dc3cdcd69d
When generating the documentation, a new warning can be seen: .../dpdk/lib/librte_ethdev/rte_ethdev.h:2441: warning: argument 'link_speed' of command @param is not found in the argument list of rte_eth_link_speed_to_str(uint32_t speed_link) .../dpdk/lib/librte_ethdev/rte_ethdev.h:2455: warning: The following parameters of rte_eth_link_speed_to_str(uint32_t speed_link) are not documented: parameter 'speed_link' Align the function prototype to its doxygen description. Fixes: fbf931c9c392 ("ethdev: format link status text") Signed-off-by: David Marchand <david.marchand@redhat.com> Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
5061 lines
172 KiB
C
5061 lines
172 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2017 Intel Corporation
|
|
*/
|
|
|
|
#ifndef _RTE_ETHDEV_H_
|
|
#define _RTE_ETHDEV_H_
|
|
|
|
/**
|
|
* @file
|
|
*
|
|
* RTE Ethernet Device API
|
|
*
|
|
* The Ethernet Device API is composed of two parts:
|
|
*
|
|
* - The application-oriented Ethernet API that includes functions to setup
|
|
* an Ethernet device (configure it, setup its RX and TX queues and start it),
|
|
* to get its MAC address, the speed and the status of its physical link,
|
|
* to receive and to transmit packets, and so on.
|
|
*
|
|
* - The driver-oriented Ethernet API that exports functions allowing
|
|
* an Ethernet Poll Mode Driver (PMD) to allocate an Ethernet device instance,
|
|
* create memzone for HW rings and process registered callbacks, and so on.
|
|
* PMDs should include rte_ethdev_driver.h instead of this header.
|
|
*
|
|
* By default, all the functions of the Ethernet Device API exported by a PMD
|
|
* are lock-free functions which assume to not be invoked in parallel on
|
|
* different logical cores to work on the same target object. For instance,
|
|
* the receive function of a PMD cannot be invoked in parallel on two logical
|
|
* cores to poll the same RX queue [of the same port]. Of course, this function
|
|
* can be invoked in parallel by different logical cores on different RX queues.
|
|
* It is the responsibility of the upper level application to enforce this rule.
|
|
*
|
|
* If needed, parallel accesses by multiple logical cores to shared queues
|
|
* shall be explicitly protected by dedicated inline lock-aware functions
|
|
* built on top of their corresponding lock-free functions of the PMD API.
|
|
*
|
|
* In all functions of the Ethernet API, the Ethernet device is
|
|
* designated by an integer >= 0 named the device port identifier.
|
|
*
|
|
* At the Ethernet driver level, Ethernet devices are represented by a generic
|
|
* data structure of type *rte_eth_dev*.
|
|
*
|
|
* Ethernet devices are dynamically registered during the PCI probing phase
|
|
* performed at EAL initialization time.
|
|
* When an Ethernet device is being probed, an *rte_eth_dev* structure and
|
|
* a new port identifier are allocated for that device. Then, the eth_dev_init()
|
|
* function supplied by the Ethernet driver matching the probed PCI
|
|
* device is invoked to properly initialize the device.
|
|
*
|
|
* The role of the device init function consists of resetting the hardware,
|
|
* checking access to Non-volatile Memory (NVM), reading the MAC address
|
|
* from NVM etc.
|
|
*
|
|
* If the device init operation is successful, the correspondence between
|
|
* the port identifier assigned to the new device and its associated
|
|
* *rte_eth_dev* structure is effectively registered.
|
|
* Otherwise, both the *rte_eth_dev* structure and the port identifier are
|
|
* freed.
|
|
*
|
|
* The functions exported by the application Ethernet API to setup a device
|
|
* designated by its port identifier must be invoked in the following order:
|
|
* - rte_eth_dev_configure()
|
|
* - rte_eth_tx_queue_setup()
|
|
* - rte_eth_rx_queue_setup()
|
|
* - rte_eth_dev_start()
|
|
*
|
|
* Then, the network application can invoke, in any order, the functions
|
|
* exported by the Ethernet API to get the MAC address of a given device, to
|
|
* get the speed and the status of a device physical link, to receive/transmit
|
|
* [burst of] packets, and so on.
|
|
*
|
|
* If the application wants to change the configuration (i.e. call
|
|
* rte_eth_dev_configure(), rte_eth_tx_queue_setup(), or
|
|
* rte_eth_rx_queue_setup()), it must call rte_eth_dev_stop() first to stop the
|
|
* device and then do the reconfiguration before calling rte_eth_dev_start()
|
|
* again. The transmit and receive functions should not be invoked when the
|
|
* device is stopped.
|
|
*
|
|
* Please note that some configuration is not stored between calls to
|
|
* rte_eth_dev_stop()/rte_eth_dev_start(). The following configuration will
|
|
* be retained:
|
|
*
|
|
* - MTU
|
|
* - flow control settings
|
|
* - receive mode configuration (promiscuous mode, all-multicast mode,
|
|
* hardware checksum mode, RSS/VMDQ settings etc.)
|
|
* - VLAN filtering configuration
|
|
* - default MAC address
|
|
* - MAC addresses supplied to MAC address array
|
|
* - flow director filtering mode (but not filtering rules)
|
|
* - NIC queue statistics mappings
|
|
*
|
|
* Any other configuration will not be stored and will need to be re-entered
|
|
* before a call to rte_eth_dev_start().
|
|
*
|
|
* Finally, a network application can close an Ethernet device by invoking the
|
|
* rte_eth_dev_close() function.
|
|
*
|
|
* Each function of the application Ethernet API invokes a specific function
|
|
* of the PMD that controls the target device designated by its port
|
|
* identifier.
|
|
* For this purpose, all device-specific functions of an Ethernet driver are
|
|
* supplied through a set of pointers contained in a generic structure of type
|
|
* *eth_dev_ops*.
|
|
* The address of the *eth_dev_ops* structure is stored in the *rte_eth_dev*
|
|
* structure by the device init function of the Ethernet driver, which is
|
|
* invoked during the PCI probing phase, as explained earlier.
|
|
*
|
|
* In other words, each function of the Ethernet API simply retrieves the
|
|
* *rte_eth_dev* structure associated with the device port identifier and
|
|
* performs an indirect invocation of the corresponding driver function
|
|
* supplied in the *eth_dev_ops* structure of the *rte_eth_dev* structure.
|
|
*
|
|
* For performance reasons, the address of the burst-oriented RX and TX
|
|
* functions of the Ethernet driver are not contained in the *eth_dev_ops*
|
|
* structure. Instead, they are directly stored at the beginning of the
|
|
* *rte_eth_dev* structure to avoid an extra indirect memory access during
|
|
* their invocation.
|
|
*
|
|
* RTE ethernet device drivers do not use interrupts for transmitting or
|
|
* receiving. Instead, Ethernet drivers export Poll-Mode receive and transmit
|
|
* functions to applications.
|
|
* Both receive and transmit functions are packet-burst oriented to minimize
|
|
* their cost per packet through the following optimizations:
|
|
*
|
|
* - Sharing among multiple packets the incompressible cost of the
|
|
* invocation of receive/transmit functions.
|
|
*
|
|
* - Enabling receive/transmit functions to take advantage of burst-oriented
|
|
* hardware features (L1 cache, prefetch instructions, NIC head/tail
|
|
* registers) to minimize the number of CPU cycles per packet, for instance,
|
|
* by avoiding useless read memory accesses to ring descriptors, or by
|
|
* systematically using arrays of pointers that exactly fit L1 cache line
|
|
* boundaries and sizes.
|
|
*
|
|
* The burst-oriented receive function does not provide any error notification,
|
|
* to avoid the corresponding overhead. As a hint, the upper-level application
|
|
* might check the status of the device link once being systematically returned
|
|
* a 0 value by the receive function of the driver for a given number of tries.
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#include <stdint.h>
|
|
|
|
/* Use this macro to check if LRO API is supported */
|
|
#define RTE_ETHDEV_HAS_LRO_SUPPORT
|
|
|
|
#include <rte_compat.h>
|
|
#include <rte_log.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_dev.h>
|
|
#include <rte_devargs.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_common.h>
|
|
#include <rte_config.h>
|
|
#include <rte_ether.h>
|
|
|
|
#include "rte_ethdev_trace_fp.h"
|
|
#include "rte_dev_info.h"
|
|
|
|
extern int rte_eth_dev_logtype;
|
|
|
|
#define RTE_ETHDEV_LOG(level, ...) \
|
|
rte_log(RTE_LOG_ ## level, rte_eth_dev_logtype, "" __VA_ARGS__)
|
|
|
|
struct rte_mbuf;
|
|
|
|
/**
|
|
* Initializes a device iterator.
|
|
*
|
|
* This iterator allows accessing a list of devices matching some devargs.
|
|
*
|
|
* @param iter
|
|
* Device iterator handle initialized by the function.
|
|
* The fields bus_str and cls_str might be dynamically allocated,
|
|
* and could be freed by calling rte_eth_iterator_cleanup().
|
|
*
|
|
* @param devargs
|
|
* Device description string.
|
|
*
|
|
* @return
|
|
* 0 on successful initialization, negative otherwise.
|
|
*/
|
|
int rte_eth_iterator_init(struct rte_dev_iterator *iter, const char *devargs);
|
|
|
|
/**
|
|
* Iterates on devices with devargs filter.
|
|
* The ownership is not checked.
|
|
*
|
|
* The next port id is returned, and the iterator is updated.
|
|
*
|
|
* @param iter
|
|
* Device iterator handle initialized by rte_eth_iterator_init().
|
|
* Some fields bus_str and cls_str might be freed when no more port is found,
|
|
* by calling rte_eth_iterator_cleanup().
|
|
*
|
|
* @return
|
|
* A port id if found, RTE_MAX_ETHPORTS otherwise.
|
|
*/
|
|
uint16_t rte_eth_iterator_next(struct rte_dev_iterator *iter);
|
|
|
|
/**
|
|
* Free some allocated fields of the iterator.
|
|
*
|
|
* This function is automatically called by rte_eth_iterator_next()
|
|
* on the last iteration (i.e. when no more matching port is found).
|
|
*
|
|
* It is safe to call this function twice; it will do nothing more.
|
|
*
|
|
* @param iter
|
|
* Device iterator handle initialized by rte_eth_iterator_init().
|
|
* The fields bus_str and cls_str are freed if needed.
|
|
*/
|
|
void rte_eth_iterator_cleanup(struct rte_dev_iterator *iter);
|
|
|
|
/**
|
|
* Macro to iterate over all ethdev ports matching some devargs.
|
|
*
|
|
* If a break is done before the end of the loop,
|
|
* the function rte_eth_iterator_cleanup() must be called.
|
|
*
|
|
* @param id
|
|
* Iterated port id of type uint16_t.
|
|
* @param devargs
|
|
* Device parameters input as string of type char*.
|
|
* @param iter
|
|
* Iterator handle of type struct rte_dev_iterator, used internally.
|
|
*/
|
|
#define RTE_ETH_FOREACH_MATCHING_DEV(id, devargs, iter) \
|
|
for (rte_eth_iterator_init(iter, devargs), \
|
|
id = rte_eth_iterator_next(iter); \
|
|
id != RTE_MAX_ETHPORTS; \
|
|
id = rte_eth_iterator_next(iter))
|
|
|
|
/**
|
|
* A structure used to retrieve statistics for an Ethernet port.
|
|
* Not all statistics fields in struct rte_eth_stats are supported
|
|
* by any type of network interface card (NIC). If any statistics
|
|
* field is not supported, its value is 0.
|
|
*/
|
|
struct rte_eth_stats {
|
|
uint64_t ipackets; /**< Total number of successfully received packets. */
|
|
uint64_t opackets; /**< Total number of successfully transmitted packets.*/
|
|
uint64_t ibytes; /**< Total number of successfully received bytes. */
|
|
uint64_t obytes; /**< Total number of successfully transmitted bytes. */
|
|
uint64_t imissed;
|
|
/**< Total of RX packets dropped by the HW,
|
|
* because there are no available buffer (i.e. RX queues are full).
|
|
*/
|
|
uint64_t ierrors; /**< Total number of erroneous received packets. */
|
|
uint64_t oerrors; /**< Total number of failed transmitted packets. */
|
|
uint64_t rx_nombuf; /**< Total number of RX mbuf allocation failures. */
|
|
uint64_t q_ipackets[RTE_ETHDEV_QUEUE_STAT_CNTRS];
|
|
/**< Total number of queue RX packets. */
|
|
uint64_t q_opackets[RTE_ETHDEV_QUEUE_STAT_CNTRS];
|
|
/**< Total number of queue TX packets. */
|
|
uint64_t q_ibytes[RTE_ETHDEV_QUEUE_STAT_CNTRS];
|
|
/**< Total number of successfully received queue bytes. */
|
|
uint64_t q_obytes[RTE_ETHDEV_QUEUE_STAT_CNTRS];
|
|
/**< Total number of successfully transmitted queue bytes. */
|
|
uint64_t q_errors[RTE_ETHDEV_QUEUE_STAT_CNTRS];
|
|
/**< Total number of queue packets received that are dropped. */
|
|
};
|
|
|
|
/**
|
|
* Device supported speeds bitmap flags
|
|
*/
|
|
#define ETH_LINK_SPEED_AUTONEG (0 << 0) /**< Autonegotiate (all speeds) */
|
|
#define ETH_LINK_SPEED_FIXED (1 << 0) /**< Disable autoneg (fixed speed) */
|
|
#define ETH_LINK_SPEED_10M_HD (1 << 1) /**< 10 Mbps half-duplex */
|
|
#define ETH_LINK_SPEED_10M (1 << 2) /**< 10 Mbps full-duplex */
|
|
#define ETH_LINK_SPEED_100M_HD (1 << 3) /**< 100 Mbps half-duplex */
|
|
#define ETH_LINK_SPEED_100M (1 << 4) /**< 100 Mbps full-duplex */
|
|
#define ETH_LINK_SPEED_1G (1 << 5) /**< 1 Gbps */
|
|
#define ETH_LINK_SPEED_2_5G (1 << 6) /**< 2.5 Gbps */
|
|
#define ETH_LINK_SPEED_5G (1 << 7) /**< 5 Gbps */
|
|
#define ETH_LINK_SPEED_10G (1 << 8) /**< 10 Gbps */
|
|
#define ETH_LINK_SPEED_20G (1 << 9) /**< 20 Gbps */
|
|
#define ETH_LINK_SPEED_25G (1 << 10) /**< 25 Gbps */
|
|
#define ETH_LINK_SPEED_40G (1 << 11) /**< 40 Gbps */
|
|
#define ETH_LINK_SPEED_50G (1 << 12) /**< 50 Gbps */
|
|
#define ETH_LINK_SPEED_56G (1 << 13) /**< 56 Gbps */
|
|
#define ETH_LINK_SPEED_100G (1 << 14) /**< 100 Gbps */
|
|
#define ETH_LINK_SPEED_200G (1 << 15) /**< 200 Gbps */
|
|
|
|
/**
|
|
* Ethernet numeric link speeds in Mbps
|
|
*/
|
|
#define ETH_SPEED_NUM_NONE 0 /**< Not defined */
|
|
#define ETH_SPEED_NUM_10M 10 /**< 10 Mbps */
|
|
#define ETH_SPEED_NUM_100M 100 /**< 100 Mbps */
|
|
#define ETH_SPEED_NUM_1G 1000 /**< 1 Gbps */
|
|
#define ETH_SPEED_NUM_2_5G 2500 /**< 2.5 Gbps */
|
|
#define ETH_SPEED_NUM_5G 5000 /**< 5 Gbps */
|
|
#define ETH_SPEED_NUM_10G 10000 /**< 10 Gbps */
|
|
#define ETH_SPEED_NUM_20G 20000 /**< 20 Gbps */
|
|
#define ETH_SPEED_NUM_25G 25000 /**< 25 Gbps */
|
|
#define ETH_SPEED_NUM_40G 40000 /**< 40 Gbps */
|
|
#define ETH_SPEED_NUM_50G 50000 /**< 50 Gbps */
|
|
#define ETH_SPEED_NUM_56G 56000 /**< 56 Gbps */
|
|
#define ETH_SPEED_NUM_100G 100000 /**< 100 Gbps */
|
|
#define ETH_SPEED_NUM_200G 200000 /**< 200 Gbps */
|
|
#define ETH_SPEED_NUM_UNKNOWN UINT32_MAX /**< Unknown */
|
|
|
|
/**
|
|
* A structure used to retrieve link-level information of an Ethernet port.
|
|
*/
|
|
__extension__
|
|
struct rte_eth_link {
|
|
uint32_t link_speed; /**< ETH_SPEED_NUM_ */
|
|
uint16_t link_duplex : 1; /**< ETH_LINK_[HALF/FULL]_DUPLEX */
|
|
uint16_t link_autoneg : 1; /**< ETH_LINK_[AUTONEG/FIXED] */
|
|
uint16_t link_status : 1; /**< ETH_LINK_[DOWN/UP] */
|
|
} __rte_aligned(8); /**< aligned for atomic64 read/write */
|
|
|
|
/* Utility constants */
|
|
#define ETH_LINK_HALF_DUPLEX 0 /**< Half-duplex connection (see link_duplex). */
|
|
#define ETH_LINK_FULL_DUPLEX 1 /**< Full-duplex connection (see link_duplex). */
|
|
#define ETH_LINK_DOWN 0 /**< Link is down (see link_status). */
|
|
#define ETH_LINK_UP 1 /**< Link is up (see link_status). */
|
|
#define ETH_LINK_FIXED 0 /**< No autonegotiation (see link_autoneg). */
|
|
#define ETH_LINK_AUTONEG 1 /**< Autonegotiated (see link_autoneg). */
|
|
#define RTE_ETH_LINK_MAX_STR_LEN 40 /**< Max length of default link string. */
|
|
|
|
/**
|
|
* A structure used to configure the ring threshold registers of an RX/TX
|
|
* queue for an Ethernet port.
|
|
*/
|
|
struct rte_eth_thresh {
|
|
uint8_t pthresh; /**< Ring prefetch threshold. */
|
|
uint8_t hthresh; /**< Ring host threshold. */
|
|
uint8_t wthresh; /**< Ring writeback threshold. */
|
|
};
|
|
|
|
/**
|
|
* Simple flags are used for rte_eth_conf.rxmode.mq_mode.
|
|
*/
|
|
#define ETH_MQ_RX_RSS_FLAG 0x1
|
|
#define ETH_MQ_RX_DCB_FLAG 0x2
|
|
#define ETH_MQ_RX_VMDQ_FLAG 0x4
|
|
|
|
/**
|
|
* A set of values to identify what method is to be used to route
|
|
* packets to multiple queues.
|
|
*/
|
|
enum rte_eth_rx_mq_mode {
|
|
/** None of DCB,RSS or VMDQ mode */
|
|
ETH_MQ_RX_NONE = 0,
|
|
|
|
/** For RX side, only RSS is on */
|
|
ETH_MQ_RX_RSS = ETH_MQ_RX_RSS_FLAG,
|
|
/** For RX side,only DCB is on. */
|
|
ETH_MQ_RX_DCB = ETH_MQ_RX_DCB_FLAG,
|
|
/** Both DCB and RSS enable */
|
|
ETH_MQ_RX_DCB_RSS = ETH_MQ_RX_RSS_FLAG | ETH_MQ_RX_DCB_FLAG,
|
|
|
|
/** Only VMDQ, no RSS nor DCB */
|
|
ETH_MQ_RX_VMDQ_ONLY = ETH_MQ_RX_VMDQ_FLAG,
|
|
/** RSS mode with VMDQ */
|
|
ETH_MQ_RX_VMDQ_RSS = ETH_MQ_RX_RSS_FLAG | ETH_MQ_RX_VMDQ_FLAG,
|
|
/** Use VMDQ+DCB to route traffic to queues */
|
|
ETH_MQ_RX_VMDQ_DCB = ETH_MQ_RX_VMDQ_FLAG | ETH_MQ_RX_DCB_FLAG,
|
|
/** Enable both VMDQ and DCB in VMDq */
|
|
ETH_MQ_RX_VMDQ_DCB_RSS = ETH_MQ_RX_RSS_FLAG | ETH_MQ_RX_DCB_FLAG |
|
|
ETH_MQ_RX_VMDQ_FLAG,
|
|
};
|
|
|
|
/**
|
|
* for rx mq mode backward compatible
|
|
*/
|
|
#define ETH_RSS ETH_MQ_RX_RSS
|
|
#define VMDQ_DCB ETH_MQ_RX_VMDQ_DCB
|
|
#define ETH_DCB_RX ETH_MQ_RX_DCB
|
|
|
|
/**
|
|
* A set of values to identify what method is to be used to transmit
|
|
* packets using multi-TCs.
|
|
*/
|
|
enum rte_eth_tx_mq_mode {
|
|
ETH_MQ_TX_NONE = 0, /**< It is in neither DCB nor VT mode. */
|
|
ETH_MQ_TX_DCB, /**< For TX side,only DCB is on. */
|
|
ETH_MQ_TX_VMDQ_DCB, /**< For TX side,both DCB and VT is on. */
|
|
ETH_MQ_TX_VMDQ_ONLY, /**< Only VT on, no DCB */
|
|
};
|
|
|
|
/**
|
|
* for tx mq mode backward compatible
|
|
*/
|
|
#define ETH_DCB_NONE ETH_MQ_TX_NONE
|
|
#define ETH_VMDQ_DCB_TX ETH_MQ_TX_VMDQ_DCB
|
|
#define ETH_DCB_TX ETH_MQ_TX_DCB
|
|
|
|
/**
|
|
* A structure used to configure the RX features of an Ethernet port.
|
|
*/
|
|
struct rte_eth_rxmode {
|
|
/** The multi-queue packet distribution mode to be used, e.g. RSS. */
|
|
enum rte_eth_rx_mq_mode mq_mode;
|
|
uint32_t max_rx_pkt_len; /**< Only used if JUMBO_FRAME enabled. */
|
|
/** Maximum allowed size of LRO aggregated packet. */
|
|
uint32_t max_lro_pkt_size;
|
|
uint16_t split_hdr_size; /**< hdr buf size (header_split enabled).*/
|
|
/**
|
|
* Per-port Rx offloads to be set using DEV_RX_OFFLOAD_* flags.
|
|
* Only offloads set on rx_offload_capa field on rte_eth_dev_info
|
|
* structure are allowed to be set.
|
|
*/
|
|
uint64_t offloads;
|
|
|
|
uint64_t reserved_64s[2]; /**< Reserved for future fields */
|
|
void *reserved_ptrs[2]; /**< Reserved for future fields */
|
|
};
|
|
|
|
/**
|
|
* VLAN types to indicate if it is for single VLAN, inner VLAN or outer VLAN.
