case PKT_RX_OUTER_L4_CKSUM_BAD: return "PKT_RX_OUTER_L4_CKSUM_BAD";
case PKT_RX_OUTER_L4_CKSUM_GOOD: return "PKT_RX_OUTER_L4_CKSUM_GOOD";
case PKT_RX_OUTER_L4_CKSUM_INVALID:
return "PKT_RX_OUTER_L4_CKSUM_INVALID";
default: return NULL;
}
}
struct flag_mask {
uint64_t flag;
uint64_t mask;
const char *default_name;
};
/* write the list of rx ol flags in buffer buf */
int
rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
{
const struct flag_mask rx_flags[] = {
{ PKT_RX_VLAN, PKT_RX_VLAN, NULL },
{ PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, NULL },
{ PKT_RX_FDIR, PKT_RX_FDIR, NULL },
{ PKT_RX_L4_CKSUM_BAD, PKT_RX_L4_CKSUM_MASK, NULL },
{ PKT_RX_L4_CKSUM_GOOD, PKT_RX_L4_CKSUM_MASK, NULL },
{ PKT_RX_L4_CKSUM_NONE, PKT_RX_L4_CKSUM_MASK, NULL },
{ PKT_RX_L4_CKSUM_UNKNOWN, PKT_RX_L4_CKSUM_MASK,
"PKT_RX_L4_CKSUM_UNKNOWN" },
{ PKT_RX_IP_CKSUM_BAD, PKT_RX_IP_CKSUM_MASK, NULL },
{ PKT_RX_IP_CKSUM_GOOD, PKT_RX_IP_CKSUM_MASK, NULL },
{ PKT_RX_IP_CKSUM_NONE, PKT_RX_IP_CKSUM_MASK, NULL },
{ PKT_RX_IP_CKSUM_UNKNOWN, PKT_RX_IP_CKSUM_MASK,
"PKT_RX_IP_CKSUM_UNKNOWN" },
{ PKT_RX_EIP_CKSUM_BAD, PKT_RX_EIP_CKSUM_BAD, NULL },
{ PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN_STRIPPED, NULL },
{ PKT_RX_IEEE1588_PTP, PKT_RX_IEEE1588_PTP, NULL },
{ PKT_RX_IEEE1588_TMST, PKT_RX_IEEE1588_TMST, NULL },
{ PKT_RX_FDIR_ID, PKT_RX_FDIR_ID, NULL },
{ PKT_RX_FDIR_FLX, PKT_RX_FDIR_FLX, NULL },
{ PKT_RX_QINQ_STRIPPED, PKT_RX_QINQ_STRIPPED, NULL },
{ PKT_RX_LRO, PKT_RX_LRO, NULL },
{ PKT_RX_TIMESTAMP, PKT_RX_TIMESTAMP, NULL },
{ PKT_RX_SEC_OFFLOAD, PKT_RX_SEC_OFFLOAD, NULL },
{ PKT_RX_SEC_OFFLOAD_FAILED, PKT_RX_SEC_OFFLOAD_FAILED, NULL },
{ PKT_RX_QINQ, PKT_RX_QINQ, NULL },
{ PKT_RX_OUTER_L4_CKSUM_BAD, PKT_RX_OUTER_L4_CKSUM_MASK, NULL },
{ PKT_RX_OUTER_L4_CKSUM_GOOD, PKT_RX_OUTER_L4_CKSUM_MASK,
NULL },
{ PKT_RX_OUTER_L4_CKSUM_INVALID, PKT_RX_OUTER_L4_CKSUM_MASK,
NULL },
{ PKT_RX_OUTER_L4_CKSUM_UNKNOWN, PKT_RX_OUTER_L4_CKSUM_MASK,
"PKT_RX_OUTER_L4_CKSUM_UNKNOWN" },
};
const char *name;
unsigned int i;
int ret;
if (buflen == 0)
return -1;
buf[0] = '\0';
for (i = 0; i < RTE_DIM(rx_flags); i++) {
if ((mask & rx_flags[i].mask) != rx_flags[i].flag)
continue;
name = rte_get_rx_ol_flag_name(rx_flags[i].flag);
if (name == NULL)
name = rx_flags[i].default_name;
ret = snprintf(buf, buflen, "%s ", name);
if (ret < 0)
return -1;
if ((size_t)ret >= buflen)
return -1;
buf += ret;
buflen -= ret;
}
return 0;
}
/*
* Get the name of a TX offload flag. Must be kept synchronized with flag
* definitions in rte_mbuf.h.