|
|
* Note that single VLAN is treated the same as inner VLAN.
|
|
*/
|
|
enum rte_vlan_type {
|
|
ETH_VLAN_TYPE_UNKNOWN = 0,
|
|
ETH_VLAN_TYPE_INNER, /**< Inner VLAN. */
|
|
ETH_VLAN_TYPE_OUTER, /**< Single VLAN, or outer VLAN. */
|
|
ETH_VLAN_TYPE_MAX,
|
|
};
|
|
|
|
/**
|
|
* A structure used to describe a vlan filter.
|
|
* If the bit corresponding to a VID is set, such VID is on.
|
|
*/
|
|
struct rte_vlan_filter_conf {
|
|
uint64_t ids[64];
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure the Receive Side Scaling (RSS) feature
|
|
* of an Ethernet port.
|
|
* If not NULL, the *rss_key* pointer of the *rss_conf* structure points
|
|
* to an array holding the RSS key to use for hashing specific header
|
|
* fields of received packets. The length of this array should be indicated
|
|
* by *rss_key_len* below. Otherwise, a default random hash key is used by
|
|
* the device driver.
|
|
*
|
|
* The *rss_key_len* field of the *rss_conf* structure indicates the length
|
|
* in bytes of the array pointed by *rss_key*. To be compatible, this length
|
|
* will be checked in i40e only. Others assume 40 bytes to be used as before.
|
|
*
|
|
* The *rss_hf* field of the *rss_conf* structure indicates the different
|
|
* types of IPv4/IPv6 packets to which the RSS hashing must be applied.
|
|
* Supplying an *rss_hf* equal to zero disables the RSS feature.
|
|
*/
|
|
struct rte_eth_rss_conf {
|
|
uint8_t *rss_key; /**< If not NULL, 40-byte hash key. */
|
|
uint8_t rss_key_len; /**< hash key length in bytes. */
|
|
uint64_t rss_hf; /**< Hash functions to apply - see below. */
|
|
};
|
|
|
|
/*
|
|
* A packet can be identified by hardware as different flow types. Different
|
|
* NIC hardware may support different flow types.
|
|
* Basically, the NIC hardware identifies the flow type as deep protocol as
|
|
* possible, and exclusively. For example, if a packet is identified as
|
|
* 'RTE_ETH_FLOW_NONFRAG_IPV4_TCP', it will not be any of other flow types,
|
|
* though it is an actual IPV4 packet.
|
|
*/
|
|
#define RTE_ETH_FLOW_UNKNOWN 0
|
|
#define RTE_ETH_FLOW_RAW 1
|
|
#define RTE_ETH_FLOW_IPV4 2
|
|
#define RTE_ETH_FLOW_FRAG_IPV4 3
|
|
#define RTE_ETH_FLOW_NONFRAG_IPV4_TCP 4
|
|
#define RTE_ETH_FLOW_NONFRAG_IPV4_UDP 5
|
|
#define RTE_ETH_FLOW_NONFRAG_IPV4_SCTP 6
|
|
#define RTE_ETH_FLOW_NONFRAG_IPV4_OTHER 7
|
|
#define RTE_ETH_FLOW_IPV6 8
|
|
#define RTE_ETH_FLOW_FRAG_IPV6 9
|
|
#define RTE_ETH_FLOW_NONFRAG_IPV6_TCP 10
|
|
#define RTE_ETH_FLOW_NONFRAG_IPV6_UDP 11
|
|
#define RTE_ETH_FLOW_NONFRAG_IPV6_SCTP 12
|
|
#define RTE_ETH_FLOW_NONFRAG_IPV6_OTHER 13
|
|
#define RTE_ETH_FLOW_L2_PAYLOAD 14
|
|
#define RTE_ETH_FLOW_IPV6_EX 15
|
|
#define RTE_ETH_FLOW_IPV6_TCP_EX 16
|
|
#define RTE_ETH_FLOW_IPV6_UDP_EX 17
|
|
#define RTE_ETH_FLOW_PORT 18
|
|
/**< Consider device port number as a flow differentiator */
|
|
#define RTE_ETH_FLOW_VXLAN 19 /**< VXLAN protocol based flow */
|
|
#define RTE_ETH_FLOW_GENEVE 20 /**< GENEVE protocol based flow */
|
|
#define RTE_ETH_FLOW_NVGRE 21 /**< NVGRE protocol based flow */
|
|
#define RTE_ETH_FLOW_VXLAN_GPE 22 /**< VXLAN-GPE protocol based flow */
|
|
#define RTE_ETH_FLOW_GTPU 23 /**< GTPU protocol based flow */
|
|
#define RTE_ETH_FLOW_MAX 24
|
|
|
|
/*
|
|
* Below macros are defined for RSS offload types, they can be used to
|
|
* fill rte_eth_rss_conf.rss_hf or rte_flow_action_rss.types.
|
|
*/
|
|
#define ETH_RSS_IPV4 (1ULL << 2)
|
|
#define ETH_RSS_FRAG_IPV4 (1ULL << 3)
|
|
#define ETH_RSS_NONFRAG_IPV4_TCP (1ULL << 4)
|
|
#define ETH_RSS_NONFRAG_IPV4_UDP (1ULL << 5)
|
|
#define ETH_RSS_NONFRAG_IPV4_SCTP (1ULL << 6)
|
|
#define ETH_RSS_NONFRAG_IPV4_OTHER (1ULL << 7)
|
|
#define ETH_RSS_IPV6 (1ULL << 8)
|
|
#define ETH_RSS_FRAG_IPV6 (1ULL << 9)
|
|
#define ETH_RSS_NONFRAG_IPV6_TCP (1ULL << 10)
|
|
#define ETH_RSS_NONFRAG_IPV6_UDP (1ULL << 11)
|
|
#define ETH_RSS_NONFRAG_IPV6_SCTP (1ULL << 12)
|
|
#define ETH_RSS_NONFRAG_IPV6_OTHER (1ULL << 13)
|
|
#define ETH_RSS_L2_PAYLOAD (1ULL << 14)
|
|
#define ETH_RSS_IPV6_EX (1ULL << 15)
|
|
#define ETH_RSS_IPV6_TCP_EX (1ULL << 16)
|
|
#define ETH_RSS_IPV6_UDP_EX (1ULL << 17)
|
|
#define ETH_RSS_PORT (1ULL << 18)
|
|
#define ETH_RSS_VXLAN (1ULL << 19)
|
|
#define ETH_RSS_GENEVE (1ULL << 20)
|
|
#define ETH_RSS_NVGRE (1ULL << 21)
|
|
#define ETH_RSS_GTPU (1ULL << 23)
|
|
#define ETH_RSS_ETH (1ULL << 24)
|
|
#define ETH_RSS_S_VLAN (1ULL << 25)
|
|
#define ETH_RSS_C_VLAN (1ULL << 26)
|
|
#define ETH_RSS_ESP (1ULL << 27)
|
|
#define ETH_RSS_AH (1ULL << 28)
|
|
#define ETH_RSS_L2TPV3 (1ULL << 29)
|
|
#define ETH_RSS_PFCP (1ULL << 30)
|
|
#define ETH_RSS_PPPOE (1ULL << 31)
|
|
|
|
/*
|
|
* We use the following macros to combine with above ETH_RSS_* for
|
|
* more specific input set selection. These bits are defined starting
|
|
* from the high end of the 64 bits.
|
|
* Note: If we use above ETH_RSS_* without SRC/DST_ONLY, it represents
|
|
* both SRC and DST are taken into account. If SRC_ONLY and DST_ONLY of
|
|
* the same level are used simultaneously, it is the same case as none of
|
|
* them are added.
|
|
*/
|
|
#define ETH_RSS_L3_SRC_ONLY (1ULL << 63)
|
|
#define ETH_RSS_L3_DST_ONLY (1ULL << 62)
|
|
#define ETH_RSS_L4_SRC_ONLY (1ULL << 61)
|
|
#define ETH_RSS_L4_DST_ONLY (1ULL << 60)
|
|
#define ETH_RSS_L2_SRC_ONLY (1ULL << 59)
|
|
#define ETH_RSS_L2_DST_ONLY (1ULL << 58)
|
|
|
|
/*
|
|
* Only select IPV6 address prefix as RSS input set according to
|
|
* https://tools.ietf.org/html/rfc6052
|
|
* Must be combined with ETH_RSS_IPV6, ETH_RSS_NONFRAG_IPV6_UDP,
|
|
* ETH_RSS_NONFRAG_IPV6_TCP, ETH_RSS_NONFRAG_IPV6_SCTP.
|
|
*/
|
|
#define RTE_ETH_RSS_L3_PRE32 (1ULL << 57)
|
|
#define RTE_ETH_RSS_L3_PRE40 (1ULL << 56)
|
|
#define RTE_ETH_RSS_L3_PRE48 (1ULL << 55)
|
|
#define RTE_ETH_RSS_L3_PRE56 (1ULL << 54)
|
|
#define RTE_ETH_RSS_L3_PRE64 (1ULL << 53)
|
|
#define RTE_ETH_RSS_L3_PRE96 (1ULL << 52)
|
|
|
|
/*
|
|
* Use the following macros to combine with the above layers
|
|
* to choose inner and outer layers or both for RSS computation.
|
|
* Bits 50 and 51 are reserved for this.
|
|
*/
|
|
|
|
/**
|
|
* level 0, requests the default behavior.
|
|
* Depending on the packet type, it can mean outermost, innermost,
|
|
* anything in between or even no RSS.
|
|
* It basically stands for the innermost encapsulation level RSS
|
|
* can be performed on according to PMD and device capabilities.
|
|
*/
|
|
#define ETH_RSS_LEVEL_PMD_DEFAULT (0ULL << 50)
|
|
|
|
/**
|
|
* level 1, requests RSS to be performed on the outermost packet
|
|
* encapsulation level.
|
|
*/
|
|
#define ETH_RSS_LEVEL_OUTERMOST (1ULL << 50)
|
|
|
|
/**
|
|
* level 2, requests RSS to be performed on the specified inner packet
|
|
* encapsulation level, from outermost to innermost (lower to higher values).
|
|
*/
|
|
#define ETH_RSS_LEVEL_INNERMOST (2ULL << 50)
|
|
#define ETH_RSS_LEVEL_MASK (3ULL << 50)
|
|
|
|
#define ETH_RSS_LEVEL(rss_hf) ((rss_hf & ETH_RSS_LEVEL_MASK) >> 50)
|
|
|
|
/**
|
|
* For input set change of hash filter, if SRC_ONLY and DST_ONLY of
|
|
* the same level are used simultaneously, it is the same case as
|
|
* none of them are added.
|
|
*
|
|
* @param rss_hf
|
|
* RSS types with SRC/DST_ONLY.
|
|
* @return
|
|
* RSS types.
|
|
*/
|
|
static inline uint64_t
|
|
rte_eth_rss_hf_refine(uint64_t rss_hf)
|
|
{
|
|
if ((rss_hf & ETH_RSS_L3_SRC_ONLY) && (rss_hf & ETH_RSS_L3_DST_ONLY))
|
|
rss_hf &= ~(ETH_RSS_L3_SRC_ONLY | ETH_RSS_L3_DST_ONLY);
|
|
|
|
if ((rss_hf & ETH_RSS_L4_SRC_ONLY) && (rss_hf & ETH_RSS_L4_DST_ONLY))
|
|
rss_hf &= ~(ETH_RSS_L4_SRC_ONLY | ETH_RSS_L4_DST_ONLY);
|
|
|
|
return rss_hf;
|
|
}
|
|
|
|
#define ETH_RSS_IPV6_PRE32 ( \
|
|
ETH_RSS_IPV6 | \
|
|
RTE_ETH_RSS_L3_PRE32)
|
|
|
|
#define ETH_RSS_IPV6_PRE40 ( \
|
|
ETH_RSS_IPV6 | \
|
|
RTE_ETH_RSS_L3_PRE40)
|
|
|
|
#define ETH_RSS_IPV6_PRE48 ( \
|
|
ETH_RSS_IPV6 | \
|
|
RTE_ETH_RSS_L3_PRE48)
|
|
|
|
#define ETH_RSS_IPV6_PRE56 ( \
|
|
ETH_RSS_IPV6 | \
|
|
RTE_ETH_RSS_L3_PRE56)
|
|
|
|
#define ETH_RSS_IPV6_PRE64 ( \
|
|
ETH_RSS_IPV6 | \
|
|
RTE_ETH_RSS_L3_PRE64)
|
|
|
|
#define ETH_RSS_IPV6_PRE96 ( \
|
|
ETH_RSS_IPV6 | \
|
|
RTE_ETH_RSS_L3_PRE96)
|
|
|
|
#define ETH_RSS_IPV6_PRE32_UDP ( \
|
|
ETH_RSS_NONFRAG_IPV6_UDP | \
|
|
RTE_ETH_RSS_L3_PRE32)
|
|
|
|
#define ETH_RSS_IPV6_PRE40_UDP ( \
|
|
ETH_RSS_NONFRAG_IPV6_UDP | \
|
|
RTE_ETH_RSS_L3_PRE40)
|
|
|
|
#define ETH_RSS_IPV6_PRE48_UDP ( \
|
|
ETH_RSS_NONFRAG_IPV6_UDP | \
|
|
RTE_ETH_RSS_L3_PRE48)
|
|
|
|
#define ETH_RSS_IPV6_PRE56_UDP ( \
|
|
ETH_RSS_NONFRAG_IPV6_UDP | \
|
|
RTE_ETH_RSS_L3_PRE56)
|
|
|
|
#define ETH_RSS_IPV6_PRE64_UDP ( \
|
|
ETH_RSS_NONFRAG_IPV6_UDP | \
|
|
RTE_ETH_RSS_L3_PRE64)
|
|
|
|
#define ETH_RSS_IPV6_PRE96_UDP ( \
|
|
ETH_RSS_NONFRAG_IPV6_UDP | \
|
|
RTE_ETH_RSS_L3_PRE96)
|
|
|
|
#define ETH_RSS_IPV6_PRE32_TCP ( \
|
|
ETH_RSS_NONFRAG_IPV6_TCP | \
|
|
RTE_ETH_RSS_L3_PRE32)
|
|
|
|
#define ETH_RSS_IPV6_PRE40_TCP ( \
|
|
ETH_RSS_NONFRAG_IPV6_TCP | \
|
|
RTE_ETH_RSS_L3_PRE40)
|
|
|
|
#define ETH_RSS_IPV6_PRE48_TCP ( \
|
|
ETH_RSS_NONFRAG_IPV6_TCP | \
|
|
RTE_ETH_RSS_L3_PRE48)
|
|
|
|
#define ETH_RSS_IPV6_PRE56_TCP ( \
|
|
ETH_RSS_NONFRAG_IPV6_TCP | \
|
|
RTE_ETH_RSS_L3_PRE56)
|
|
|
|
#define ETH_RSS_IPV6_PRE64_TCP ( \
|
|
ETH_RSS_NONFRAG_IPV6_TCP | \
|
|
RTE_ETH_RSS_L3_PRE64)
|
|
|
|
#define ETH_RSS_IPV6_PRE96_TCP ( \
|
|
ETH_RSS_NONFRAG_IPV6_TCP | \
|
|
RTE_ETH_RSS_L3_PRE96)
|
|
|
|
#define ETH_RSS_IPV6_PRE32_SCTP ( \
|
|
ETH_RSS_NONFRAG_IPV6_SCTP | \
|
|
RTE_ETH_RSS_L3_PRE32)
|
|
|
|
#define ETH_RSS_IPV6_PRE40_SCTP ( \
|
|
ETH_RSS_NONFRAG_IPV6_SCTP | \
|
|
RTE_ETH_RSS_L3_PRE40)
|
|
|
|
#define ETH_RSS_IPV6_PRE48_SCTP ( \
|
|
ETH_RSS_NONFRAG_IPV6_SCTP | \
|
|
RTE_ETH_RSS_L3_PRE48)
|
|
|
|
#define ETH_RSS_IPV6_PRE56_SCTP ( \
|
|
ETH_RSS_NONFRAG_IPV6_SCTP | \
|
|
RTE_ETH_RSS_L3_PRE56)
|
|
|
|
#define ETH_RSS_IPV6_PRE64_SCTP ( \
|
|
ETH_RSS_NONFRAG_IPV6_SCTP | \
|
|
RTE_ETH_RSS_L3_PRE64)
|
|
|
|
#define ETH_RSS_IPV6_PRE96_SCTP ( \
|
|
ETH_RSS_NONFRAG_IPV6_SCTP | \
|
|
RTE_ETH_RSS_L3_PRE96)
|
|
|
|
#define ETH_RSS_IP ( \
|
|
ETH_RSS_IPV4 | \
|
|
ETH_RSS_FRAG_IPV4 | \
|
|
ETH_RSS_NONFRAG_IPV4_OTHER | \
|
|
ETH_RSS_IPV6 | \
|
|
ETH_RSS_FRAG_IPV6 | \
|
|
ETH_RSS_NONFRAG_IPV6_OTHER | \
|
|
ETH_RSS_IPV6_EX)
|
|
|
|
#define ETH_RSS_UDP ( \
|
|
ETH_RSS_NONFRAG_IPV4_UDP | \
|
|
ETH_RSS_NONFRAG_IPV6_UDP | \
|
|
ETH_RSS_IPV6_UDP_EX)
|
|
|
|
#define ETH_RSS_TCP ( \
|
|
ETH_RSS_NONFRAG_IPV4_TCP | \
|
|
ETH_RSS_NONFRAG_IPV6_TCP | \
|
|
ETH_RSS_IPV6_TCP_EX)
|
|
|
|
#define ETH_RSS_SCTP ( \
|
|
ETH_RSS_NONFRAG_IPV4_SCTP | \
|
|
ETH_RSS_NONFRAG_IPV6_SCTP)
|
|
|
|
#define ETH_RSS_TUNNEL ( \
|
|
ETH_RSS_VXLAN | \
|
|
ETH_RSS_GENEVE | \
|
|
ETH_RSS_NVGRE)
|
|
|
|
#define ETH_RSS_VLAN ( \
|
|
ETH_RSS_S_VLAN | \
|
|
ETH_RSS_C_VLAN)
|
|
|
|
/**< Mask of valid RSS hash protocols */
|
|
#define ETH_RSS_PROTO_MASK ( \
|
|
ETH_RSS_IPV4 | \
|
|
ETH_RSS_FRAG_IPV4 | \
|
|
ETH_RSS_NONFRAG_IPV4_TCP | \
|
|
ETH_RSS_NONFRAG_IPV4_UDP | \
|
|
ETH_RSS_NONFRAG_IPV4_SCTP | \
|
|
ETH_RSS_NONFRAG_IPV4_OTHER | \
|
|
ETH_RSS_IPV6 | \
|
|
ETH_RSS_FRAG_IPV6 | \
|
|
ETH_RSS_NONFRAG_IPV6_TCP | \
|
|
ETH_RSS_NONFRAG_IPV6_UDP | \
|
|
ETH_RSS_NONFRAG_IPV6_SCTP | \
|
|
ETH_RSS_NONFRAG_IPV6_OTHER | \
|
|
ETH_RSS_L2_PAYLOAD | \
|
|
ETH_RSS_IPV6_EX | \
|
|
ETH_RSS_IPV6_TCP_EX | \
|
|
ETH_RSS_IPV6_UDP_EX | \
|
|
ETH_RSS_PORT | \
|
|
ETH_RSS_VXLAN | \
|
|
ETH_RSS_GENEVE | \
|
|
ETH_RSS_NVGRE)
|
|
|
|
/*
|
|
* Definitions used for redirection table entry size.
|
|
* Some RSS RETA sizes may not be supported by some drivers, check the
|
|
* documentation or the description of relevant functions for more details.
|
|
*/
|
|
#define ETH_RSS_RETA_SIZE_64 64
|
|
#define ETH_RSS_RETA_SIZE_128 128
|
|
#define ETH_RSS_RETA_SIZE_256 256
|
|
#define ETH_RSS_RETA_SIZE_512 512
|
|
#define RTE_RETA_GROUP_SIZE 64
|
|
|
|
/* Definitions used for VMDQ and DCB functionality */
|
|
#define ETH_VMDQ_MAX_VLAN_FILTERS 64 /**< Maximum nb. of VMDQ vlan filters. */
|
|
#define ETH_DCB_NUM_USER_PRIORITIES 8 /**< Maximum nb. of DCB priorities. */
|
|
#define ETH_VMDQ_DCB_NUM_QUEUES 128 /**< Maximum nb. of VMDQ DCB queues. */
|
|
#define ETH_DCB_NUM_QUEUES 128 /**< Maximum nb. of DCB queues. */
|
|
|
|
/* DCB capability defines */
|
|
#define ETH_DCB_PG_SUPPORT 0x00000001 /**< Priority Group(ETS) support. */
|
|
#define ETH_DCB_PFC_SUPPORT 0x00000002 /**< Priority Flow Control support. */
|
|
|
|
/* Definitions used for VLAN Offload functionality */
|
|
#define ETH_VLAN_STRIP_OFFLOAD 0x0001 /**< VLAN Strip On/Off */
|
|
#define ETH_VLAN_FILTER_OFFLOAD 0x0002 /**< VLAN Filter On/Off */
|
|
#define ETH_VLAN_EXTEND_OFFLOAD 0x0004 /**< VLAN Extend On/Off */
|
|
#define ETH_QINQ_STRIP_OFFLOAD 0x0008 /**< QINQ Strip On/Off */
|
|
|
|
/* Definitions used for mask VLAN setting */
|
|
#define ETH_VLAN_STRIP_MASK 0x0001 /**< VLAN Strip setting mask */
|
|
#define ETH_VLAN_FILTER_MASK 0x0002 /**< VLAN Filter setting mask*/
|
|
#define ETH_VLAN_EXTEND_MASK 0x0004 /**< VLAN Extend setting mask*/
|
|
#define ETH_QINQ_STRIP_MASK 0x0008 /**< QINQ Strip setting mask */
|
|
#define ETH_VLAN_ID_MAX 0x0FFF /**< VLAN ID is in lower 12 bits*/
|
|
|
|
/* Definitions used for receive MAC address */
|
|
#define ETH_NUM_RECEIVE_MAC_ADDR 128 /**< Maximum nb. of receive mac addr. */
|
|
|
|
/* Definitions used for unicast hash */
|
|
#define ETH_VMDQ_NUM_UC_HASH_ARRAY 128 /**< Maximum nb. of UC hash array. */
|
|
|
|
/* Definitions used for VMDQ pool rx mode setting */
|
|
#define ETH_VMDQ_ACCEPT_UNTAG 0x0001 /**< accept untagged packets. */
|
|
#define ETH_VMDQ_ACCEPT_HASH_MC 0x0002 /**< accept packets in multicast table . */
|
|
#define ETH_VMDQ_ACCEPT_HASH_UC 0x0004 /**< accept packets in unicast table. */
|
|
#define ETH_VMDQ_ACCEPT_BROADCAST 0x0008 /**< accept broadcast packets. */
|
|
#define ETH_VMDQ_ACCEPT_MULTICAST 0x0010 /**< multicast promiscuous. */
|
|
|
|
/** Maximum nb. of vlan per mirror rule */
|
|
#define ETH_MIRROR_MAX_VLANS 64
|
|
|
|
#define ETH_MIRROR_VIRTUAL_POOL_UP 0x01 /**< Virtual Pool uplink Mirroring. */
|
|
#define ETH_MIRROR_UPLINK_PORT 0x02 /**< Uplink Port Mirroring. */
|
|
#define ETH_MIRROR_DOWNLINK_PORT 0x04 /**< Downlink Port Mirroring. */
|
|
#define ETH_MIRROR_VLAN 0x08 /**< VLAN Mirroring. */
|
|
#define ETH_MIRROR_VIRTUAL_POOL_DOWN 0x10 /**< Virtual Pool downlink Mirroring. */
|
|
|
|
/**
|
|
* A structure used to configure VLAN traffic mirror of an Ethernet port.
|
|
*/
|
|
struct rte_eth_vlan_mirror {
|
|
uint64_t vlan_mask; /**< mask for valid VLAN ID. */
|
|
/** VLAN ID list for vlan mirroring. */
|
|
uint16_t vlan_id[ETH_MIRROR_MAX_VLANS];
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure traffic mirror of an Ethernet port.
|
|
*/
|
|
struct rte_eth_mirror_conf {
|
|
uint8_t rule_type; /**< Mirroring rule type */
|
|
uint8_t dst_pool; /**< Destination pool for this mirror rule. */
|
|
uint64_t pool_mask; /**< Bitmap of pool for pool mirroring */
|
|
/** VLAN ID setting for VLAN mirroring. */
|
|
struct rte_eth_vlan_mirror vlan;
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure 64 entries of Redirection Table of the
|
|
* Receive Side Scaling (RSS) feature of an Ethernet port. To configure
|
|
* more than 64 entries supported by hardware, an array of this structure
|
|
* is needed.
|
|
*/
|
|
struct rte_eth_rss_reta_entry64 {
|
|
uint64_t mask;
|
|
/**< Mask bits indicate which entries need to be updated/queried. */
|
|
uint16_t reta[RTE_RETA_GROUP_SIZE];
|
|
/**< Group of 64 redirection table entries. */
|
|
};
|
|
|
|
/**
|
|
* This enum indicates the possible number of traffic classes
|
|
* in DCB configurations
|
|
*/
|
|
enum rte_eth_nb_tcs {
|
|
ETH_4_TCS = 4, /**< 4 TCs with DCB. */
|
|
ETH_8_TCS = 8 /**< 8 TCs with DCB. */
|
|
};
|
|
|
|
/**
|
|
* This enum indicates the possible number of queue pools
|
|
* in VMDQ configurations.
|
|
*/
|
|
enum rte_eth_nb_pools {
|
|
ETH_8_POOLS = 8, /**< 8 VMDq pools. */
|
|
ETH_16_POOLS = 16, /**< 16 VMDq pools. */
|
|
ETH_32_POOLS = 32, /**< 32 VMDq pools. */
|
|
ETH_64_POOLS = 64 /**< 64 VMDq pools. */
|
|
};
|
|
|
|
/* This structure may be extended in future. */
|
|
struct rte_eth_dcb_rx_conf {
|
|
enum rte_eth_nb_tcs nb_tcs; /**< Possible DCB TCs, 4 or 8 TCs */
|
|
/** Traffic class each UP mapped to. */
|
|
uint8_t dcb_tc[ETH_DCB_NUM_USER_PRIORITIES];
|
|
};
|
|
|
|
struct rte_eth_vmdq_dcb_tx_conf {
|
|
enum rte_eth_nb_pools nb_queue_pools; /**< With DCB, 16 or 32 pools. */
|
|
/** Traffic class each UP mapped to. */
|
|
uint8_t dcb_tc[ETH_DCB_NUM_USER_PRIORITIES];
|
|
};
|
|
|
|
struct rte_eth_dcb_tx_conf {
|
|
enum rte_eth_nb_tcs nb_tcs; /**< Possible DCB TCs, 4 or 8 TCs. */
|
|
/** Traffic class each UP mapped to. */
|
|
uint8_t dcb_tc[ETH_DCB_NUM_USER_PRIORITIES];
|
|
};
|
|
|
|
struct rte_eth_vmdq_tx_conf {
|
|
enum rte_eth_nb_pools nb_queue_pools; /**< VMDq mode, 64 pools. */
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure the VMDQ+DCB feature
|
|
* of an Ethernet port.
|
|
*
|
|
* Using this feature, packets are routed to a pool of queues, based
|
|
* on the vlan id in the vlan tag, and then to a specific queue within
|
|
* that pool, using the user priority vlan tag field.
|
|
*
|
|
* A default pool may be used, if desired, to route all traffic which
|
|
* does not match the vlan filter rules.
|
|
*/
|
|
struct rte_eth_vmdq_dcb_conf {
|
|
enum rte_eth_nb_pools nb_queue_pools; /**< With DCB, 16 or 32 pools */
|
|
uint8_t enable_default_pool; /**< If non-zero, use a default pool */
|
|
uint8_t default_pool; /**< The default pool, if applicable */
|
|
uint8_t nb_pool_maps; /**< We can have up to 64 filters/mappings */
|
|
struct {
|
|
uint16_t vlan_id; /**< The vlan id of the received frame */
|
|
uint64_t pools; /**< Bitmask of pools for packet rx */
|
|
} pool_map[ETH_VMDQ_MAX_VLAN_FILTERS]; /**< VMDq vlan pool maps. */
|
|
uint8_t dcb_tc[ETH_DCB_NUM_USER_PRIORITIES];
|
|
/**< Selects a queue in a pool */
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure the VMDQ feature of an Ethernet port when
|
|
* not combined with the DCB feature.
|
|
*
|
|
* Using this feature, packets are routed to a pool of queues. By default,
|
|
* the pool selection is based on the MAC address, the vlan id in the
|
|
* vlan tag as specified in the pool_map array.
|
|
* Passing the ETH_VMDQ_ACCEPT_UNTAG in the rx_mode field allows pool
|
|
* selection using only the MAC address. MAC address to pool mapping is done
|
|
* using the rte_eth_dev_mac_addr_add function, with the pool parameter
|
|
* corresponding to the pool id.
|
|
*
|
|
* Queue selection within the selected pool will be done using RSS when
|
|
* it is enabled or revert to the first queue of the pool if not.
|
|
*
|
|
* A default pool may be used, if desired, to route all traffic which
|
|
* does not match the vlan filter rules or any pool MAC address.
|
|
*/
|
|
struct rte_eth_vmdq_rx_conf {
|
|
enum rte_eth_nb_pools nb_queue_pools; /**< VMDq only mode, 8 or 64 pools */
|
|
uint8_t enable_default_pool; /**< If non-zero, use a default pool */
|
|
uint8_t default_pool; /**< The default pool, if applicable */
|
|
uint8_t enable_loop_back; /**< Enable VT loop back */
|
|
uint8_t nb_pool_maps; /**< We can have up to 64 filters/mappings */
|
|
uint32_t rx_mode; /**< Flags from ETH_VMDQ_ACCEPT_* */
|
|
struct {
|
|
uint16_t vlan_id; /**< The vlan id of the received frame */
|
|
uint64_t pools; /**< Bitmask of pools for packet rx */
|
|
} pool_map[ETH_VMDQ_MAX_VLAN_FILTERS]; /**< VMDq vlan pool maps. */
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure the TX features of an Ethernet port.
|
|
*/
|
|
struct rte_eth_txmode {
|
|
enum rte_eth_tx_mq_mode mq_mode; /**< TX multi-queues mode. */
|
|
/**
|
|
* Per-port Tx offloads to be set using DEV_TX_OFFLOAD_* flags.
|
|
* Only offloads set on tx_offload_capa field on rte_eth_dev_info
|
|
* structure are allowed to be set.
|
|
*/
|
|
uint64_t offloads;
|
|
|
|
uint16_t pvid;
|
|
__extension__
|
|
uint8_t hw_vlan_reject_tagged : 1,
|
|
/**< If set, reject sending out tagged pkts */
|
|
hw_vlan_reject_untagged : 1,
|
|
/**< If set, reject sending out untagged pkts */
|
|
hw_vlan_insert_pvid : 1;
|
|
/**< If set, enable port based VLAN insertion */
|
|
|
|
uint64_t reserved_64s[2]; /**< Reserved for future fields */
|
|
void *reserved_ptrs[2]; /**< Reserved for future fields */
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure an RX ring of an Ethernet port.
|
|
*/
|
|
struct rte_eth_rxconf {
|
|
struct rte_eth_thresh rx_thresh; /**< RX ring threshold registers. */
|
|
uint16_t rx_free_thresh; /**< Drives the freeing of RX descriptors. */
|
|
uint8_t rx_drop_en; /**< Drop packets if no descriptors are available. */
|
|
uint8_t rx_deferred_start; /**< Do not start queue with rte_eth_dev_start(). */
|
|
/**
|
|
* Per-queue Rx offloads to be set using DEV_RX_OFFLOAD_* flags.
|
|
* Only offloads set on rx_queue_offload_capa or rx_offload_capa
|
|
* fields on rte_eth_dev_info structure are allowed to be set.
|
|
*/
|
|
uint64_t offloads;
|
|
|
|
uint64_t reserved_64s[2]; /**< Reserved for future fields */
|
|
void *reserved_ptrs[2]; /**< Reserved for future fields */
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure a TX ring of an Ethernet port.
|
|
*/
|
|
struct rte_eth_txconf {
|
|
struct rte_eth_thresh tx_thresh; /**< TX ring threshold registers. */
|
|
uint16_t tx_rs_thresh; /**< Drives the setting of RS bit on TXDs. */
|
|
uint16_t tx_free_thresh; /**< Start freeing TX buffers if there are
|
|
less free descriptors than this value. */
|
|
|
|
uint8_t tx_deferred_start; /**< Do not start queue with rte_eth_dev_start(). */
|
|
/**
|
|
* Per-queue Tx offloads to be set using DEV_TX_OFFLOAD_* flags.
|
|
* Only offloads set on tx_queue_offload_capa or tx_offload_capa
|
|
* fields on rte_eth_dev_info structure are allowed to be set.
|
|
*/
|
|
uint64_t offloads;
|
|
|
|
uint64_t reserved_64s[2]; /**< Reserved for future fields */
|
|
void *reserved_ptrs[2]; /**< Reserved for future fields */
|
|
};
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change, or be removed, without prior notice
|
|
*
|
|
* A structure used to return the hairpin capabilities that are supported.
|
|
*/
|
|
struct rte_eth_hairpin_cap {
|
|
/** The max number of hairpin queues (different bindings). */
|
|
uint16_t max_nb_queues;
|
|
/** Max number of Rx queues to be connected to one Tx queue. */
|
|
uint16_t max_rx_2_tx;
|
|
/** Max number of Tx queues to be connected to one Rx queue. */
|
|
uint16_t max_tx_2_rx;
|
|
uint16_t max_nb_desc; /**< The max num of descriptors. */
|
|
};
|
|
|
|
#define RTE_ETH_MAX_HAIRPIN_PEERS 32
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change, or be removed, without prior notice
|
|
*
|
|
* A structure used to hold hairpin peer data.
|
|
*/
|
|
struct rte_eth_hairpin_peer {
|
|
uint16_t port; /**< Peer port. */
|
|
uint16_t queue; /**< Peer queue. */
|
|
};
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change, or be removed, without prior notice
|
|
*
|
|
* A structure used to configure hairpin binding.
|
|
*/
|
|
struct rte_eth_hairpin_conf {
|
|
uint16_t peer_count; /**< The number of peers. */
|
|
struct rte_eth_hairpin_peer peers[RTE_ETH_MAX_HAIRPIN_PEERS];
|
|
};
|
|
|
|
/**
|
|
* A structure contains information about HW descriptor ring limitations.
|
|
*/
|
|
struct rte_eth_desc_lim {
|
|
uint16_t nb_max; /**< Max allowed number of descriptors. */
|
|
uint16_t nb_min; /**< Min allowed number of descriptors. */
|
|
uint16_t nb_align; /**< Number of descriptors should be aligned to. */
|
|
|
|
/**
|
|
* Max allowed number of segments per whole packet.
|
|
*
|
|
* - For TSO packet this is the total number of data descriptors allowed
|
|
* by device.
|
|
*
|
|
* @see nb_mtu_seg_max
|
|
*/
|
|
uint16_t nb_seg_max;
|
|
|
|
/**
|
|
* Max number of segments per one MTU.
|
|
*
|
|
* - For non-TSO packet, this is the maximum allowed number of segments
|
|
* in a single transmit packet.
|
|
*
|
|
* - For TSO packet each segment within the TSO may span up to this
|
|
* value.
|
|
*
|
|
* @see nb_seg_max
|
|
*/
|
|
uint16_t nb_mtu_seg_max;
|
|
};
|
|
|
|
/**
|
|
* This enum indicates the flow control mode
|
|
*/
|
|
enum rte_eth_fc_mode {
|
|
RTE_FC_NONE = 0, /**< Disable flow control. */
|
|
RTE_FC_RX_PAUSE, /**< RX pause frame, enable flowctrl on TX side. */
|
|
RTE_FC_TX_PAUSE, /**< TX pause frame, enable flowctrl on RX side. */
|
|
RTE_FC_FULL /**< Enable flow control on both side. */
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure Ethernet flow control parameter.
|
|
* These parameters will be configured into the register of the NIC.
|
|
* Please refer to the corresponding data sheet for proper value.
|
|
*/
|
|
struct rte_eth_fc_conf {
|
|
uint32_t high_water; /**< High threshold value to trigger XOFF */
|
|
uint32_t low_water; /**< Low threshold value to trigger XON */
|
|
uint16_t pause_time; /**< Pause quota in the Pause frame */
|
|
uint16_t send_xon; /**< Is XON frame need be sent */
|
|
enum rte_eth_fc_mode mode; /**< Link flow control mode */
|
|
uint8_t mac_ctrl_frame_fwd; /**< Forward MAC control frames */
|
|
uint8_t autoneg; /**< Use Pause autoneg */
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure Ethernet priority flow control parameter.
|
|
* These parameters will be configured into the register of the NIC.
|
|
* Please refer to the corresponding data sheet for proper value.
|
|
*/
|
|
struct rte_eth_pfc_conf {
|
|
struct rte_eth_fc_conf fc; /**< General flow control parameter. */
|
|
uint8_t priority; /**< VLAN User Priority. */
|
|
};
|
|
|
|
/**
|
|
* Tunneled type.
|
|
*/
|
|
enum rte_eth_tunnel_type {
|
|
RTE_TUNNEL_TYPE_NONE = 0,
|
|
RTE_TUNNEL_TYPE_VXLAN,
|
|
RTE_TUNNEL_TYPE_GENEVE,
|
|
RTE_TUNNEL_TYPE_TEREDO,
|
|
RTE_TUNNEL_TYPE_NVGRE,
|
|
RTE_TUNNEL_TYPE_IP_IN_GRE,
|
|
RTE_L2_TUNNEL_TYPE_E_TAG,
|
|
RTE_TUNNEL_TYPE_VXLAN_GPE,
|
|
RTE_TUNNEL_TYPE_MAX,
|
|
};
|
|
|
|
/* Deprecated API file for rte_eth_dev_filter_* functions */
|
|
#include "rte_eth_ctrl.h"
|
|
|
|
/**
|
|
* Memory space that can be configured to store Flow Director filters
|
|
* in the board memory.
|
|
*/
|
|
enum rte_fdir_pballoc_type {
|
|
RTE_FDIR_PBALLOC_64K = 0, /**< 64k. */
|
|
RTE_FDIR_PBALLOC_128K, /**< 128k. */
|
|
RTE_FDIR_PBALLOC_256K, /**< 256k. */
|
|
};
|
|
|
|
/**
|
|
* Select report mode of FDIR hash information in RX descriptors.
|
|
*/
|
|
enum rte_fdir_status_mode {
|
|
RTE_FDIR_NO_REPORT_STATUS = 0, /**< Never report FDIR hash. */
|
|
RTE_FDIR_REPORT_STATUS, /**< Only report FDIR hash for matching pkts. */
|
|
RTE_FDIR_REPORT_STATUS_ALWAYS, /**< Always report FDIR hash. */
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure the Flow Director (FDIR) feature
|
|
* of an Ethernet port.
|
|
*
|
|
* If mode is RTE_FDIR_MODE_NONE, the pballoc value is ignored.
|
|
*/
|
|
struct rte_fdir_conf {
|
|
enum rte_fdir_mode mode; /**< Flow Director mode. */
|
|
enum rte_fdir_pballoc_type pballoc; /**< Space for FDIR filters. */
|
|
enum rte_fdir_status_mode status; /**< How to report FDIR hash. */
|
|
/** RX queue of packets matching a "drop" filter in perfect mode. */
|
|
uint8_t drop_queue;
|
|
struct rte_eth_fdir_masks mask;
|
|
struct rte_eth_fdir_flex_conf flex_conf;
|
|
/**< Flex payload configuration. */
|
|
};
|
|
|
|
/**
|
|
* UDP tunneling configuration.
|
|
* Used to config the UDP port for a type of tunnel.
|
|
* NICs need the UDP port to identify the tunnel type.
|
|
* Normally a type of tunnel has a default UDP port, this structure can be used
|
|
* in case if the users want to change or support more UDP port.
|
|
*/
|
|
struct rte_eth_udp_tunnel {
|
|
uint16_t udp_port; /**< UDP port used for the tunnel. */
|
|
uint8_t prot_type; /**< Tunnel type. Defined in rte_eth_tunnel_type. */
|
|
};
|
|
|
|
/**
|
|
* A structure used to enable/disable specific device interrupts.
|
|
*/
|
|
struct rte_intr_conf {
|
|
/** enable/disable lsc interrupt. 0 (default) - disable, 1 enable */
|
|
uint32_t lsc:1;
|
|
/** enable/disable rxq interrupt. 0 (default) - disable, 1 enable */
|
|
uint32_t rxq:1;
|
|
/** enable/disable rmv interrupt. 0 (default) - disable, 1 enable */
|
|
uint32_t rmv:1;
|
|
};
|
|
|
|
/**
|
|
* A structure used to configure an Ethernet port.
|
|
* Depending upon the RX multi-queue mode, extra advanced
|
|
* configuration settings may be needed.
|
|
*/
|
|
struct rte_eth_conf {
|
|
uint32_t link_speeds; /**< bitmap of ETH_LINK_SPEED_XXX of speeds to be
|
|
used. ETH_LINK_SPEED_FIXED disables link
|
|
autonegotiation, and a unique speed shall be
|
|
set. Otherwise, the bitmap defines the set of
|
|
speeds to be advertised. If the special value
|
|
ETH_LINK_SPEED_AUTONEG (0) is used, all speeds
|
|
supported are advertised. */
|
|
struct rte_eth_rxmode rxmode; /**< Port RX configuration. */
|
|
struct rte_eth_txmode txmode; /**< Port TX configuration. */
|
|
uint32_t lpbk_mode; /**< Loopback operation mode. By default the value
|
|
is 0, meaning the loopback mode is disabled.
|
|
Read the datasheet of given ethernet controller
|
|
for details. The possible values of this field
|
|
are defined in implementation of each driver. */
|
|
struct {
|
|
struct rte_eth_rss_conf rss_conf; /**< Port RSS configuration */
|
|
struct rte_eth_vmdq_dcb_conf vmdq_dcb_conf;
|
|
/**< Port vmdq+dcb configuration. */
|
|
struct rte_eth_dcb_rx_conf dcb_rx_conf;
|
|
/**< Port dcb RX configuration. */
|
|
struct rte_eth_vmdq_rx_conf vmdq_rx_conf;
|
|
/**< Port vmdq RX configuration. */
|
|
} rx_adv_conf; /**< Port RX filtering configuration. */
|
|
union {
|
|
struct rte_eth_vmdq_dcb_tx_conf vmdq_dcb_tx_conf;
|
|
/**< Port vmdq+dcb TX configuration. */
|
|
struct rte_eth_dcb_tx_conf dcb_tx_conf;
|
|
/**< Port dcb TX configuration. */
|
|
struct rte_eth_vmdq_tx_conf vmdq_tx_conf;
|
|
/**< Port vmdq TX configuration. */
|
|
} tx_adv_conf; /**< Port TX DCB configuration (union). */
|
|
/** Currently,Priority Flow Control(PFC) are supported,if DCB with PFC
|
|
is needed,and the variable must be set ETH_DCB_PFC_SUPPORT. */
|
|
uint32_t dcb_capability_en;
|
|
struct rte_fdir_conf fdir_conf; /**< FDIR configuration. DEPRECATED */
|
|
struct rte_intr_conf intr_conf; /**< Interrupt mode configuration. */
|
|
};
|
|
|
|
/**
|
|
* RX offload capabilities of a device.
|
|
*/
|
|
#define DEV_RX_OFFLOAD_VLAN_STRIP 0x00000001
|
|
#define DEV_RX_OFFLOAD_IPV4_CKSUM 0x00000002
|
|
#define DEV_RX_OFFLOAD_UDP_CKSUM 0x00000004
|
|
#define DEV_RX_OFFLOAD_TCP_CKSUM 0x00000008
|
|
#define DEV_RX_OFFLOAD_TCP_LRO 0x00000010
|
|
#define DEV_RX_OFFLOAD_QINQ_STRIP 0x00000020
|
|
#define DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM 0x00000040
|
|
#define DEV_RX_OFFLOAD_MACSEC_STRIP 0x00000080
|
|
#define DEV_RX_OFFLOAD_HEADER_SPLIT 0x00000100
|
|
#define DEV_RX_OFFLOAD_VLAN_FILTER 0x00000200
|
|
#define DEV_RX_OFFLOAD_VLAN_EXTEND 0x00000400
|
|
#define DEV_RX_OFFLOAD_JUMBO_FRAME 0x00000800
|
|
#define DEV_RX_OFFLOAD_SCATTER 0x00002000
|
|
#define DEV_RX_OFFLOAD_TIMESTAMP 0x00004000
|
|
#define DEV_RX_OFFLOAD_SECURITY 0x00008000
|
|
#define DEV_RX_OFFLOAD_KEEP_CRC 0x00010000
|
|
#define DEV_RX_OFFLOAD_SCTP_CKSUM 0x00020000
|
|
#define DEV_RX_OFFLOAD_OUTER_UDP_CKSUM 0x00040000
|
|
#define DEV_RX_OFFLOAD_RSS_HASH 0x00080000
|
|
|
|
#define DEV_RX_OFFLOAD_CHECKSUM (DEV_RX_OFFLOAD_IPV4_CKSUM | \
|
|
DEV_RX_OFFLOAD_UDP_CKSUM | \
|
|
DEV_RX_OFFLOAD_TCP_CKSUM)
|
|
#define DEV_RX_OFFLOAD_VLAN (DEV_RX_OFFLOAD_VLAN_STRIP | \
|
|
DEV_RX_OFFLOAD_VLAN_FILTER | \
|
|
DEV_RX_OFFLOAD_VLAN_EXTEND | \
|
|
DEV_RX_OFFLOAD_QINQ_STRIP)
|
|
|
|
/*
|
|
* If new Rx offload capabilities are defined, they also must be
|
|
* mentioned in rte_rx_offload_names in rte_ethdev.c file.