*/
const char *rte_get_tx_ol_flag_name(uint64_t mask)
{
switch (mask) {
case PKT_TX_VLAN: return "PKT_TX_VLAN";
case PKT_TX_IP_CKSUM: return "PKT_TX_IP_CKSUM";
case PKT_TX_TCP_CKSUM: return "PKT_TX_TCP_CKSUM";
case PKT_TX_SCTP_CKSUM: return "PKT_TX_SCTP_CKSUM";
case PKT_TX_UDP_CKSUM: return "PKT_TX_UDP_CKSUM";
case PKT_TX_IEEE1588_TMST: return "PKT_TX_IEEE1588_TMST";
case PKT_TX_TCP_SEG: return "PKT_TX_TCP_SEG";
case PKT_TX_IPV4: return "PKT_TX_IPV4";
case PKT_TX_IPV6: return "PKT_TX_IPV6";
case PKT_TX_OUTER_IP_CKSUM: return "PKT_TX_OUTER_IP_CKSUM";
case PKT_TX_OUTER_IPV4: return "PKT_TX_OUTER_IPV4";
case PKT_TX_OUTER_IPV6: return "PKT_TX_OUTER_IPV6";
case PKT_TX_TUNNEL_VXLAN: return "PKT_TX_TUNNEL_VXLAN";
case PKT_TX_TUNNEL_GTP: return "PKT_TX_TUNNEL_GTP";
case PKT_TX_TUNNEL_GRE: return "PKT_TX_TUNNEL_GRE";
case PKT_TX_TUNNEL_IPIP: return "PKT_TX_TUNNEL_IPIP";
case PKT_TX_TUNNEL_GENEVE: return "PKT_TX_TUNNEL_GENEVE";
case PKT_TX_TUNNEL_MPLSINUDP: return "PKT_TX_TUNNEL_MPLSINUDP";
case PKT_TX_TUNNEL_VXLAN_GPE: return "PKT_TX_TUNNEL_VXLAN_GPE";
case PKT_TX_TUNNEL_IP: return "PKT_TX_TUNNEL_IP";
case PKT_TX_TUNNEL_UDP: return "PKT_TX_TUNNEL_UDP";
case PKT_TX_QINQ: return "PKT_TX_QINQ";
case PKT_TX_MACSEC: return "PKT_TX_MACSEC";
case PKT_TX_SEC_OFFLOAD: return "PKT_TX_SEC_OFFLOAD";
case PKT_TX_UDP_SEG: return "PKT_TX_UDP_SEG";
case PKT_TX_OUTER_UDP_CKSUM: return "PKT_TX_OUTER_UDP_CKSUM";
default: return NULL;
}
}
/* write the list of tx ol flags in buffer buf */
int
rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen)
{
const struct flag_mask tx_flags[] = {
{ PKT_TX_VLAN, PKT_TX_VLAN, NULL },
{ PKT_TX_IP_CKSUM, PKT_TX_IP_CKSUM, NULL },
{ PKT_TX_TCP_CKSUM, PKT_TX_L4_MASK, NULL },
{ PKT_TX_SCTP_CKSUM, PKT_TX_L4_MASK, NULL },
{ PKT_TX_UDP_CKSUM, PKT_TX_L4_MASK, NULL },
{ PKT_TX_L4_NO_CKSUM, PKT_TX_L4_MASK, "PKT_TX_L4_NO_CKSUM" },
{ PKT_TX_IEEE1588_TMST, PKT_TX_IEEE1588_TMST, NULL },
{ PKT_TX_TCP_SEG, PKT_TX_TCP_SEG, NULL },
{ PKT_TX_IPV4, PKT_TX_IPV4, NULL },
{ PKT_TX_IPV6, PKT_TX_IPV6, NULL },
{ PKT_TX_OUTER_IP_CKSUM, PKT_TX_OUTER_IP_CKSUM, NULL },
{ PKT_TX_OUTER_IPV4, PKT_TX_OUTER_IPV4, NULL },
{ PKT_TX_OUTER_IPV6, PKT_TX_OUTER_IPV6, NULL },
{ PKT_TX_TUNNEL_VXLAN, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_GTP, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_GRE, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_IPIP, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_GENEVE, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_MPLSINUDP, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_VXLAN_GPE, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_IP, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_TUNNEL_UDP, PKT_TX_TUNNEL_MASK, NULL },
{ PKT_TX_QINQ, PKT_TX_QINQ, NULL },
{ PKT_TX_MACSEC, PKT_TX_MACSEC, NULL },
{ PKT_TX_SEC_OFFLOAD, PKT_TX_SEC_OFFLOAD, NULL },
{ PKT_TX_UDP_SEG, PKT_TX_UDP_SEG, NULL },
{ PKT_TX_OUTER_UDP_CKSUM, PKT_TX_OUTER_UDP_CKSUM, NULL },
};
const char *name;
unsigned int i;
int ret;
if (buflen == 0)
return -1;
buf[0] = '\0';
for (i = 0; i < RTE_DIM(tx_flags); i++) {
if ((mask & tx_flags[i].mask) != tx_flags[i].flag)
continue;
name = rte_get_tx_ol_flag_name(tx_flags[i].flag);
if (name == NULL)
name = tx_flags[i].default_name;
ret = snprintf(buf, buflen, "%s ", name);
if (ret < 0)
return -1;
if ((size_t)ret >= buflen)
return -1;
buf += ret;
buflen -= ret;
}
return 0;
}