|
|
*/
|
|
|
|
/**
|
|
* TX offload capabilities of a device.
|
|
*/
|
|
#define DEV_TX_OFFLOAD_VLAN_INSERT 0x00000001
|
|
#define DEV_TX_OFFLOAD_IPV4_CKSUM 0x00000002
|
|
#define DEV_TX_OFFLOAD_UDP_CKSUM 0x00000004
|
|
#define DEV_TX_OFFLOAD_TCP_CKSUM 0x00000008
|
|
#define DEV_TX_OFFLOAD_SCTP_CKSUM 0x00000010
|
|
#define DEV_TX_OFFLOAD_TCP_TSO 0x00000020
|
|
#define DEV_TX_OFFLOAD_UDP_TSO 0x00000040
|
|
#define DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM 0x00000080 /**< Used for tunneling packet. */
|
|
#define DEV_TX_OFFLOAD_QINQ_INSERT 0x00000100
|
|
#define DEV_TX_OFFLOAD_VXLAN_TNL_TSO 0x00000200 /**< Used for tunneling packet. */
|
|
#define DEV_TX_OFFLOAD_GRE_TNL_TSO 0x00000400 /**< Used for tunneling packet. */
|
|
#define DEV_TX_OFFLOAD_IPIP_TNL_TSO 0x00000800 /**< Used for tunneling packet. */
|
|
#define DEV_TX_OFFLOAD_GENEVE_TNL_TSO 0x00001000 /**< Used for tunneling packet. */
|
|
#define DEV_TX_OFFLOAD_MACSEC_INSERT 0x00002000
|
|
#define DEV_TX_OFFLOAD_MT_LOCKFREE 0x00004000
|
|
/**< Multiple threads can invoke rte_eth_tx_burst() concurrently on the same
|
|
* tx queue without SW lock.
|
|
*/
|
|
#define DEV_TX_OFFLOAD_MULTI_SEGS 0x00008000
|
|
/**< Device supports multi segment send. */
|
|
#define DEV_TX_OFFLOAD_MBUF_FAST_FREE 0x00010000
|
|
/**< Device supports optimization for fast release of mbufs.
|
|
* When set application must guarantee that per-queue all mbufs comes from
|
|
* the same mempool and has refcnt = 1.
|
|
*/
|
|
#define DEV_TX_OFFLOAD_SECURITY 0x00020000
|
|
/**
|
|
* Device supports generic UDP tunneled packet TSO.
|
|
* Application must set PKT_TX_TUNNEL_UDP and other mbuf fields required
|
|
* for tunnel TSO.
|
|
*/
|
|
#define DEV_TX_OFFLOAD_UDP_TNL_TSO 0x00040000
|
|
/**
|
|
* Device supports generic IP tunneled packet TSO.
|
|
* Application must set PKT_TX_TUNNEL_IP and other mbuf fields required
|
|
* for tunnel TSO.
|
|
*/
|
|
#define DEV_TX_OFFLOAD_IP_TNL_TSO 0x00080000
|
|
/** Device supports outer UDP checksum */
|
|
#define DEV_TX_OFFLOAD_OUTER_UDP_CKSUM 0x00100000
|
|
|
|
/** Device supports send on timestamp */
|
|
#define DEV_TX_OFFLOAD_SEND_ON_TIMESTAMP 0x00200000
|
|
|
|
|
|
#define RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP 0x00000001
|
|
/**< Device supports Rx queue setup after device started*/
|
|
#define RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP 0x00000002
|
|
/**< Device supports Tx queue setup after device started*/
|
|
|
|
/*
|
|
* If new Tx offload capabilities are defined, they also must be
|
|
* mentioned in rte_tx_offload_names in rte_ethdev.c file.
|
|
*/
|
|
|
|
/*
|
|
* Fallback default preferred Rx/Tx port parameters.
|
|
* These are used if an application requests default parameters
|
|
* but the PMD does not provide preferred values.
|
|
*/
|
|
#define RTE_ETH_DEV_FALLBACK_RX_RINGSIZE 512
|
|
#define RTE_ETH_DEV_FALLBACK_TX_RINGSIZE 512
|
|
#define RTE_ETH_DEV_FALLBACK_RX_NBQUEUES 1
|
|
#define RTE_ETH_DEV_FALLBACK_TX_NBQUEUES 1
|
|
|
|
/**
|
|
* Preferred Rx/Tx port parameters.
|
|
* There are separate instances of this structure for transmission
|
|
* and reception respectively.
|
|
*/
|
|
struct rte_eth_dev_portconf {
|
|
uint16_t burst_size; /**< Device-preferred burst size */
|
|
uint16_t ring_size; /**< Device-preferred size of queue rings */
|
|
uint16_t nb_queues; /**< Device-preferred number of queues */
|
|
};
|
|
|
|
/**
|
|
* Default values for switch domain id when ethdev does not support switch
|
|
* domain definitions.
|
|
*/
|
|
#define RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID (UINT16_MAX)
|
|
|
|
/**
|
|
* Ethernet device associated switch information
|
|
*/
|
|
struct rte_eth_switch_info {
|
|
const char *name; /**< switch name */
|
|
uint16_t domain_id; /**< switch domain id */
|
|
uint16_t port_id;
|
|
/**<
|
|
* mapping to the devices physical switch port as enumerated from the
|
|
* perspective of the embedded interconnect/switch. For SR-IOV enabled
|
|
* device this may correspond to the VF_ID of each virtual function,
|
|
* but each driver should explicitly define the mapping of switch
|
|
* port identifier to that physical interconnect/switch
|
|
*/
|
|
};
|
|
|
|
/**
|
|
* Ethernet device information
|
|
*/
|
|
|
|
/**
|
|
* A structure used to retrieve the contextual information of
|
|
* an Ethernet device, such as the controlling driver of the
|
|
* device, etc...
|
|
*/
|
|
struct rte_eth_dev_info {
|
|
struct rte_device *device; /** Generic device information */
|
|
const char *driver_name; /**< Device Driver name. */
|
|
unsigned int if_index; /**< Index to bound host interface, or 0 if none.
|
|
Use if_indextoname() to translate into an interface name. */
|
|
uint16_t min_mtu; /**< Minimum MTU allowed */
|
|
uint16_t max_mtu; /**< Maximum MTU allowed */
|
|
const uint32_t *dev_flags; /**< Device flags */
|
|
uint32_t min_rx_bufsize; /**< Minimum size of RX buffer. */
|
|
uint32_t max_rx_pktlen; /**< Maximum configurable length of RX pkt. */
|
|
/** Maximum configurable size of LRO aggregated packet. */
|
|
uint32_t max_lro_pkt_size;
|
|
uint16_t max_rx_queues; /**< Maximum number of RX queues. */
|
|
uint16_t max_tx_queues; /**< Maximum number of TX queues. */
|
|
uint32_t max_mac_addrs; /**< Maximum number of MAC addresses. */
|
|
uint32_t max_hash_mac_addrs;
|
|
/** Maximum number of hash MAC addresses for MTA and UTA. */
|
|
uint16_t max_vfs; /**< Maximum number of VFs. */
|
|
uint16_t max_vmdq_pools; /**< Maximum number of VMDq pools. */
|
|
uint64_t rx_offload_capa;
|
|
/**< All RX offload capabilities including all per-queue ones */
|
|
uint64_t tx_offload_capa;
|
|
/**< All TX offload capabilities including all per-queue ones */
|
|
uint64_t rx_queue_offload_capa;
|
|
/**< Device per-queue RX offload capabilities. */
|
|
uint64_t tx_queue_offload_capa;
|
|
/**< Device per-queue TX offload capabilities. */
|
|
uint16_t reta_size;
|
|
/**< Device redirection table size, the total number of entries. */
|
|
uint8_t hash_key_size; /**< Hash key size in bytes */
|
|
/** Bit mask of RSS offloads, the bit offset also means flow type */
|
|
uint64_t flow_type_rss_offloads;
|
|
struct rte_eth_rxconf default_rxconf; /**< Default RX configuration */
|
|
struct rte_eth_txconf default_txconf; /**< Default TX configuration */
|
|
uint16_t vmdq_queue_base; /**< First queue ID for VMDQ pools. */
|
|
uint16_t vmdq_queue_num; /**< Queue number for VMDQ pools. */
|
|
uint16_t vmdq_pool_base; /**< First ID of VMDQ pools. */
|
|
struct rte_eth_desc_lim rx_desc_lim; /**< RX descriptors limits */
|
|
struct rte_eth_desc_lim tx_desc_lim; /**< TX descriptors limits */
|
|
uint32_t speed_capa; /**< Supported speeds bitmap (ETH_LINK_SPEED_). */
|
|
/** Configured number of rx/tx queues */
|
|
uint16_t nb_rx_queues; /**< Number of RX queues. */
|
|
uint16_t nb_tx_queues; /**< Number of TX queues. */
|
|
/** Rx parameter recommendations */
|
|
struct rte_eth_dev_portconf default_rxportconf;
|
|
/** Tx parameter recommendations */
|
|
struct rte_eth_dev_portconf default_txportconf;
|
|
/** Generic device capabilities (RTE_ETH_DEV_CAPA_). */
|
|
uint64_t dev_capa;
|
|
/**
|
|
* Switching information for ports on a device with a
|
|
* embedded managed interconnect/switch.
|
|
*/
|
|
struct rte_eth_switch_info switch_info;
|
|
|
|
uint64_t reserved_64s[2]; /**< Reserved for future fields */
|
|
void *reserved_ptrs[2]; /**< Reserved for future fields */
|
|
};
|
|
|
|
/**
|
|
* Ethernet device RX queue information structure.
|
|
* Used to retrieve information about configured queue.
|
|
*/
|
|
struct rte_eth_rxq_info {
|
|
struct rte_mempool *mp; /**< mempool used by that queue. */
|
|
struct rte_eth_rxconf conf; /**< queue config parameters. */
|
|
uint8_t scattered_rx; /**< scattered packets RX supported. */
|
|
uint16_t nb_desc; /**< configured number of RXDs. */
|
|
uint16_t rx_buf_size; /**< hardware receive buffer size. */
|
|
} __rte_cache_min_aligned;
|
|
|
|
/**
|
|
* Ethernet device TX queue information structure.
|
|
* Used to retrieve information about configured queue.
|
|
*/
|
|
struct rte_eth_txq_info {
|
|
struct rte_eth_txconf conf; /**< queue config parameters. */
|
|
uint16_t nb_desc; /**< configured number of TXDs. */
|
|
} __rte_cache_min_aligned;
|
|
|
|
/* Generic Burst mode flag definition, values can be ORed. */
|
|
|
|
/**
|
|
* If the queues have different burst mode description, this bit will be set
|
|
* by PMD, then the application can iterate to retrieve burst description for
|
|
* all other queues.
|
|
*/
|
|
#define RTE_ETH_BURST_FLAG_PER_QUEUE (1ULL << 0)
|
|
|
|
/**
|
|
* Ethernet device RX/TX queue packet burst mode information structure.
|
|
* Used to retrieve information about packet burst mode setting.
|
|
*/
|
|
struct rte_eth_burst_mode {
|
|
uint64_t flags; /**< The ORed values of RTE_ETH_BURST_FLAG_xxx */
|
|
|
|
#define RTE_ETH_BURST_MODE_INFO_SIZE 1024 /**< Maximum size for information */
|
|
char info[RTE_ETH_BURST_MODE_INFO_SIZE]; /**< burst mode information */
|
|
};
|
|
|
|
/** Maximum name length for extended statistics counters */
|
|
#define RTE_ETH_XSTATS_NAME_SIZE 64
|
|
|
|
/**
|
|
* An Ethernet device extended statistic structure
|
|
*
|
|
* This structure is used by rte_eth_xstats_get() to provide
|
|
* statistics that are not provided in the generic *rte_eth_stats*
|
|
* structure.
|
|
* It maps a name id, corresponding to an index in the array returned
|
|
* by rte_eth_xstats_get_names(), to a statistic value.
|
|
*/
|
|
struct rte_eth_xstat {
|
|
uint64_t id; /**< The index in xstats name array. */
|
|
uint64_t value; /**< The statistic counter value. */
|
|
};
|
|
|
|
/**
|
|
* A name element for extended statistics.
|
|
*
|
|
* An array of this structure is returned by rte_eth_xstats_get_names().
|
|
* It lists the names of extended statistics for a PMD. The *rte_eth_xstat*
|
|
* structure references these names by their array index.
|
|
*/
|
|
struct rte_eth_xstat_name {
|
|
char name[RTE_ETH_XSTATS_NAME_SIZE]; /**< The statistic name. */
|
|
};
|
|
|
|
#define ETH_DCB_NUM_TCS 8
|
|
#define ETH_MAX_VMDQ_POOL 64
|
|
|
|
/**
|
|
* A structure used to get the information of queue and
|
|
* TC mapping on both TX and RX paths.
|
|
*/
|
|
struct rte_eth_dcb_tc_queue_mapping {
|
|
/** rx queues assigned to tc per Pool */
|
|
struct {
|
|
uint8_t base;
|
|
uint8_t nb_queue;
|
|
} tc_rxq[ETH_MAX_VMDQ_POOL][ETH_DCB_NUM_TCS];
|
|
/** rx queues assigned to tc per Pool */
|
|
struct {
|
|
uint8_t base;
|
|
uint8_t nb_queue;
|
|
} tc_txq[ETH_MAX_VMDQ_POOL][ETH_DCB_NUM_TCS];
|
|
};
|
|
|
|
/**
|
|
* A structure used to get the information of DCB.
|
|
* It includes TC UP mapping and queue TC mapping.
|
|
*/
|
|
struct rte_eth_dcb_info {
|
|
uint8_t nb_tcs; /**< number of TCs */
|
|
uint8_t prio_tc[ETH_DCB_NUM_USER_PRIORITIES]; /**< Priority to tc */
|
|
uint8_t tc_bws[ETH_DCB_NUM_TCS]; /**< TX BW percentage for each TC */
|
|
/** rx queues assigned to tc */
|
|
struct rte_eth_dcb_tc_queue_mapping tc_queue;
|
|
};
|
|
|
|
#define RTE_ETH_ALL RTE_MAX_ETHPORTS
|
|
|
|
/* Macros to check for valid port */
|
|
#define RTE_ETH_VALID_PORTID_OR_ERR_RET(port_id, retval) do { \
|
|
if (!rte_eth_dev_is_valid_port(port_id)) { \
|
|
RTE_ETHDEV_LOG(ERR, "Invalid port_id=%u\n", port_id); \
|
|
return retval; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define RTE_ETH_VALID_PORTID_OR_RET(port_id) do { \
|
|
if (!rte_eth_dev_is_valid_port(port_id)) { \
|
|
RTE_ETHDEV_LOG(ERR, "Invalid port_id=%u\n", port_id); \
|
|
return; \
|
|
} \
|
|
} while (0)
|
|
|
|
/**
|
|
* l2 tunnel configuration.
|
|
*/
|
|
|
|
/**< l2 tunnel enable mask */
|
|
#define ETH_L2_TUNNEL_ENABLE_MASK 0x00000001
|
|
/**< l2 tunnel insertion mask */
|
|
#define ETH_L2_TUNNEL_INSERTION_MASK 0x00000002
|
|
/**< l2 tunnel stripping mask */
|
|
#define ETH_L2_TUNNEL_STRIPPING_MASK 0x00000004
|
|
/**< l2 tunnel forwarding mask */
|
|
#define ETH_L2_TUNNEL_FORWARDING_MASK 0x00000008
|
|
|
|
/**
|
|
* Function type used for RX packet processing packet callbacks.
|
|
*
|
|
* The callback function is called on RX with a burst of packets that have
|
|
* been received on the given port and queue.
|
|
*
|
|
* @param port_id
|
|
* The Ethernet port on which RX is being performed.
|
|
* @param queue
|
|
* The queue on the Ethernet port which is being used to receive the packets.
|
|
* @param pkts
|
|
* The burst of packets that have just been received.
|
|
* @param nb_pkts
|
|
* The number of packets in the burst pointed to by "pkts".
|
|
* @param max_pkts
|
|
* The max number of packets that can be stored in the "pkts" array.
|
|
* @param user_param
|
|
* The arbitrary user parameter passed in by the application when the callback
|
|
* was originally configured.
|
|
* @return
|
|
* The number of packets returned to the user.
|
|
*/
|
|
typedef uint16_t (*rte_rx_callback_fn)(uint16_t port_id, uint16_t queue,
|
|
struct rte_mbuf *pkts[], uint16_t nb_pkts, uint16_t max_pkts,
|
|
void *user_param);
|
|
|
|
/**
|
|
* Function type used for TX packet processing packet callbacks.
|
|
*
|
|
* The callback function is called on TX with a burst of packets immediately
|
|
* before the packets are put onto the hardware queue for transmission.
|
|
*
|
|
* @param port_id
|
|
* The Ethernet port on which TX is being performed.
|
|
* @param queue
|
|
* The queue on the Ethernet port which is being used to transmit the packets.
|
|
* @param pkts
|
|
* The burst of packets that are about to be transmitted.
|
|
* @param nb_pkts
|
|
* The number of packets in the burst pointed to by "pkts".
|
|
* @param user_param
|
|
* The arbitrary user parameter passed in by the application when the callback
|
|
* was originally configured.
|
|
* @return
|
|
* The number of packets to be written to the NIC.
|
|
*/
|
|
typedef uint16_t (*rte_tx_callback_fn)(uint16_t port_id, uint16_t queue,
|
|
struct rte_mbuf *pkts[], uint16_t nb_pkts, void *user_param);
|
|
|
|
/**
|
|
* Possible states of an ethdev port.
|
|
*/
|
|
enum rte_eth_dev_state {
|
|
/** Device is unused before being probed. */
|
|
RTE_ETH_DEV_UNUSED = 0,
|
|
/** Device is attached when allocated in probing. */
|
|
RTE_ETH_DEV_ATTACHED,
|
|
/** Device is in removed state when plug-out is detected. */
|
|
RTE_ETH_DEV_REMOVED,
|
|
};
|
|
|
|
struct rte_eth_dev_sriov {
|
|
uint8_t active; /**< SRIOV is active with 16, 32 or 64 pools */
|
|
uint8_t nb_q_per_pool; /**< rx queue number per pool */
|
|
uint16_t def_vmdq_idx; /**< Default pool num used for PF */
|
|
uint16_t def_pool_q_idx; /**< Default pool queue start reg index */
|
|
};
|
|
#define RTE_ETH_DEV_SRIOV(dev) ((dev)->data->sriov)
|
|
|
|
#define RTE_ETH_NAME_MAX_LEN RTE_DEV_NAME_MAX_LEN
|
|
|
|
#define RTE_ETH_DEV_NO_OWNER 0
|
|
|
|
#define RTE_ETH_MAX_OWNER_NAME_LEN 64
|
|
|
|
struct rte_eth_dev_owner {
|
|
uint64_t id; /**< The owner unique identifier. */
|
|
char name[RTE_ETH_MAX_OWNER_NAME_LEN]; /**< The owner name. */
|
|
};
|
|
|
|
/**
|
|
* Port is released (i.e. totally freed and data erased) on close.
|
|
* Temporary flag for PMD migration to new rte_eth_dev_close() behaviour.
|
|
*/
|
|
#define RTE_ETH_DEV_CLOSE_REMOVE 0x0001
|
|
/** Device supports link state interrupt */
|
|
#define RTE_ETH_DEV_INTR_LSC 0x0002
|
|
/** Device is a bonded slave */
|
|
#define RTE_ETH_DEV_BONDED_SLAVE 0x0004
|
|
/** Device supports device removal interrupt */
|
|
#define RTE_ETH_DEV_INTR_RMV 0x0008
|
|
/** Device is port representor */
|
|
#define RTE_ETH_DEV_REPRESENTOR 0x0010
|
|
/** Device does not support MAC change after started */
|
|
#define RTE_ETH_DEV_NOLIVE_MAC_ADDR 0x0020
|
|
|
|
/**
|
|
* Iterates over valid ethdev ports owned by a specific owner.
|
|
*
|
|
* @param port_id
|
|
* The id of the next possible valid owned port.
|
|
* @param owner_id
|
|
* The owner identifier.
|
|
* RTE_ETH_DEV_NO_OWNER means iterate over all valid ownerless ports.
|
|
* @return
|
|
* Next valid port id owned by owner_id, RTE_MAX_ETHPORTS if there is none.
|
|
*/
|
|
uint64_t rte_eth_find_next_owned_by(uint16_t port_id,
|
|
const uint64_t owner_id);
|
|
|
|
/**
|
|
* Macro to iterate over all enabled ethdev ports owned by a specific owner.
|
|
*/
|
|
#define RTE_ETH_FOREACH_DEV_OWNED_BY(p, o) \
|
|
for (p = rte_eth_find_next_owned_by(0, o); \
|
|
(unsigned int)p < (unsigned int)RTE_MAX_ETHPORTS; \
|
|
p = rte_eth_find_next_owned_by(p + 1, o))
|
|
|
|
/**
|
|
* Iterates over valid ethdev ports.
|
|
*
|
|
* @param port_id
|
|
* The id of the next possible valid port.
|
|
* @return
|
|
* Next valid port id, RTE_MAX_ETHPORTS if there is none.
|
|
*/
|
|
uint16_t rte_eth_find_next(uint16_t port_id);
|
|
|
|
/**
|
|
* Macro to iterate over all enabled and ownerless ethdev ports.
|
|
*/
|
|
#define RTE_ETH_FOREACH_DEV(p) \
|
|
RTE_ETH_FOREACH_DEV_OWNED_BY(p, RTE_ETH_DEV_NO_OWNER)
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Iterates over ethdev ports of a specified device.
|
|
*
|
|
* @param port_id_start
|
|
* The id of the next possible valid port.
|
|
* @param parent
|
|
* The generic device behind the ports to iterate.
|
|
* @return
|
|
* Next port id of the device, possibly port_id_start,
|
|
* RTE_MAX_ETHPORTS if there is none.
|
|
*/
|
|
__rte_experimental
|
|
uint16_t
|
|
rte_eth_find_next_of(uint16_t port_id_start,
|
|
const struct rte_device *parent);
|
|
|
|
/**
|
|
* Macro to iterate over all ethdev ports of a specified device.
|
|
*
|
|
* @param port_id
|
|
* The id of the matching port being iterated.
|
|
* @param parent
|
|
* The rte_device pointer matching the iterated ports.
|
|
*/
|
|
#define RTE_ETH_FOREACH_DEV_OF(port_id, parent) \
|
|
for (port_id = rte_eth_find_next_of(0, parent); \
|
|
port_id < RTE_MAX_ETHPORTS; \
|
|
port_id = rte_eth_find_next_of(port_id + 1, parent))
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Iterates over sibling ethdev ports (i.e. sharing the same rte_device).
|
|
*
|
|
* @param port_id_start
|
|
* The id of the next possible valid sibling port.
|
|
* @param ref_port_id
|
|
* The id of a reference port to compare rte_device with.
|
|
* @return
|
|
* Next sibling port id, possibly port_id_start or ref_port_id itself,
|
|
* RTE_MAX_ETHPORTS if there is none.
|
|
*/
|
|
__rte_experimental
|
|
uint16_t
|
|
rte_eth_find_next_sibling(uint16_t port_id_start, uint16_t ref_port_id);
|
|
|
|
/**
|
|
* Macro to iterate over all ethdev ports sharing the same rte_device
|
|
* as the specified port.
|
|
* Note: the specified reference port is part of the loop iterations.
|
|
*
|
|
* @param port_id
|
|
* The id of the matching port being iterated.
|
|
* @param ref_port_id
|
|
* The id of the port being compared.
|
|
*/
|
|
#define RTE_ETH_FOREACH_DEV_SIBLING(port_id, ref_port_id) \
|
|
for (port_id = rte_eth_find_next_sibling(0, ref_port_id); \
|
|
port_id < RTE_MAX_ETHPORTS; \
|
|
port_id = rte_eth_find_next_sibling(port_id + 1, ref_port_id))
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Get a new unique owner identifier.
|
|
* An owner identifier is used to owns Ethernet devices by only one DPDK entity
|
|
* to avoid multiple management of device by different entities.
|
|
*
|
|
* @param owner_id
|
|
* Owner identifier pointer.
|
|
* @return
|
|
* Negative errno value on error, 0 on success.
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_dev_owner_new(uint64_t *owner_id);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Set an Ethernet device owner.
|
|
*
|
|
* @param port_id
|
|
* The identifier of the port to own.
|
|
* @param owner
|
|
* The owner pointer.
|
|
* @return
|
|
* Negative errno value on error, 0 on success.
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_dev_owner_set(const uint16_t port_id,
|
|
const struct rte_eth_dev_owner *owner);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Unset Ethernet device owner to make the device ownerless.
|
|
*
|
|
* @param port_id
|
|
* The identifier of port to make ownerless.
|
|
* @param owner_id
|
|
* The owner identifier.
|
|
* @return
|
|
* 0 on success, negative errno value on error.
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_dev_owner_unset(const uint16_t port_id,
|
|
const uint64_t owner_id);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Remove owner from all Ethernet devices owned by a specific owner.
|
|
*
|
|
* @param owner_id
|
|
* The owner identifier.
|
|
* @return
|
|
* 0 on success, negative errno value on error.
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_dev_owner_delete(const uint64_t owner_id);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Get the owner of an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier.
|
|
* @param owner
|
|
* The owner structure pointer to fill.
|
|
* @return
|
|
* 0 on success, negative errno value on error..
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_dev_owner_get(const uint16_t port_id,
|
|
struct rte_eth_dev_owner *owner);
|
|
|
|
/**
|
|
* Get the number of ports which are usable for the application.
|
|
*
|
|
* These devices must be iterated by using the macro
|
|
* ``RTE_ETH_FOREACH_DEV`` or ``RTE_ETH_FOREACH_DEV_OWNED_BY``
|
|
* to deal with non-contiguous ranges of devices.
|
|
*
|
|
* @return
|
|
* The count of available Ethernet devices.
|
|
*/
|
|
uint16_t rte_eth_dev_count_avail(void);
|
|
|
|
/**
|
|
* Get the total number of ports which are allocated.
|
|
*
|
|
* Some devices may not be available for the application.
|
|
*
|
|
* @return
|
|
* The total count of Ethernet devices.
|
|
*/
|
|
uint16_t rte_eth_dev_count_total(void);
|
|
|
|
/**
|
|
* Convert a numerical speed in Mbps to a bitmap flag that can be used in
|
|
* the bitmap link_speeds of the struct rte_eth_conf
|
|
*
|
|
* @param speed
|
|
* Numerical speed value in Mbps
|
|
* @param duplex
|
|
* ETH_LINK_[HALF/FULL]_DUPLEX (only for 10/100M speeds)
|
|
* @return
|
|
* 0 if the speed cannot be mapped
|
|
*/
|
|
uint32_t rte_eth_speed_bitflag(uint32_t speed, int duplex);
|
|
|
|
/**
|
|
* Get DEV_RX_OFFLOAD_* flag name.
|
|
*
|
|
* @param offload
|
|
* Offload flag.
|
|
* @return
|
|
* Offload name or 'UNKNOWN' if the flag cannot be recognised.
|
|
*/
|
|
const char *rte_eth_dev_rx_offload_name(uint64_t offload);
|
|
|
|
/**
|
|
* Get DEV_TX_OFFLOAD_* flag name.
|
|
*
|
|
* @param offload
|
|
* Offload flag.
|
|
* @return
|
|
* Offload name or 'UNKNOWN' if the flag cannot be recognised.
|
|
*/
|
|
const char *rte_eth_dev_tx_offload_name(uint64_t offload);
|
|
|
|
/**
|
|
* Configure an Ethernet device.
|
|
* This function must be invoked first before any other function in the
|
|
* Ethernet API. This function can also be re-invoked when a device is in the
|
|
* stopped state.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device to configure.
|
|
* @param nb_rx_queue
|
|
* The number of receive queues to set up for the Ethernet device.
|
|
* @param nb_tx_queue
|
|
* The number of transmit queues to set up for the Ethernet device.
|
|
* @param eth_conf
|
|
* The pointer to the configuration data to be used for the Ethernet device.
|
|
* The *rte_eth_conf* structure includes:
|
|
* - the hardware offload features to activate, with dedicated fields for
|
|
* each statically configurable offload hardware feature provided by
|
|
* Ethernet devices, such as IP checksum or VLAN tag stripping for
|
|
* example.
|
|
* The Rx offload bitfield API is obsolete and will be deprecated.
|
|
* Applications should set the ignore_bitfield_offloads bit on *rxmode*
|
|
* structure and use offloads field to set per-port offloads instead.
|
|
* - Any offloading set in eth_conf->[rt]xmode.offloads must be within
|
|
* the [rt]x_offload_capa returned from rte_eth_dev_info_get().
|
|
* Any type of device supported offloading set in the input argument
|
|
* eth_conf->[rt]xmode.offloads to rte_eth_dev_configure() is enabled
|
|
* on all queues and it can't be disabled in rte_eth_[rt]x_queue_setup()
|
|
* - the Receive Side Scaling (RSS) configuration when using multiple RX
|
|
* queues per port. Any RSS hash function set in eth_conf->rss_conf.rss_hf
|
|
* must be within the flow_type_rss_offloads provided by drivers via
|
|
* rte_eth_dev_info_get() API.
|
|
*
|
|
* Embedding all configuration information in a single data structure
|
|
* is the more flexible method that allows the addition of new features
|
|
* without changing the syntax of the API.
|
|
* @return
|
|
* - 0: Success, device configured.
|
|
* - <0: Error code returned by the driver configuration function.
|
|
*/
|
|
int rte_eth_dev_configure(uint16_t port_id, uint16_t nb_rx_queue,
|
|
uint16_t nb_tx_queue, const struct rte_eth_conf *eth_conf);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Check if an Ethernet device was physically removed.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* 1 when the Ethernet device is removed, otherwise 0.
|
|
*/
|
|
__rte_experimental
|
|
int
|
|
rte_eth_dev_is_removed(uint16_t port_id);
|
|
|
|
/**
|
|
* Allocate and set up a receive queue for an Ethernet device.
|
|
*
|
|
* The function allocates a contiguous block of memory for *nb_rx_desc*
|
|
* receive descriptors from a memory zone associated with *socket_id*
|
|
* and initializes each receive descriptor with a network buffer allocated
|
|
* from the memory pool *mb_pool*.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param rx_queue_id
|
|
* The index of the receive queue to set up.
|
|
* The value must be in the range [0, nb_rx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param nb_rx_desc
|
|
* The number of receive descriptors to allocate for the receive ring.
|
|
* @param socket_id
|
|
* The *socket_id* argument is the socket identifier in case of NUMA.
|
|
* The value can be *SOCKET_ID_ANY* if there is no NUMA constraint for
|
|
* the DMA memory allocated for the receive descriptors of the ring.
|
|
* @param rx_conf
|
|
* The pointer to the configuration data to be used for the receive queue.
|
|
* NULL value is allowed, in which case default RX configuration
|
|
* will be used.
|
|
* The *rx_conf* structure contains an *rx_thresh* structure with the values
|
|
* of the Prefetch, Host, and Write-Back threshold registers of the receive
|
|
* ring.
|
|
* In addition it contains the hardware offloads features to activate using
|
|
* the DEV_RX_OFFLOAD_* flags.
|
|
* If an offloading set in rx_conf->offloads
|
|
* hasn't been set in the input argument eth_conf->rxmode.offloads
|
|
* to rte_eth_dev_configure(), it is a new added offloading, it must be
|
|
* per-queue type and it is enabled for the queue.
|
|
* No need to repeat any bit in rx_conf->offloads which has already been
|
|
* enabled in rte_eth_dev_configure() at port level. An offloading enabled
|
|
* at port level can't be disabled at queue level.
|
|
* @param mb_pool
|
|
* The pointer to the memory pool from which to allocate *rte_mbuf* network
|
|
* memory buffers to populate each descriptor of the receive ring.
|
|
* @return
|
|
* - 0: Success, receive queue correctly set up.
|
|
* - -EIO: if device is removed.
|
|
* - -EINVAL: The memory pool pointer is null or the size of network buffers
|
|
* which can be allocated from this memory pool does not fit the various
|
|
* buffer sizes allowed by the device controller.
|
|
* - -ENOMEM: Unable to allocate the receive ring descriptors or to
|
|
* allocate network memory buffers from the memory pool when
|
|
* initializing receive descriptors.
|
|
*/
|
|
int rte_eth_rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id,
|
|
uint16_t nb_rx_desc, unsigned int socket_id,
|
|
const struct rte_eth_rxconf *rx_conf,
|
|
struct rte_mempool *mb_pool);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change, or be removed, without prior notice
|
|
*
|
|
* Allocate and set up a hairpin receive queue for an Ethernet device.
|
|
*
|
|
* The function set up the selected queue to be used in hairpin.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param rx_queue_id
|
|
* The index of the receive queue to set up.
|
|
* The value must be in the range [0, nb_rx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param nb_rx_desc
|
|
* The number of receive descriptors to allocate for the receive ring.
|
|
* 0 means the PMD will use default value.
|
|
* @param conf
|
|
* The pointer to the hairpin configuration.
|
|
*
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-EINVAL) if bad parameter.
|
|
* - (-ENOMEM) if unable to allocate the resources.
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_rx_hairpin_queue_setup
|
|
(uint16_t port_id, uint16_t rx_queue_id, uint16_t nb_rx_desc,
|
|
const struct rte_eth_hairpin_conf *conf);
|
|
|
|
/**
|
|
* Allocate and set up a transmit queue for an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param tx_queue_id
|
|
* The index of the transmit queue to set up.
|
|
* The value must be in the range [0, nb_tx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param nb_tx_desc
|
|
* The number of transmit descriptors to allocate for the transmit ring.
|
|
* @param socket_id
|
|
* The *socket_id* argument is the socket identifier in case of NUMA.
|
|
* Its value can be *SOCKET_ID_ANY* if there is no NUMA constraint for
|
|
* the DMA memory allocated for the transmit descriptors of the ring.
|
|
* @param tx_conf
|
|
* The pointer to the configuration data to be used for the transmit queue.
|
|
* NULL value is allowed, in which case default TX configuration
|
|
* will be used.
|
|
* The *tx_conf* structure contains the following data:
|
|
* - The *tx_thresh* structure with the values of the Prefetch, Host, and
|
|
* Write-Back threshold registers of the transmit ring.
|
|
* When setting Write-Back threshold to the value greater then zero,
|
|
* *tx_rs_thresh* value should be explicitly set to one.
|
|
* - The *tx_free_thresh* value indicates the [minimum] number of network
|
|
* buffers that must be pending in the transmit ring to trigger their
|
|
* [implicit] freeing by the driver transmit function.
|
|
* - The *tx_rs_thresh* value indicates the [minimum] number of transmit
|
|
* descriptors that must be pending in the transmit ring before setting the
|
|
* RS bit on a descriptor by the driver transmit function.
|
|
* The *tx_rs_thresh* value should be less or equal then
|
|
* *tx_free_thresh* value, and both of them should be less then
|
|
* *nb_tx_desc* - 3.
|
|
* - The *offloads* member contains Tx offloads to be enabled.
|
|
* If an offloading set in tx_conf->offloads
|
|
* hasn't been set in the input argument eth_conf->txmode.offloads
|
|
* to rte_eth_dev_configure(), it is a new added offloading, it must be
|
|
* per-queue type and it is enabled for the queue.
|
|
* No need to repeat any bit in tx_conf->offloads which has already been
|
|
* enabled in rte_eth_dev_configure() at port level. An offloading enabled
|
|
* at port level can't be disabled at queue level.
|
|
*
|
|
* Note that setting *tx_free_thresh* or *tx_rs_thresh* value to 0 forces
|
|
* the transmit function to use default values.
|
|
* @return
|
|
* - 0: Success, the transmit queue is correctly set up.
|
|
* - -ENOMEM: Unable to allocate the transmit ring descriptors.
|
|
*/
|
|
int rte_eth_tx_queue_setup(uint16_t port_id, uint16_t tx_queue_id,
|
|
uint16_t nb_tx_desc, unsigned int socket_id,
|
|
const struct rte_eth_txconf *tx_conf);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change, or be removed, without prior notice
|
|
*
|
|
* Allocate and set up a transmit hairpin queue for an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param tx_queue_id
|
|
* The index of the transmit queue to set up.
|
|
* The value must be in the range [0, nb_tx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param nb_tx_desc
|
|
* The number of transmit descriptors to allocate for the transmit ring.
|
|
* 0 to set default PMD value.
|
|
* @param conf
|
|
* The hairpin configuration.
|
|
*
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-EINVAL) if bad parameter.
|
|
* - (-ENOMEM) if unable to allocate the resources.
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_tx_hairpin_queue_setup
|
|
(uint16_t port_id, uint16_t tx_queue_id, uint16_t nb_tx_desc,
|
|
const struct rte_eth_hairpin_conf *conf);
|
|
|
|
/**
|
|
* Return the NUMA socket to which an Ethernet device is connected
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device
|
|
* @return
|
|
* The NUMA socket id to which the Ethernet device is connected or
|
|
* a default of zero if the socket could not be determined.
|
|
* -1 is returned is the port_id value is out of range.
|
|
*/
|
|
int rte_eth_dev_socket_id(uint16_t port_id);
|
|
|
|
/**
|
|
* Check if port_id of device is attached
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device
|
|
* @return
|
|
* - 0 if port is out of range or not attached
|
|
* - 1 if device is attached
|
|
*/
|
|
int rte_eth_dev_is_valid_port(uint16_t port_id);
|
|
|
|
/**
|
|
* Start specified RX queue of a port. It is used when rx_deferred_start
|
|
* flag of the specified queue is true.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device
|
|
* @param rx_queue_id
|
|
* The index of the rx queue to update the ring.
|
|
* The value must be in the range [0, nb_rx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @return
|
|
* - 0: Success, the receive queue is started.
|
|
* - -EINVAL: The port_id or the queue_id out of range or belong to hairpin.
|
|
* - -EIO: if device is removed.
|
|
* - -ENOTSUP: The function not supported in PMD driver.
|
|
*/
|
|
int rte_eth_dev_rx_queue_start(uint16_t port_id, uint16_t rx_queue_id);
|
|
|
|
/**
|
|
* Stop specified RX queue of a port
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device
|
|
* @param rx_queue_id
|
|
* The index of the rx queue to update the ring.
|
|
* The value must be in the range [0, nb_rx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @return
|
|
* - 0: Success, the receive queue is stopped.
|
|
* - -EINVAL: The port_id or the queue_id out of range or belong to hairpin.
|
|
* - -EIO: if device is removed.
|
|
* - -ENOTSUP: The function not supported in PMD driver.
|
|
*/
|
|
int rte_eth_dev_rx_queue_stop(uint16_t port_id, uint16_t rx_queue_id);
|
|
|
|
/**
|
|
* Start TX for specified queue of a port. It is used when tx_deferred_start
|
|
* flag of the specified queue is true.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device
|
|
* @param tx_queue_id
|
|
* The index of the tx queue to update the ring.
|
|
* The value must be in the range [0, nb_tx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @return
|
|
* - 0: Success, the transmit queue is started.
|
|
* - -EINVAL: The port_id or the queue_id out of range or belong to hairpin.
|
|
* - -EIO: if device is removed.
|
|
* - -ENOTSUP: The function not supported in PMD driver.
|
|
*/
|
|
int rte_eth_dev_tx_queue_start(uint16_t port_id, uint16_t tx_queue_id);
|
|
|
|
/**
|
|
* Stop specified TX queue of a port
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device
|
|
* @param tx_queue_id
|
|
* The index of the tx queue to update the ring.
|
|
* The value must be in the range [0, nb_tx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @return
|
|
* - 0: Success, the transmit queue is stopped.
|
|
* - -EINVAL: The port_id or the queue_id out of range or belong to hairpin.
|
|
* - -EIO: if device is removed.
|
|
* - -ENOTSUP: The function not supported in PMD driver.
|
|
*/
|
|
int rte_eth_dev_tx_queue_stop(uint16_t port_id, uint16_t tx_queue_id);
|
|
|
|
/**
|
|
* Start an Ethernet device.
|
|
*
|
|
* The device start step is the last one and consists of setting the configured
|
|
* offload features and in starting the transmit and the receive units of the
|
|
* device.
|
|
*
|
|
* Device RTE_ETH_DEV_NOLIVE_MAC_ADDR flag causes MAC address to be set before
|
|
* PMD port start callback function is invoked.
|
|
*
|
|
* On success, all basic functions exported by the Ethernet API (link status,
|
|
* receive/transmit, and so on) can be invoked.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - 0: Success, Ethernet device started.
|
|
* - <0: Error code of the driver device start function.
|
|
*/
|
|
int rte_eth_dev_start(uint16_t port_id);
|
|
|
|
/**
|
|
* Stop an Ethernet device. The device can be restarted with a call to
|
|
* rte_eth_dev_start()
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
*/
|
|
void rte_eth_dev_stop(uint16_t port_id);
|
|
|
|
/**
|
|
* Link up an Ethernet device.
|
|
*
|
|
* Set device link up will re-enable the device rx/tx
|
|
* functionality after it is previously set device linked down.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - 0: Success, Ethernet device linked up.
|
|
* - <0: Error code of the driver device link up function.
|
|
*/
|
|
int rte_eth_dev_set_link_up(uint16_t port_id);
|
|
|
|
/**
|
|
* Link down an Ethernet device.
|
|
* The device rx/tx functionality will be disabled if success,
|
|
* and it can be re-enabled with a call to
|
|
* rte_eth_dev_set_link_up()
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
*/
|
|
int rte_eth_dev_set_link_down(uint16_t port_id);
|
|
|
|
/**
|
|
* Close a stopped Ethernet device. The device cannot be restarted!
|
|
* The function frees all port resources if the driver supports
|
|
* the flag RTE_ETH_DEV_CLOSE_REMOVE.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
*/
|
|
void rte_eth_dev_close(uint16_t port_id);
|
|
|
|
/**
|
|
* Reset a Ethernet device and keep its port id.
|
|
*
|
|
* When a port has to be reset passively, the DPDK application can invoke
|
|
* this function. For example when a PF is reset, all its VFs should also
|
|
* be reset. Normally a DPDK application can invoke this function when
|
|
* RTE_ETH_EVENT_INTR_RESET event is detected, but can also use it to start
|
|
* a port reset in other circumstances.
|
|
*
|
|
* When this function is called, it first stops the port and then calls the
|
|
* PMD specific dev_uninit( ) and dev_init( ) to return the port to initial
|
|
* state, in which no Tx and Rx queues are setup, as if the port has been
|
|
* reset and not started. The port keeps the port id it had before the
|
|
* function call.
|
|
*
|
|
* After calling rte_eth_dev_reset( ), the application should use
|
|
* rte_eth_dev_configure( ), rte_eth_rx_queue_setup( ),
|
|
* rte_eth_tx_queue_setup( ), and rte_eth_dev_start( )
|
|
* to reconfigure the device as appropriate.
|
|
*
|
|
* Note: To avoid unexpected behavior, the application should stop calling
|
|
* Tx and Rx functions before calling rte_eth_dev_reset( ). For thread
|
|
* safety, all these controlling functions should be called from the same
|
|
* thread.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
*
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-EINVAL) if port identifier is invalid.
|
|
* - (-ENOTSUP) if hardware doesn't support this function.
|
|
* - (-EPERM) if not ran from the primary process.
|
|
* - (-EIO) if re-initialisation failed or device is removed.
|
|
* - (-ENOMEM) if the reset failed due to OOM.
|
|
* - (-EAGAIN) if the reset temporarily failed and should be retried later.
|
|
*/
|
|
int rte_eth_dev_reset(uint16_t port_id);
|
|
|
|
/**
|
|
* Enable receipt in promiscuous mode for an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if support for promiscuous_enable() does not exist
|
|
* for the device.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
*/
|
|
int rte_eth_promiscuous_enable(uint16_t port_id);
|
|
|
|
/**
|
|
* Disable receipt in promiscuous mode for an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if support for promiscuous_disable() does not exist
|
|
* for the device.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
*/
|
|
int rte_eth_promiscuous_disable(uint16_t port_id);
|
|
|
|
/**
|
|
* Return the value of promiscuous mode for an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (1) if promiscuous is enabled
|
|
* - (0) if promiscuous is disabled.
|
|
* - (-1) on error
|
|
*/
|
|
int rte_eth_promiscuous_get(uint16_t port_id);
|
|
|
|
/**
|
|
* Enable the receipt of any multicast frame by an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if support for allmulticast_enable() does not exist
|
|
* for the device.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
*/
|
|
int rte_eth_allmulticast_enable(uint16_t port_id);
|
|
|
|
/**
|
|
* Disable the receipt of all multicast frames by an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if support for allmulticast_disable() does not exist
|
|
* for the device.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
*/
|
|
int rte_eth_allmulticast_disable(uint16_t port_id);
|
|
|
|
/**
|
|
* Return the value of allmulticast mode for an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (1) if allmulticast is enabled
|
|
* - (0) if allmulticast is disabled.
|
|
* - (-1) on error
|
|
*/
|
|
int rte_eth_allmulticast_get(uint16_t port_id);
|
|
|
|
/**
|
|
* Retrieve the link status (up/down), the duplex mode (half/full),
|
|
* the negotiation (auto/fixed), and if available, the speed (Mbps).
|
|
*
|
|
* It might need to wait up to 9 seconds.
|
|
* @see rte_eth_link_get_nowait.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param link
|
|
* Link information written back.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if the function is not supported in PMD driver.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
*/
|
|
int rte_eth_link_get(uint16_t port_id, struct rte_eth_link *link);
|
|
|
|
/**
|
|
* Retrieve the link status (up/down), the duplex mode (half/full),
|
|
* the negotiation (auto/fixed), and if available, the speed (Mbps).
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param link
|
|
* Link information written back.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if the function is not supported in PMD driver.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
*/
|
|
int rte_eth_link_get_nowait(uint16_t port_id, struct rte_eth_link *link);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* The function converts a link_speed to a string. It handles all special
|
|
* values like unknown or none speed.
|
|
*
|
|
* @param link_speed
|
|
* link_speed of rte_eth_link struct
|
|
* @return
|
|
* Link speed in textual format. It's pointer to immutable memory.
|
|
* No free is required.
|
|
*/
|
|
__rte_experimental
|
|
const char *rte_eth_link_speed_to_str(uint32_t link_speed);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* The function converts a rte_eth_link struct representing a link status to
|
|
* a string.
|
|
*
|
|
* @param str
|
|
* A pointer to a string to be filled with textual representation of
|
|
* device status. At least ETH_LINK_MAX_STR_LEN bytes should be allocated to
|
|
* store default link status text.
|
|
* @param len
|
|
* Length of available memory at 'str' string.
|
|
* @param eth_link
|
|
* Link status returned by rte_eth_link_get function
|
|
* @return
|
|
* Number of bytes written to str array.
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_link_to_str(char *str, size_t len,
|
|
const struct rte_eth_link *eth_link);
|
|
|
|
/**
|
|
* Retrieve the general I/O statistics of an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param stats
|
|
* A pointer to a structure of type *rte_eth_stats* to be filled with
|
|
* the values of device counters for the following set of statistics:
|
|
* - *ipackets* with the total of successfully received packets.
|
|
* - *opackets* with the total of successfully transmitted packets.
|
|
* - *ibytes* with the total of successfully received bytes.
|
|
* - *obytes* with the total of successfully transmitted bytes.
|
|
* - *ierrors* with the total of erroneous received packets.
|
|
* - *oerrors* with the total of failed transmitted packets.
|
|
* @return
|
|
* Zero if successful. Non-zero otherwise.
|
|
*/
|
|
int rte_eth_stats_get(uint16_t port_id, struct rte_eth_stats *stats);
|
|
|
|
/**
|
|
* Reset the general I/O statistics of an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (0) if device notified to reset stats.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (<0): Error code of the driver stats reset function.
|
|
*/
|
|
int rte_eth_stats_reset(uint16_t port_id);
|
|
|
|
/**
|
|
* Retrieve names of extended statistics of an Ethernet device.
|
|
*
|
|
* There is an assumption that 'xstat_names' and 'xstats' arrays are matched
|
|
* by array index:
|
|
* xstats_names[i].name => xstats[i].value
|
|
*
|
|
* And the array index is same with id field of 'struct rte_eth_xstat':
|
|
* xstats[i].id == i
|
|
*
|
|
* This assumption makes key-value pair matching less flexible but simpler.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param xstats_names
|
|
* An rte_eth_xstat_name array of at least *size* elements to
|
|
* be filled. If set to NULL, the function returns the required number
|
|
* of elements.
|
|
* @param size
|
|
* The size of the xstats_names array (number of elements).
|
|
* @return
|
|
* - A positive value lower or equal to size: success. The return value
|
|
* is the number of entries filled in the stats table.
|
|
* - A positive value higher than size: error, the given statistics table
|
|
* is too small. The return value corresponds to the size that should
|
|
* be given to succeed. The entries in the table are not valid and
|
|
* shall not be used by the caller.
|
|
* - A negative value on error (invalid port id).
|
|
*/
|
|
int rte_eth_xstats_get_names(uint16_t port_id,
|
|
struct rte_eth_xstat_name *xstats_names,
|
|
unsigned int size);
|
|
|
|
/**
|
|
* Retrieve extended statistics of an Ethernet device.
|
|
*
|
|
* There is an assumption that 'xstat_names' and 'xstats' arrays are matched
|
|
* by array index:
|
|
* xstats_names[i].name => xstats[i].value
|
|
*
|
|
* And the array index is same with id field of 'struct rte_eth_xstat':
|
|
* xstats[i].id == i
|
|
*
|
|
* This assumption makes key-value pair matching less flexible but simpler.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param xstats
|
|
* A pointer to a table of structure of type *rte_eth_xstat*
|
|
* to be filled with device statistics ids and values.
|
|
* This parameter can be set to NULL if n is 0.
|
|
* @param n
|
|
* The size of the xstats array (number of elements).
|
|
* @return
|
|
* - A positive value lower or equal to n: success. The return value
|
|
* is the number of entries filled in the stats table.
|
|
* - A positive value higher than n: error, the given statistics table
|
|
* is too small. The return value corresponds to the size that should
|
|
* be given to succeed. The entries in the table are not valid and
|
|
* shall not be used by the caller.
|
|
* - A negative value on error (invalid port id).
|
|
*/
|
|
int rte_eth_xstats_get(uint16_t port_id, struct rte_eth_xstat *xstats,
|
|
unsigned int n);
|
|
|
|
/**
|
|
* Retrieve names of extended statistics of an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param xstats_names
|
|
* An rte_eth_xstat_name array of at least *size* elements to
|
|
* be filled. If set to NULL, the function returns the required number
|
|
* of elements.
|
|
* @param ids
|
|
* IDs array given by app to retrieve specific statistics
|
|
* @param size
|
|
* The size of the xstats_names array (number of elements).
|
|
* @return
|
|
* - A positive value lower or equal to size: success. The return value
|
|
* is the number of entries filled in the stats table.
|
|
* - A positive value higher than size: error, the given statistics table
|
|
* is too small. The return value corresponds to the size that should
|
|
* be given to succeed. The entries in the table are not valid and
|
|
* shall not be used by the caller.
|
|
* - A negative value on error (invalid port id).
|
|
*/
|
|
int
|
|
rte_eth_xstats_get_names_by_id(uint16_t port_id,
|
|
struct rte_eth_xstat_name *xstats_names, unsigned int size,
|
|
uint64_t *ids);
|
|
|
|
/**
|
|
* Retrieve extended statistics of an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param ids
|
|
* A pointer to an ids array passed by application. This tells which
|
|
* statistics values function should retrieve. This parameter
|
|
* can be set to NULL if size is 0. In this case function will retrieve
|
|
* all available statistics.
|
|
* @param values
|
|
* A pointer to a table to be filled with device statistics values.
|
|
* @param size
|
|
* The size of the ids array (number of elements).
|
|
* @return
|
|
* - A positive value lower or equal to size: success. The return value
|
|
* is the number of entries filled in the stats table.
|
|
* - A positive value higher than size: error, the given statistics table
|
|
* is too small. The return value corresponds to the size that should
|
|
* be given to succeed. The entries in the table are not valid and
|
|
* shall not be used by the caller.
|
|
* - A negative value on error (invalid port id).
|
|
*/
|
|
int rte_eth_xstats_get_by_id(uint16_t port_id, const uint64_t *ids,
|
|
uint64_t *values, unsigned int size);
|
|
|
|
/**
|
|
* Gets the ID of a statistic from its name.
|
|
*
|
|
* This function searches for the statistics using string compares, and
|
|
* as such should not be used on the fast-path. For fast-path retrieval of
|
|
* specific statistics, store the ID as provided in *id* from this function,
|
|
* and pass the ID to rte_eth_xstats_get()
|
|
*
|
|
* @param port_id The port to look up statistics from
|
|
* @param xstat_name The name of the statistic to return
|
|
* @param[out] id A pointer to an app-supplied uint64_t which should be
|
|
* set to the ID of the stat if the stat exists.
|
|
* @return
|
|
* 0 on success
|
|
* -ENODEV for invalid port_id,
|
|
* -EIO if device is removed,
|
|
* -EINVAL if the xstat_name doesn't exist in port_id
|
|
*/
|
|
int rte_eth_xstats_get_id_by_name(uint16_t port_id, const char *xstat_name,
|
|
uint64_t *id);
|
|
|
|
/**
|
|
* Reset extended statistics of an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (0) if device notified to reset extended stats.
|
|
* - (-ENOTSUP) if pmd doesn't support both
|
|
* extended stats and basic stats reset.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (<0): Error code of the driver xstats reset function.
|
|
*/
|
|
int rte_eth_xstats_reset(uint16_t port_id);
|
|
|
|
/**
|
|
* Set a mapping for the specified transmit queue to the specified per-queue
|
|
* statistics counter.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param tx_queue_id
|
|
* The index of the transmit queue for which a queue stats mapping is required.
|
|
* The value must be in the range [0, nb_tx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param stat_idx
|
|
* The per-queue packet statistics functionality number that the transmit
|
|
* queue is to be assigned.
|
|
* The value must be in the range [0, RTE_ETHDEV_QUEUE_STAT_CNTRS - 1].
|
|
* @return
|
|
* Zero if successful. Non-zero otherwise.
|
|
*/
|
|
int rte_eth_dev_set_tx_queue_stats_mapping(uint16_t port_id,
|
|
uint16_t tx_queue_id, uint8_t stat_idx);
|
|
|
|
/**
|
|
* Set a mapping for the specified receive queue to the specified per-queue
|
|
* statistics counter.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param rx_queue_id
|
|
* The index of the receive queue for which a queue stats mapping is required.
|
|
* The value must be in the range [0, nb_rx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param stat_idx
|
|
* The per-queue packet statistics functionality number that the receive
|
|
* queue is to be assigned.
|
|
* The value must be in the range [0, RTE_ETHDEV_QUEUE_STAT_CNTRS - 1].
|
|
* @return
|
|
* Zero if successful. Non-zero otherwise.
|
|
*/
|
|
int rte_eth_dev_set_rx_queue_stats_mapping(uint16_t port_id,
|
|
uint16_t rx_queue_id,
|
|
uint8_t stat_idx);
|
|
|
|
/**
|
|
* Retrieve the Ethernet address of an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param mac_addr
|
|
* A pointer to a structure of type *ether_addr* to be filled with
|
|
* the Ethernet address of the Ethernet device.
|
|
* @return
|
|
* - (0) if successful
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
*/
|
|
int rte_eth_macaddr_get(uint16_t port_id, struct rte_ether_addr *mac_addr);
|
|
|
|
/**
|
|
* Retrieve the contextual information of an Ethernet device.
|
|
*
|
|
* As part of this function, a number of of fields in dev_info will be
|
|
* initialized as follows:
|
|
*
|
|
* rx_desc_lim = lim
|
|
* tx_desc_lim = lim
|
|
*
|
|
* Where lim is defined within the rte_eth_dev_info_get as
|
|
*
|
|
* const struct rte_eth_desc_lim lim = {
|
|
* .nb_max = UINT16_MAX,
|
|
* .nb_min = 0,
|
|
* .nb_align = 1,
|
|
* .nb_seg_max = UINT16_MAX,
|
|
* .nb_mtu_seg_max = UINT16_MAX,
|
|
* };
|
|
*
|
|
* device = dev->device
|
|
* min_mtu = RTE_ETHER_MIN_MTU
|
|
* max_mtu = UINT16_MAX
|
|
*
|
|
* The following fields will be populated if support for dev_infos_get()
|
|
* exists for the device and the rte_eth_dev 'dev' has been populated
|
|
* successfully with a call to it:
|
|
*
|
|
* driver_name = dev->device->driver->name
|
|
* nb_rx_queues = dev->data->nb_rx_queues
|
|
* nb_tx_queues = dev->data->nb_tx_queues
|
|
* dev_flags = &dev->data->dev_flags
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param dev_info
|
|
* A pointer to a structure of type *rte_eth_dev_info* to be filled with
|
|
* the contextual information of the Ethernet device.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if support for dev_infos_get() does not exist for the device.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
*/
|
|
int rte_eth_dev_info_get(uint16_t port_id, struct rte_eth_dev_info *dev_info);
|
|
|
|
/**
|
|
* Retrieve the firmware version of a device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the device.
|
|
* @param fw_version
|
|
* A pointer to a string array storing the firmware version of a device,
|
|
* the string includes terminating null. This pointer is allocated by caller.
|
|
* @param fw_size
|
|
* The size of the string array pointed by fw_version, which should be
|
|
* large enough to store firmware version of the device.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if operation is not supported.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (>0) if *fw_size* is not enough to store firmware version, return
|
|
* the size of the non truncated string.
|
|
*/
|
|
int rte_eth_dev_fw_version_get(uint16_t port_id,
|
|
char *fw_version, size_t fw_size);
|
|
|
|
/**
|
|
* Retrieve the supported packet types of an Ethernet device.
|
|
*
|
|
* When a packet type is announced as supported, it *must* be recognized by
|
|
* the PMD. For instance, if RTE_PTYPE_L2_ETHER, RTE_PTYPE_L2_ETHER_VLAN
|
|
* and RTE_PTYPE_L3_IPV4 are announced, the PMD must return the following
|
|
* packet types for these packets:
|
|
* - Ether/IPv4 -> RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4
|
|
* - Ether/Vlan/IPv4 -> RTE_PTYPE_L2_ETHER_VLAN | RTE_PTYPE_L3_IPV4
|
|
* - Ether/[anything else] -> RTE_PTYPE_L2_ETHER
|
|
* - Ether/Vlan/[anything else] -> RTE_PTYPE_L2_ETHER_VLAN
|
|
*
|
|
* When a packet is received by a PMD, the most precise type must be
|
|
* returned among the ones supported. However a PMD is allowed to set
|
|
* packet type that is not in the supported list, at the condition that it
|
|
* is more precise. Therefore, a PMD announcing no supported packet types
|
|
* can still set a matching packet type in a received packet.
|
|
*
|
|
* @note
|
|
* Better to invoke this API after the device is already started or rx burst
|
|
* function is decided, to obtain correct supported ptypes.
|
|
* @note
|
|
* if a given PMD does not report what ptypes it supports, then the supported
|
|
* ptype count is reported as 0.
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param ptype_mask
|
|
* A hint of what kind of packet type which the caller is interested in.
|
|
* @param ptypes
|
|
* An array pointer to store adequate packet types, allocated by caller.
|
|
* @param num
|
|
* Size of the array pointed by param ptypes.
|
|
* @return
|
|
* - (>=0) Number of supported ptypes. If the number of types exceeds num,
|
|
* only num entries will be filled into the ptypes array, but the full
|
|
* count of supported ptypes will be returned.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
*/
|
|
int rte_eth_dev_get_supported_ptypes(uint16_t port_id, uint32_t ptype_mask,
|
|
uint32_t *ptypes, int num);
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Inform Ethernet device about reduced range of packet types to handle.
|
|
*
|
|
* Application can use this function to set only specific ptypes that it's
|
|
* interested. This information can be used by the PMD to optimize Rx path.
|
|
*
|
|
* The function accepts an array `set_ptypes` allocated by the caller to
|
|
* store the packet types set by the driver, the last element of the array
|
|
* is set to RTE_PTYPE_UNKNOWN. The size of the `set_ptype` array should be
|
|
* `rte_eth_dev_get_supported_ptypes() + 1` else it might only be filled
|
|
* partially.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param ptype_mask
|
|
* The ptype family that application is interested in should be bitwise OR of
|
|
* RTE_PTYPE_*_MASK or 0.
|
|
* @param set_ptypes
|
|
* An array pointer to store set packet types, allocated by caller. The
|
|
* function marks the end of array with RTE_PTYPE_UNKNOWN.
|
|
* @param num
|
|
* Size of the array pointed by param ptypes.
|
|
* Should be rte_eth_dev_get_supported_ptypes() + 1 to accommodate the
|
|
* set ptypes.
|
|
* @return
|
|
* - (0) if Success.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EINVAL) if *ptype_mask* is invalid (or) set_ptypes is NULL and
|
|
* num > 0.
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_dev_set_ptypes(uint16_t port_id, uint32_t ptype_mask,
|
|
uint32_t *set_ptypes, unsigned int num);
|
|
|
|
/**
|
|
* Retrieve the MTU of an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param mtu
|
|
* A pointer to a uint16_t where the retrieved MTU is to be stored.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
*/
|
|
int rte_eth_dev_get_mtu(uint16_t port_id, uint16_t *mtu);
|
|
|
|
/**
|
|
* Change the MTU of an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param mtu
|
|
* A uint16_t for the MTU to be applied.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if operation is not supported.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-EINVAL) if *mtu* invalid, validation of mtu can occur within
|
|
* rte_eth_dev_set_mtu if dev_infos_get is supported by the device or
|
|
* when the mtu is set using dev->dev_ops->mtu_set.
|
|
* - (-EBUSY) if operation is not allowed when the port is running
|
|
*/
|
|
int rte_eth_dev_set_mtu(uint16_t port_id, uint16_t mtu);
|
|
|
|
/**
|
|
* Enable/Disable hardware filtering by an Ethernet device of received
|
|
* VLAN packets tagged with a given VLAN Tag Identifier.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param vlan_id
|
|
* The VLAN Tag Identifier whose filtering must be enabled or disabled.
|
|
* @param on
|
|
* If > 0, enable VLAN filtering of VLAN packets tagged with *vlan_id*.
|
|
* Otherwise, disable VLAN filtering of VLAN packets tagged with *vlan_id*.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware-assisted VLAN filtering not configured.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-ENOSYS) if VLAN filtering on *port_id* disabled.
|
|
* - (-EINVAL) if *vlan_id* > 4095.
|
|
*/
|
|
int rte_eth_dev_vlan_filter(uint16_t port_id, uint16_t vlan_id, int on);
|
|
|
|
/**
|
|
* Enable/Disable hardware VLAN Strip by a rx queue of an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param rx_queue_id
|
|
* The index of the receive queue for which a queue stats mapping is required.
|
|
* The value must be in the range [0, nb_rx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param on
|
|
* If 1, Enable VLAN Stripping of the receive queue of the Ethernet port.
|
|
* If 0, Disable VLAN Stripping of the receive queue of the Ethernet port.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware-assisted VLAN stripping not configured.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EINVAL) if *rx_queue_id* invalid.
|
|
*/
|
|
int rte_eth_dev_set_vlan_strip_on_queue(uint16_t port_id, uint16_t rx_queue_id,
|
|
int on);
|
|
|
|
/**
|
|
* Set the Outer VLAN Ether Type by an Ethernet device, it can be inserted to
|
|
* the VLAN header.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param vlan_type
|
|
* The vlan type.
|
|
* @param tag_type
|
|
* The Tag Protocol ID
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware-assisted VLAN TPID setup is not supported.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
*/
|
|
int rte_eth_dev_set_vlan_ether_type(uint16_t port_id,
|
|
enum rte_vlan_type vlan_type,
|
|
uint16_t tag_type);
|
|
|
|
/**
|
|
* Set VLAN offload configuration on an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param offload_mask
|
|
* The VLAN Offload bit mask can be mixed use with "OR"
|
|
* ETH_VLAN_STRIP_OFFLOAD
|
|
* ETH_VLAN_FILTER_OFFLOAD
|
|
* ETH_VLAN_EXTEND_OFFLOAD
|
|
* ETH_QINQ_STRIP_OFFLOAD
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware-assisted VLAN filtering not configured.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
*/
|
|
int rte_eth_dev_set_vlan_offload(uint16_t port_id, int offload_mask);
|
|
|
|
/**
|
|
* Read VLAN Offload configuration from an Ethernet device
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (>0) if successful. Bit mask to indicate
|
|
* ETH_VLAN_STRIP_OFFLOAD
|
|
* ETH_VLAN_FILTER_OFFLOAD
|
|
* ETH_VLAN_EXTEND_OFFLOAD
|
|
* ETH_QINQ_STRIP_OFFLOAD
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
*/
|
|
int rte_eth_dev_get_vlan_offload(uint16_t port_id);
|
|
|
|
/**
|
|
* Set port based TX VLAN insertion on or off.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param pvid
|
|
* Port based TX VLAN identifier together with user priority.
|
|
* @param on
|
|
* Turn on or off the port based TX VLAN insertion.
|
|
*
|
|
* @return
|
|
* - (0) if successful.
|
|
* - negative if failed.
|
|
*/
|
|
int rte_eth_dev_set_vlan_pvid(uint16_t port_id, uint16_t pvid, int on);
|
|
|
|
typedef void (*buffer_tx_error_fn)(struct rte_mbuf **unsent, uint16_t count,
|
|
void *userdata);
|
|
|
|
/**
|
|
* Structure used to buffer packets for future TX
|
|
* Used by APIs rte_eth_tx_buffer and rte_eth_tx_buffer_flush
|
|
*/
|
|
struct rte_eth_dev_tx_buffer {
|
|
buffer_tx_error_fn error_callback;
|
|
void *error_userdata;
|
|
uint16_t size; /**< Size of buffer for buffered tx */
|
|
uint16_t length; /**< Number of packets in the array */
|
|
struct rte_mbuf *pkts[];
|
|
/**< Pending packets to be sent on explicit flush or when full */
|
|
};
|
|
|
|
/**
|
|
* Calculate the size of the tx buffer.
|
|
*
|
|
* @param sz
|
|
* Number of stored packets.
|
|
*/
|
|
#define RTE_ETH_TX_BUFFER_SIZE(sz) \
|
|
(sizeof(struct rte_eth_dev_tx_buffer) + (sz) * sizeof(struct rte_mbuf *))
|
|
|
|
/**
|
|
* Initialize default values for buffered transmitting
|
|
*
|
|
* @param buffer
|
|
* Tx buffer to be initialized.
|
|
* @param size
|
|
* Buffer size
|
|
* @return
|
|
* 0 if no error
|
|
*/
|
|
int
|
|
rte_eth_tx_buffer_init(struct rte_eth_dev_tx_buffer *buffer, uint16_t size);
|
|
|
|
/**
|
|
* Configure a callback for buffered packets which cannot be sent
|
|
*
|
|
* Register a specific callback to be called when an attempt is made to send
|
|
* all packets buffered on an ethernet port, but not all packets can
|
|
* successfully be sent. The callback registered here will be called only
|
|
* from calls to rte_eth_tx_buffer() and rte_eth_tx_buffer_flush() APIs.
|
|
* The default callback configured for each queue by default just frees the
|
|
* packets back to the calling mempool. If additional behaviour is required,
|
|
* for example, to count dropped packets, or to retry transmission of packets
|
|
* which cannot be sent, this function should be used to register a suitable
|
|
* callback function to implement the desired behaviour.
|
|
* The example callback "rte_eth_count_unsent_packet_callback()" is also
|
|
* provided as reference.
|
|
*
|
|
* @param buffer
|
|
* The port identifier of the Ethernet device.
|
|
* @param callback
|
|
* The function to be used as the callback.
|
|
* @param userdata
|
|
* Arbitrary parameter to be passed to the callback function
|
|
* @return
|
|
* 0 on success, or -1 on error with rte_errno set appropriately
|
|
*/
|
|
int
|
|
rte_eth_tx_buffer_set_err_callback(struct rte_eth_dev_tx_buffer *buffer,
|
|
buffer_tx_error_fn callback, void *userdata);
|
|
|
|
/**
|
|
* Callback function for silently dropping unsent buffered packets.
|
|
*
|
|
* This function can be passed to rte_eth_tx_buffer_set_err_callback() to
|
|
* adjust the default behavior when buffered packets cannot be sent. This
|
|
* function drops any unsent packets silently and is used by tx buffered
|
|
* operations as default behavior.
|
|
*
|
|
* NOTE: this function should not be called directly, instead it should be used
|
|
* as a callback for packet buffering.
|
|
*
|
|
* NOTE: when configuring this function as a callback with
|
|
* rte_eth_tx_buffer_set_err_callback(), the final, userdata parameter
|
|
* should point to an uint64_t value.
|
|
*
|
|
* @param pkts
|
|
* The previously buffered packets which could not be sent
|
|
* @param unsent
|
|
* The number of unsent packets in the pkts array
|
|
* @param userdata
|
|
* Not used
|
|
*/
|
|
void
|
|
rte_eth_tx_buffer_drop_callback(struct rte_mbuf **pkts, uint16_t unsent,
|
|
void *userdata);
|
|
|
|
/**
|
|
* Callback function for tracking unsent buffered packets.
|
|
*
|
|
* This function can be passed to rte_eth_tx_buffer_set_err_callback() to
|
|
* adjust the default behavior when buffered packets cannot be sent. This
|
|
* function drops any unsent packets, but also updates a user-supplied counter
|
|
* to track the overall number of packets dropped. The counter should be an
|
|
* uint64_t variable.
|
|
*
|
|
* NOTE: this function should not be called directly, instead it should be used
|
|
* as a callback for packet buffering.
|
|
*
|
|
* NOTE: when configuring this function as a callback with
|
|
* rte_eth_tx_buffer_set_err_callback(), the final, userdata parameter
|
|
* should point to an uint64_t value.
|
|
*
|
|
* @param pkts
|
|
* The previously buffered packets which could not be sent
|
|
* @param unsent
|
|
* The number of unsent packets in the pkts array
|
|
* @param userdata
|
|
* Pointer to an uint64_t value, which will be incremented by unsent
|
|
*/
|
|
void
|
|
rte_eth_tx_buffer_count_callback(struct rte_mbuf **pkts, uint16_t unsent,
|
|
void *userdata);
|
|
|
|
/**
|
|
* Request the driver to free mbufs currently cached by the driver. The
|
|
* driver will only free the mbuf if it is no longer in use. It is the
|
|
* application's responsibility to ensure rte_eth_tx_buffer_flush(..) is
|
|
* called if needed.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The index of the transmit queue through which output packets must be
|
|
* sent.
|
|
* The value must be in the range [0, nb_tx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param free_cnt
|
|
* Maximum number of packets to free. Use 0 to indicate all possible packets
|
|
* should be freed. Note that a packet may be using multiple mbufs.
|
|
* @return
|
|
* Failure: < 0
|
|
* -ENODEV: Invalid interface
|
|
* -EIO: device is removed
|
|
* -ENOTSUP: Driver does not support function
|
|
* Success: >= 0
|
|
* 0-n: Number of packets freed. More packets may still remain in ring that
|
|
* are in use.
|
|
*/
|
|
int
|
|
rte_eth_tx_done_cleanup(uint16_t port_id, uint16_t queue_id, uint32_t free_cnt);
|
|
|
|
/**
|
|
* Subtypes for IPsec offload event(@ref RTE_ETH_EVENT_IPSEC) raised by
|
|
* eth device.
|
|
*/
|
|
enum rte_eth_event_ipsec_subtype {
|
|
RTE_ETH_EVENT_IPSEC_UNKNOWN = 0,
|
|
/**< Unknown event type */
|
|
RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW,
|
|
/**< Sequence number overflow */
|
|
RTE_ETH_EVENT_IPSEC_SA_TIME_EXPIRY,
|
|
/**< Soft time expiry of SA */
|
|
RTE_ETH_EVENT_IPSEC_SA_BYTE_EXPIRY,
|
|
/**< Soft byte expiry of SA */
|
|
RTE_ETH_EVENT_IPSEC_MAX
|
|
/**< Max value of this enum */
|
|
};
|
|
|
|
/**
|
|
* Descriptor for @ref RTE_ETH_EVENT_IPSEC event. Used by eth dev to send extra
|
|
* information of the IPsec offload event.
|
|
*/
|
|
struct rte_eth_event_ipsec_desc {
|
|
enum rte_eth_event_ipsec_subtype subtype;
|
|
/**< Type of RTE_ETH_EVENT_IPSEC_* event */
|
|
uint64_t metadata;
|
|
/**< Event specific metadata
|
|
*
|
|
* For the following events, *userdata* registered
|
|
* with the *rte_security_session* would be returned
|
|
* as metadata,
|
|
*
|
|
* - @ref RTE_ETH_EVENT_IPSEC_ESN_OVERFLOW
|
|
* - @ref RTE_ETH_EVENT_IPSEC_SA_TIME_EXPIRY
|
|
* - @ref RTE_ETH_EVENT_IPSEC_SA_BYTE_EXPIRY
|
|
*
|
|
* @see struct rte_security_session_conf
|
|
*
|
|
*/
|
|
};
|
|
|
|
/**
|
|
* The eth device event type for interrupt, and maybe others in the future.
|
|
*/
|
|
enum rte_eth_event_type {
|
|
RTE_ETH_EVENT_UNKNOWN, /**< unknown event type */
|
|
RTE_ETH_EVENT_INTR_LSC, /**< lsc interrupt event */
|
|
RTE_ETH_EVENT_QUEUE_STATE,
|
|
/**< queue state event (enabled/disabled) */
|
|
RTE_ETH_EVENT_INTR_RESET,
|
|
/**< reset interrupt event, sent to VF on PF reset */
|
|
RTE_ETH_EVENT_VF_MBOX, /**< message from the VF received by PF */
|
|
RTE_ETH_EVENT_MACSEC, /**< MACsec offload related event */
|
|
RTE_ETH_EVENT_INTR_RMV, /**< device removal event */
|
|
RTE_ETH_EVENT_NEW, /**< port is probed */
|
|
RTE_ETH_EVENT_DESTROY, /**< port is released */
|
|
RTE_ETH_EVENT_IPSEC, /**< IPsec offload related event */
|
|
RTE_ETH_EVENT_FLOW_AGED,/**< New aged-out flows is detected */
|
|
RTE_ETH_EVENT_MAX /**< max value of this enum */
|
|
};
|
|
|
|
typedef int (*rte_eth_dev_cb_fn)(uint16_t port_id,
|
|
enum rte_eth_event_type event, void *cb_arg, void *ret_param);
|
|
/**< user application callback to be registered for interrupts */
|
|
|
|
/**
|
|
* Register a callback function for port event.
|
|
*
|
|
* @param port_id
|
|
* Port id.
|
|
* RTE_ETH_ALL means register the event for all port ids.
|
|
* @param event
|
|
* Event interested.
|
|
* @param cb_fn
|
|
* User supplied callback function to be called.
|
|
* @param cb_arg
|
|
* Pointer to the parameters for the registered callback.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
int rte_eth_dev_callback_register(uint16_t port_id,
|
|
enum rte_eth_event_type event,
|
|
rte_eth_dev_cb_fn cb_fn, void *cb_arg);
|
|
|
|
/**
|
|
* Unregister a callback function for port event.
|
|
*
|
|
* @param port_id
|
|
* Port id.
|
|
* RTE_ETH_ALL means unregister the event for all port ids.
|
|
* @param event
|
|
* Event interested.
|
|
* @param cb_fn
|
|
* User supplied callback function to be called.
|
|
* @param cb_arg
|
|
* Pointer to the parameters for the registered callback. -1 means to
|
|
* remove all for the same callback address and same event.
|
|
*
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
int rte_eth_dev_callback_unregister(uint16_t port_id,
|
|
enum rte_eth_event_type event,
|
|
rte_eth_dev_cb_fn cb_fn, void *cb_arg);
|
|
|
|
/**
|
|
* When there is no rx packet coming in Rx Queue for a long time, we can
|
|
* sleep lcore related to RX Queue for power saving, and enable rx interrupt
|
|
* to be triggered when Rx packet arrives.
|
|
*
|
|
* The rte_eth_dev_rx_intr_enable() function enables rx queue
|
|
* interrupt on specific rx queue of a port.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The index of the receive queue from which to retrieve input packets.
|
|
* The value must be in the range [0, nb_rx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if underlying hardware OR driver doesn't support
|
|
* that operation.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
*/
|
|
int rte_eth_dev_rx_intr_enable(uint16_t port_id, uint16_t queue_id);
|
|
|
|
/**
|
|
* When lcore wakes up from rx interrupt indicating packet coming, disable rx
|
|
* interrupt and returns to polling mode.
|
|
*
|
|
* The rte_eth_dev_rx_intr_disable() function disables rx queue
|
|
* interrupt on specific rx queue of a port.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The index of the receive queue from which to retrieve input packets.
|
|
* The value must be in the range [0, nb_rx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if underlying hardware OR driver doesn't support
|
|
* that operation.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
*/
|
|
int rte_eth_dev_rx_intr_disable(uint16_t port_id, uint16_t queue_id);
|
|
|
|
/**
|
|
* RX Interrupt control per port.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param epfd
|
|
* Epoll instance fd which the intr vector associated to.
|
|
* Using RTE_EPOLL_PER_THREAD allows to use per thread epoll instance.
|
|
* @param op
|
|
* The operation be performed for the vector.
|
|
* Operation type of {RTE_INTR_EVENT_ADD, RTE_INTR_EVENT_DEL}.
|
|
* @param data
|
|
* User raw data.
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
int rte_eth_dev_rx_intr_ctl(uint16_t port_id, int epfd, int op, void *data);
|
|
|
|
/**
|
|
* RX Interrupt control per queue.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The index of the receive queue from which to retrieve input packets.
|
|
* The value must be in the range [0, nb_rx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param epfd
|
|
* Epoll instance fd which the intr vector associated to.
|
|
* Using RTE_EPOLL_PER_THREAD allows to use per thread epoll instance.
|
|
* @param op
|
|
* The operation be performed for the vector.
|
|
* Operation type of {RTE_INTR_EVENT_ADD, RTE_INTR_EVENT_DEL}.
|
|
* @param data
|
|
* User raw data.
|
|
* @return
|
|
* - On success, zero.
|
|
* - On failure, a negative value.
|
|
*/
|
|
int rte_eth_dev_rx_intr_ctl_q(uint16_t port_id, uint16_t queue_id,
|
|
int epfd, int op, void *data);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Get interrupt fd per Rx queue.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The index of the receive queue from which to retrieve input packets.
|
|
* The value must be in the range [0, nb_rx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @return
|
|
* - (>=0) the interrupt fd associated to the requested Rx queue if
|
|
* successful.
|
|
* - (-1) on error.
|
|
*/
|
|
__rte_experimental
|
|
int
|
|
rte_eth_dev_rx_intr_ctl_q_get_fd(uint16_t port_id, uint16_t queue_id);
|
|
|
|
/**
|
|
* Turn on the LED on the Ethernet device.
|
|
* This function turns on the LED on the Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if underlying hardware OR driver doesn't support
|
|
* that operation.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
*/
|
|
int rte_eth_led_on(uint16_t port_id);
|
|
|
|
/**
|
|
* Turn off the LED on the Ethernet device.
|
|
* This function turns off the LED on the Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if underlying hardware OR driver doesn't support
|
|
* that operation.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
*/
|
|
int rte_eth_led_off(uint16_t port_id);
|
|
|
|
/**
|
|
* Get current status of the Ethernet link flow control for Ethernet device
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param fc_conf
|
|
* The pointer to the structure where to store the flow control parameters.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support flow control.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
*/
|
|
int rte_eth_dev_flow_ctrl_get(uint16_t port_id,
|
|
struct rte_eth_fc_conf *fc_conf);
|
|
|
|
/**
|
|
* Configure the Ethernet link flow control for Ethernet device
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param fc_conf
|
|
* The pointer to the structure of the flow control parameters.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support flow control mode.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EINVAL) if bad parameter
|
|
* - (-EIO) if flow control setup failure or device is removed.
|
|
*/
|
|
int rte_eth_dev_flow_ctrl_set(uint16_t port_id,
|
|
struct rte_eth_fc_conf *fc_conf);
|
|
|
|
/**
|
|
* Configure the Ethernet priority flow control under DCB environment
|
|
* for Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param pfc_conf
|
|
* The pointer to the structure of the priority flow control parameters.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support priority flow control mode.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EINVAL) if bad parameter
|
|
* - (-EIO) if flow control setup failure or device is removed.
|
|
*/
|
|
int rte_eth_dev_priority_flow_ctrl_set(uint16_t port_id,
|
|
struct rte_eth_pfc_conf *pfc_conf);
|
|
|
|
/**
|
|
* Add a MAC address to the set used for filtering incoming packets.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param mac_addr
|
|
* The MAC address to add.
|
|
* @param pool
|
|
* VMDq pool index to associate address with (if VMDq is enabled). If VMDq is
|
|
* not enabled, this should be set to 0.
|
|
* @return
|
|
* - (0) if successfully added or *mac_addr* was already added.
|
|
* - (-ENOTSUP) if hardware doesn't support this feature.
|
|
* - (-ENODEV) if *port* is invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-ENOSPC) if no more MAC addresses can be added.
|
|
* - (-EINVAL) if MAC address is invalid.
|
|
*/
|
|
int rte_eth_dev_mac_addr_add(uint16_t port_id, struct rte_ether_addr *mac_addr,
|
|
uint32_t pool);
|
|
|
|
/**
|
|
* Remove a MAC address from the internal array of addresses.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param mac_addr
|
|
* MAC address to remove.
|
|
* @return
|
|
* - (0) if successful, or *mac_addr* didn't exist.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port* invalid.
|
|
* - (-EADDRINUSE) if attempting to remove the default MAC address
|
|
*/
|
|
int rte_eth_dev_mac_addr_remove(uint16_t port_id,
|
|
struct rte_ether_addr *mac_addr);
|
|
|
|
/**
|
|
* Set the default MAC address.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param mac_addr
|
|
* New default MAC address.
|
|
* @return
|
|
* - (0) if successful, or *mac_addr* didn't exist.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port* invalid.
|
|
* - (-EINVAL) if MAC address is invalid.
|
|
*/
|
|
int rte_eth_dev_default_mac_addr_set(uint16_t port_id,
|
|
struct rte_ether_addr *mac_addr);
|
|
|
|
/**
|
|
* Update Redirection Table(RETA) of Receive Side Scaling of Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param reta_conf
|
|
* RETA to update.
|
|
* @param reta_size
|
|
* Redirection table size. The table size can be queried by
|
|
* rte_eth_dev_info_get().
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-EINVAL) if bad parameter.
|
|
* - (-EIO) if device is removed.
|
|
*/
|
|
int rte_eth_dev_rss_reta_update(uint16_t port_id,
|
|
struct rte_eth_rss_reta_entry64 *reta_conf,
|
|
uint16_t reta_size);
|
|
|
|
/**
|
|
* Query Redirection Table(RETA) of Receive Side Scaling of Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param reta_conf
|
|
* RETA to query. For each requested reta entry, corresponding bit
|
|
* in mask must be set.
|
|
* @param reta_size
|
|
* Redirection table size. The table size can be queried by
|
|
* rte_eth_dev_info_get().
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-EINVAL) if bad parameter.
|
|
* - (-EIO) if device is removed.
|
|
*/
|
|
int rte_eth_dev_rss_reta_query(uint16_t port_id,
|
|
struct rte_eth_rss_reta_entry64 *reta_conf,
|
|
uint16_t reta_size);
|
|
|
|
/**
|
|
* Updates unicast hash table for receiving packet with the given destination
|
|
* MAC address, and the packet is routed to all VFs for which the RX mode is
|
|
* accept packets that match the unicast hash table.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param addr
|
|
* Unicast MAC address.
|
|
* @param on
|
|
* 1 - Set an unicast hash bit for receiving packets with the MAC address.
|
|
* 0 - Clear an unicast hash bit.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-EINVAL) if bad parameter.
|
|
*/
|
|
int rte_eth_dev_uc_hash_table_set(uint16_t port_id, struct rte_ether_addr *addr,
|
|
uint8_t on);
|
|
|
|
/**
|
|
* Updates all unicast hash bitmaps for receiving packet with any Unicast
|
|
* Ethernet MAC addresses,the packet is routed to all VFs for which the RX
|
|
* mode is accept packets that match the unicast hash table.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param on
|
|
* 1 - Set all unicast hash bitmaps for receiving all the Ethernet
|
|
* MAC addresses
|
|
* 0 - Clear all unicast hash bitmaps
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-EINVAL) if bad parameter.
|
|
*/
|
|
int rte_eth_dev_uc_all_hash_table_set(uint16_t port_id, uint8_t on);
|
|
|
|
/**
|
|
* Set a traffic mirroring rule on an Ethernet device
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param mirror_conf
|
|
* The pointer to the traffic mirroring structure describing the mirroring rule.
|
|
* The *rte_eth_vm_mirror_conf* structure includes the type of mirroring rule,
|
|
* destination pool and the value of rule if enable vlan or pool mirroring.
|
|
*
|
|
* @param rule_id
|
|
* The index of traffic mirroring rule, we support four separated rules.
|
|
* @param on
|
|
* 1 - Enable a mirroring rule.
|
|
* 0 - Disable a mirroring rule.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support this feature.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-EINVAL) if the mr_conf information is not correct.
|
|
*/
|
|
int rte_eth_mirror_rule_set(uint16_t port_id,
|
|
struct rte_eth_mirror_conf *mirror_conf,
|
|
uint8_t rule_id,
|
|
uint8_t on);
|
|
|
|
/**
|
|
* Reset a traffic mirroring rule on an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param rule_id
|
|
* The index of traffic mirroring rule, we support four separated rules.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support this feature.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-EINVAL) if bad parameter.
|
|
*/
|
|
int rte_eth_mirror_rule_reset(uint16_t port_id,
|
|
uint8_t rule_id);
|
|
|
|
/**
|
|
* Set the rate limitation for a queue on an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_idx
|
|
* The queue id.
|
|
* @param tx_rate
|
|
* The tx rate in Mbps. Allocated from the total port link speed.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support this feature.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-EINVAL) if bad parameter.
|
|
*/
|
|
int rte_eth_set_queue_rate_limit(uint16_t port_id, uint16_t queue_idx,
|
|
uint16_t tx_rate);
|
|
|
|
/**
|
|
* Configuration of Receive Side Scaling hash computation of Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param rss_conf
|
|
* The new configuration to use for RSS hash computation on the port.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENODEV) if port identifier is invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-EINVAL) if bad parameter.
|
|
*/
|
|
int rte_eth_dev_rss_hash_update(uint16_t port_id,
|
|
struct rte_eth_rss_conf *rss_conf);
|
|
|
|
/**
|
|
* Retrieve current configuration of Receive Side Scaling hash computation
|
|
* of Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param rss_conf
|
|
* Where to store the current RSS hash configuration of the Ethernet device.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENODEV) if port identifier is invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-ENOTSUP) if hardware doesn't support RSS.
|
|
*/
|
|
int
|
|
rte_eth_dev_rss_hash_conf_get(uint16_t port_id,
|
|
struct rte_eth_rss_conf *rss_conf);
|
|
|
|
/**
|
|
* Add UDP tunneling port for a specific type of tunnel.
|
|
* The packets with this UDP port will be identified as this type of tunnel.
|
|
* Before enabling any offloading function for a tunnel, users can call this API
|
|
* to change or add more UDP port for the tunnel. So the offloading function
|
|
* can take effect on the packets with the specific UDP port.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param tunnel_udp
|
|
* UDP tunneling configuration.
|
|
*
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENODEV) if port identifier is invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-ENOTSUP) if hardware doesn't support tunnel type.
|
|
*/
|
|
int
|
|
rte_eth_dev_udp_tunnel_port_add(uint16_t port_id,
|
|
struct rte_eth_udp_tunnel *tunnel_udp);
|
|
|
|
/**
|
|
* Delete UDP tunneling port a specific type of tunnel.
|
|
* The packets with this UDP port will not be identified as this type of tunnel
|
|
* any more.
|
|
* Before enabling any offloading function for a tunnel, users can call this API
|
|
* to delete a UDP port for the tunnel. So the offloading function will not take
|
|
* effect on the packets with the specific UDP port.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param tunnel_udp
|
|
* UDP tunneling configuration.
|
|
*
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENODEV) if port identifier is invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-ENOTSUP) if hardware doesn't support tunnel type.
|
|
*/
|
|
int
|
|
rte_eth_dev_udp_tunnel_port_delete(uint16_t port_id,
|
|
struct rte_eth_udp_tunnel *tunnel_udp);
|
|
|
|
/**
|
|
* Check whether the filter type is supported on an Ethernet device.
|
|
* All the supported filter types are defined in 'rte_eth_ctrl.h'.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param filter_type
|
|
* Filter type.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support this filter type.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
*/
|
|
__rte_deprecated
|
|
int rte_eth_dev_filter_supported(uint16_t port_id,
|
|
enum rte_filter_type filter_type);
|
|
|
|
/**
|
|
* Take operations to assigned filter type on an Ethernet device.
|
|
* All the supported operations and filter types are defined in 'rte_eth_ctrl.h'.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param filter_type
|
|
* Filter type.
|
|
* @param filter_op
|
|
* Type of operation.
|
|
* @param arg
|
|
* A pointer to arguments defined specifically for the operation.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - others depends on the specific operations implementation.
|
|
*/
|
|
__rte_deprecated
|
|
int rte_eth_dev_filter_ctrl(uint16_t port_id, enum rte_filter_type filter_type,
|
|
enum rte_filter_op filter_op, void *arg);
|
|
|
|
/**
|
|
* Get DCB information on an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param dcb_info
|
|
* dcb information.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENODEV) if port identifier is invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
*/
|
|
int rte_eth_dev_get_dcb_info(uint16_t port_id,
|
|
struct rte_eth_dcb_info *dcb_info);
|
|
|
|
struct rte_eth_rxtx_callback;
|
|
|
|
/**
|
|
* Add a callback to be called on packet RX on a given port and queue.
|
|
*
|
|
* This API configures a function to be called for each burst of
|
|
* packets received on a given NIC port queue. The return value is a pointer
|
|
* that can be used to later remove the callback using
|
|
* rte_eth_remove_rx_callback().
|
|
*
|
|
* Multiple functions are called in the order that they are added.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The queue on the Ethernet device on which the callback is to be added.
|
|
* @param fn
|
|
* The callback function
|
|
* @param user_param
|
|
* A generic pointer parameter which will be passed to each invocation of the
|
|
* callback function on this port and queue.
|
|
*
|
|
* @return
|
|
* NULL on error.
|
|
* On success, a pointer value which can later be used to remove the callback.
|
|
*/
|
|
const struct rte_eth_rxtx_callback *
|
|
rte_eth_add_rx_callback(uint16_t port_id, uint16_t queue_id,
|
|
rte_rx_callback_fn fn, void *user_param);
|
|
|
|
/**
|
|
* Add a callback that must be called first on packet RX on a given port
|
|
* and queue.
|
|
*
|
|
* This API configures a first function to be called for each burst of
|
|
* packets received on a given NIC port queue. The return value is a pointer
|
|
* that can be used to later remove the callback using
|
|
* rte_eth_remove_rx_callback().
|
|
*
|
|
* Multiple functions are called in the order that they are added.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The queue on the Ethernet device on which the callback is to be added.
|
|
* @param fn
|
|
* The callback function
|
|
* @param user_param
|
|
* A generic pointer parameter which will be passed to each invocation of the
|
|
* callback function on this port and queue.
|
|
*
|
|
* @return
|
|
* NULL on error.
|
|
* On success, a pointer value which can later be used to remove the callback.
|
|
*/
|
|
const struct rte_eth_rxtx_callback *
|
|
rte_eth_add_first_rx_callback(uint16_t port_id, uint16_t queue_id,
|
|
rte_rx_callback_fn fn, void *user_param);
|
|
|
|
/**
|
|
* Add a callback to be called on packet TX on a given port and queue.
|
|
*
|
|
* This API configures a function to be called for each burst of
|
|
* packets sent on a given NIC port queue. The return value is a pointer
|
|
* that can be used to later remove the callback using
|
|
* rte_eth_remove_tx_callback().
|
|
*
|
|
* Multiple functions are called in the order that they are added.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The queue on the Ethernet device on which the callback is to be added.
|
|
* @param fn
|
|
* The callback function
|
|
* @param user_param
|
|
* A generic pointer parameter which will be passed to each invocation of the
|
|
* callback function on this port and queue.
|
|
*
|
|
* @return
|
|
* NULL on error.
|
|
* On success, a pointer value which can later be used to remove the callback.
|
|
*/
|
|
const struct rte_eth_rxtx_callback *
|
|
rte_eth_add_tx_callback(uint16_t port_id, uint16_t queue_id,
|
|
rte_tx_callback_fn fn, void *user_param);
|
|
|
|
/**
|
|
* Remove an RX packet callback from a given port and queue.
|
|
*
|
|
* This function is used to removed callbacks that were added to a NIC port
|
|
* queue using rte_eth_add_rx_callback().
|
|
*
|
|
* Note: the callback is removed from the callback list but it isn't freed
|
|
* since the it may still be in use. The memory for the callback can be
|
|
* subsequently freed back by the application by calling rte_free():
|
|
*
|
|
* - Immediately - if the port is stopped, or the user knows that no
|
|
* callbacks are in flight e.g. if called from the thread doing RX/TX
|
|
* on that queue.
|
|
*
|
|
* - After a short delay - where the delay is sufficient to allow any
|
|
* in-flight callbacks to complete.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The queue on the Ethernet device from which the callback is to be removed.
|
|
* @param user_cb
|
|
* User supplied callback created via rte_eth_add_rx_callback().
|
|
*
|
|
* @return
|
|
* - 0: Success. Callback was removed.
|
|
* - -ENOTSUP: Callback support is not available.
|
|
* - -EINVAL: The port_id or the queue_id is out of range, or the callback
|
|
* is NULL or not found for the port/queue.
|
|
*/
|
|
int rte_eth_remove_rx_callback(uint16_t port_id, uint16_t queue_id,
|
|
const struct rte_eth_rxtx_callback *user_cb);
|
|
|
|
/**
|
|
* Remove a TX packet callback from a given port and queue.
|
|
*
|
|
* This function is used to removed callbacks that were added to a NIC port
|
|
* queue using rte_eth_add_tx_callback().
|
|
*
|
|
* Note: the callback is removed from the callback list but it isn't freed
|
|
* since the it may still be in use. The memory for the callback can be
|
|
* subsequently freed back by the application by calling rte_free():
|
|
*
|
|
* - Immediately - if the port is stopped, or the user knows that no
|
|
* callbacks are in flight e.g. if called from the thread doing RX/TX
|
|
* on that queue.
|
|
*
|
|
* - After a short delay - where the delay is sufficient to allow any
|
|
* in-flight callbacks to complete.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The queue on the Ethernet device from which the callback is to be removed.
|
|
* @param user_cb
|
|
* User supplied callback created via rte_eth_add_tx_callback().
|
|
*
|
|
* @return
|
|
* - 0: Success. Callback was removed.
|
|
* - -ENOTSUP: Callback support is not available.
|
|
* - -EINVAL: The port_id or the queue_id is out of range, or the callback
|
|
* is NULL or not found for the port/queue.
|
|
*/
|
|
int rte_eth_remove_tx_callback(uint16_t port_id, uint16_t queue_id,
|
|
const struct rte_eth_rxtx_callback *user_cb);
|
|
|
|
/**
|
|
* Retrieve information about given port's RX queue.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The RX queue on the Ethernet device for which information
|
|
* will be retrieved.
|
|
* @param qinfo
|
|
* A pointer to a structure of type *rte_eth_rxq_info_info* to be filled with
|
|
* the information of the Ethernet device.
|
|
*
|
|
* @return
|
|
* - 0: Success
|
|
* - -ENOTSUP: routine is not supported by the device PMD.
|
|
* - -EINVAL: The port_id or the queue_id is out of range, or the queue
|
|
* is hairpin queue.
|
|
*/
|
|
int rte_eth_rx_queue_info_get(uint16_t port_id, uint16_t queue_id,
|
|
struct rte_eth_rxq_info *qinfo);
|
|
|
|
/**
|
|
* Retrieve information about given port's TX queue.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The TX queue on the Ethernet device for which information
|
|
* will be retrieved.
|
|
* @param qinfo
|
|
* A pointer to a structure of type *rte_eth_txq_info_info* to be filled with
|
|
* the information of the Ethernet device.
|
|
*
|
|
* @return
|
|
* - 0: Success
|
|
* - -ENOTSUP: routine is not supported by the device PMD.
|
|
* - -EINVAL: The port_id or the queue_id is out of range, or the queue
|
|
* is hairpin queue.
|
|
*/
|
|
int rte_eth_tx_queue_info_get(uint16_t port_id, uint16_t queue_id,
|
|
struct rte_eth_txq_info *qinfo);
|
|
|
|
/**
|
|
* Retrieve information about the Rx packet burst mode.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The Rx queue on the Ethernet device for which information
|
|
* will be retrieved.
|
|
* @param mode
|
|
* A pointer to a structure of type *rte_eth_burst_mode* to be filled
|
|
* with the information of the packet burst mode.
|
|
*
|
|
* @return
|
|
* - 0: Success
|
|
* - -ENOTSUP: routine is not supported by the device PMD.
|
|
* - -EINVAL: The port_id or the queue_id is out of range.
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_rx_burst_mode_get(uint16_t port_id, uint16_t queue_id,
|
|
struct rte_eth_burst_mode *mode);
|
|
|
|
/**
|
|
* Retrieve information about the Tx packet burst mode.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The Tx queue on the Ethernet device for which information
|
|
* will be retrieved.
|
|
* @param mode
|
|
* A pointer to a structure of type *rte_eth_burst_mode* to be filled
|
|
* with the information of the packet burst mode.
|
|
*
|
|
* @return
|
|
* - 0: Success
|
|
* - -ENOTSUP: routine is not supported by the device PMD.
|
|
* - -EINVAL: The port_id or the queue_id is out of range.
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_tx_burst_mode_get(uint16_t port_id, uint16_t queue_id,
|
|
struct rte_eth_burst_mode *mode);
|
|
|
|
/**
|
|
* Retrieve device registers and register attributes (number of registers and
|
|
* register size)
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param info
|
|
* Pointer to rte_dev_reg_info structure to fill in. If info->data is
|
|
* NULL the function fills in the width and length fields. If non-NULL
|
|
* the registers are put into the buffer pointed at by the data field.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - others depends on the specific operations implementation.
|
|
*/
|
|
int rte_eth_dev_get_reg_info(uint16_t port_id, struct rte_dev_reg_info *info);
|
|
|
|
/**
|
|
* Retrieve size of device EEPROM
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @return
|
|
* - (>=0) EEPROM size if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - others depends on the specific operations implementation.
|
|
*/
|
|
int rte_eth_dev_get_eeprom_length(uint16_t port_id);
|
|
|
|
/**
|
|
* Retrieve EEPROM and EEPROM attribute
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param info
|
|
* The template includes buffer for return EEPROM data and
|
|
* EEPROM attributes to be filled.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - others depends on the specific operations implementation.
|
|
*/
|
|
int rte_eth_dev_get_eeprom(uint16_t port_id, struct rte_dev_eeprom_info *info);
|
|
|
|
/**
|
|
* Program EEPROM with provided data
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param info
|
|
* The template includes EEPROM data for programming and
|
|
* EEPROM attributes to be filled
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - others depends on the specific operations implementation.
|
|
*/
|
|
int rte_eth_dev_set_eeprom(uint16_t port_id, struct rte_dev_eeprom_info *info);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Retrieve the type and size of plugin module EEPROM
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param modinfo
|
|
* The type and size of plugin module EEPROM.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - others depends on the specific operations implementation.
|
|
*/
|
|
__rte_experimental
|
|
int
|
|
rte_eth_dev_get_module_info(uint16_t port_id,
|
|
struct rte_eth_dev_module_info *modinfo);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Retrieve the data of plugin module EEPROM
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param info
|
|
* The template includes the plugin module EEPROM attributes, and the
|
|
* buffer for return plugin module EEPROM data.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - others depends on the specific operations implementation.
|
|
*/
|
|
__rte_experimental
|
|
int
|
|
rte_eth_dev_get_module_eeprom(uint16_t port_id,
|
|
struct rte_dev_eeprom_info *info);
|
|
|
|
/**
|
|
* Set the list of multicast addresses to filter on an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param mc_addr_set
|
|
* The array of multicast addresses to set. Equal to NULL when the function
|
|
* is invoked to flush the set of filtered addresses.
|
|
* @param nb_mc_addr
|
|
* The number of multicast addresses in the *mc_addr_set* array. Equal to 0
|
|
* when the function is invoked to flush the set of filtered addresses.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-ENOTSUP) if PMD of *port_id* doesn't support multicast filtering.
|
|
* - (-ENOSPC) if *port_id* has not enough multicast filtering resources.
|
|
*/
|
|
int rte_eth_dev_set_mc_addr_list(uint16_t port_id,
|
|
struct rte_ether_addr *mc_addr_set,
|
|
uint32_t nb_mc_addr);
|
|
|
|
/**
|
|
* Enable IEEE1588/802.1AS timestamping for an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
*
|
|
* @return
|
|
* - 0: Success.
|
|
* - -ENODEV: The port ID is invalid.
|
|
* - -EIO: if device is removed.
|
|
* - -ENOTSUP: The function is not supported by the Ethernet driver.
|
|
*/
|
|
int rte_eth_timesync_enable(uint16_t port_id);
|
|
|
|
/**
|
|
* Disable IEEE1588/802.1AS timestamping for an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
*
|
|
* @return
|
|
* - 0: Success.
|
|
* - -ENODEV: The port ID is invalid.
|
|
* - -EIO: if device is removed.
|
|
* - -ENOTSUP: The function is not supported by the Ethernet driver.
|
|
*/
|
|
int rte_eth_timesync_disable(uint16_t port_id);
|
|
|
|
/**
|
|
* Read an IEEE1588/802.1AS RX timestamp from an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param timestamp
|
|
* Pointer to the timestamp struct.
|
|
* @param flags
|
|
* Device specific flags. Used to pass the RX timesync register index to
|
|
* i40e. Unused in igb/ixgbe, pass 0 instead.
|
|
*
|
|
* @return
|
|
* - 0: Success.
|
|
* - -EINVAL: No timestamp is available.
|
|
* - -ENODEV: The port ID is invalid.
|
|
* - -EIO: if device is removed.
|
|
* - -ENOTSUP: The function is not supported by the Ethernet driver.
|
|
*/
|
|
int rte_eth_timesync_read_rx_timestamp(uint16_t port_id,
|
|
struct timespec *timestamp, uint32_t flags);
|
|
|
|
/**
|
|
* Read an IEEE1588/802.1AS TX timestamp from an Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param timestamp
|
|
* Pointer to the timestamp struct.
|
|
*
|
|
* @return
|
|
* - 0: Success.
|
|
* - -EINVAL: No timestamp is available.
|
|
* - -ENODEV: The port ID is invalid.
|
|
* - -EIO: if device is removed.
|
|
* - -ENOTSUP: The function is not supported by the Ethernet driver.
|
|
*/
|
|
int rte_eth_timesync_read_tx_timestamp(uint16_t port_id,
|
|
struct timespec *timestamp);
|
|
|
|
/**
|
|
* Adjust the timesync clock on an Ethernet device.
|
|
*
|
|
* This is usually used in conjunction with other Ethdev timesync functions to
|
|
* synchronize the device time using the IEEE1588/802.1AS protocol.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param delta
|
|
* The adjustment in nanoseconds.
|
|
*
|
|
* @return
|
|
* - 0: Success.
|
|
* - -ENODEV: The port ID is invalid.
|
|
* - -EIO: if device is removed.
|
|
* - -ENOTSUP: The function is not supported by the Ethernet driver.
|
|
*/
|
|
int rte_eth_timesync_adjust_time(uint16_t port_id, int64_t delta);
|
|
|
|
/**
|
|
* Read the time from the timesync clock on an Ethernet device.
|
|
*
|
|
* This is usually used in conjunction with other Ethdev timesync functions to
|
|
* synchronize the device time using the IEEE1588/802.1AS protocol.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param time
|
|
* Pointer to the timespec struct that holds the time.
|
|
*
|
|
* @return
|
|
* - 0: Success.
|
|
*/
|
|
int rte_eth_timesync_read_time(uint16_t port_id, struct timespec *time);
|
|
|
|
/**
|
|
* Set the time of the timesync clock on an Ethernet device.
|
|
*
|
|
* This is usually used in conjunction with other Ethdev timesync functions to
|
|
* synchronize the device time using the IEEE1588/802.1AS protocol.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param time
|
|
* Pointer to the timespec struct that holds the time.
|
|
*
|
|
* @return
|
|
* - 0: Success.
|
|
* - -EINVAL: No timestamp is available.
|
|
* - -ENODEV: The port ID is invalid.
|
|
* - -EIO: if device is removed.
|
|
* - -ENOTSUP: The function is not supported by the Ethernet driver.
|
|
*/
|
|
int rte_eth_timesync_write_time(uint16_t port_id, const struct timespec *time);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change without prior notice.
|
|
*
|
|
* Read the current clock counter of an Ethernet device
|
|
*
|
|
* This returns the current raw clock value of an Ethernet device. It is
|
|
* a raw amount of ticks, with no given time reference.
|
|
* The value returned here is from the same clock than the one
|
|
* filling timestamp field of Rx packets when using hardware timestamp
|
|
* offload. Therefore it can be used to compute a precise conversion of
|
|
* the device clock to the real time.
|
|
*
|
|
* E.g, a simple heuristic to derivate the frequency would be:
|
|
* uint64_t start, end;
|
|
* rte_eth_read_clock(port, start);
|
|
* rte_delay_ms(100);
|
|
* rte_eth_read_clock(port, end);
|
|
* double freq = (end - start) * 10;
|
|
*
|
|
* Compute a common reference with:
|
|
* uint64_t base_time_sec = current_time();
|
|
* uint64_t base_clock;
|
|
* rte_eth_read_clock(port, base_clock);
|
|
*
|
|
* Then, convert the raw mbuf timestamp with:
|
|
* base_time_sec + (double)(mbuf->timestamp - base_clock) / freq;
|
|
*
|
|
* This simple example will not provide a very good accuracy. One must
|
|
* at least measure multiple times the frequency and do a regression.
|
|
* To avoid deviation from the system time, the common reference can
|
|
* be repeated from time to time. The integer division can also be
|
|
* converted by a multiplication and a shift for better performance.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param clock
|
|
* Pointer to the uint64_t that holds the raw clock value.
|
|
*
|
|
* @return
|
|
* - 0: Success.
|
|
* - -ENODEV: The port ID is invalid.
|
|
* - -ENOTSUP: The function is not supported by the Ethernet driver.
|
|
*/
|
|
__rte_experimental
|
|
int
|
|
rte_eth_read_clock(uint16_t port_id, uint64_t *clock);
|
|
|
|
/**
|
|
* Config l2 tunnel ether type of an Ethernet device for filtering specific
|
|
* tunnel packets by ether type.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param l2_tunnel
|
|
* l2 tunnel configuration.
|
|
*
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENODEV) if port identifier is invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-ENOTSUP) if hardware doesn't support tunnel type.
|
|
*/
|
|
int
|
|
rte_eth_dev_l2_tunnel_eth_type_conf(uint16_t port_id,
|
|
struct rte_eth_l2_tunnel_conf *l2_tunnel);
|
|
|
|
/**
|
|
* Enable/disable l2 tunnel offload functions. Include,
|
|
* 1, The ability of parsing a type of l2 tunnel of an Ethernet device.
|
|
* Filtering, forwarding and offloading this type of tunnel packets depend on
|
|
* this ability.
|
|
* 2, Stripping the l2 tunnel tag.
|
|
* 3, Insertion of the l2 tunnel tag.
|
|
* 4, Forwarding the packets based on the l2 tunnel tag.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param l2_tunnel
|
|
* l2 tunnel parameters.
|
|
* @param mask
|
|
* Indicate the offload function.
|
|
* @param en
|
|
* Enable or disable this function.
|
|
*
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENODEV) if port identifier is invalid.
|
|
* - (-EIO) if device is removed.
|
|
* - (-ENOTSUP) if hardware doesn't support tunnel type.
|
|
*/
|
|
int
|
|
rte_eth_dev_l2_tunnel_offload_set(uint16_t port_id,
|
|
struct rte_eth_l2_tunnel_conf *l2_tunnel,
|
|
uint32_t mask,
|
|
uint8_t en);
|
|
|
|
/**
|
|
* Get the port id from device name. The device name should be specified
|
|
* as below:
|
|
* - PCIe address (Domain:Bus:Device.Function), for example- 0000:2:00.0
|
|
* - SoC device name, for example- fsl-gmac0
|
|
* - vdev dpdk name, for example- net_[pcap0|null0|tap0]
|
|
*
|
|
* @param name
|
|
* pci address or name of the device
|
|
* @param port_id
|
|
* pointer to port identifier of the device
|
|
* @return
|
|
* - (0) if successful and port_id is filled.
|
|
* - (-ENODEV or -EINVAL) on failure.
|
|
*/
|
|
int
|
|
rte_eth_dev_get_port_by_name(const char *name, uint16_t *port_id);
|
|
|
|
/**
|
|
* Get the device name from port id. The device name is specified as below:
|
|
* - PCIe address (Domain:Bus:Device.Function), for example- 0000:02:00.0
|
|
* - SoC device name, for example- fsl-gmac0
|
|
* - vdev dpdk name, for example- net_[pcap0|null0|tun0|tap0]
|
|
*
|
|
* @param port_id
|
|
* Port identifier of the device.
|
|
* @param name
|
|
* Buffer of size RTE_ETH_NAME_MAX_LEN to store the name.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-EINVAL) on failure.
|
|
*/
|
|
int
|
|
rte_eth_dev_get_name_by_port(uint16_t port_id, char *name);
|
|
|
|
/**
|
|
* Check that numbers of Rx and Tx descriptors satisfy descriptors limits from
|
|
* the ethernet device information, otherwise adjust them to boundaries.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param nb_rx_desc
|
|
* A pointer to a uint16_t where the number of receive
|
|
* descriptors stored.
|
|
* @param nb_tx_desc
|
|
* A pointer to a uint16_t where the number of transmit
|
|
* descriptors stored.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP, -ENODEV or -EINVAL) on failure.
|
|
*/
|
|
int rte_eth_dev_adjust_nb_rx_tx_desc(uint16_t port_id,
|
|
uint16_t *nb_rx_desc,
|
|
uint16_t *nb_tx_desc);
|
|
|
|
/**
|
|
* Test if a port supports specific mempool ops.
|
|
*
|
|
* @param port_id
|
|
* Port identifier of the Ethernet device.
|
|
* @param [in] pool
|
|
* The name of the pool operations to test.
|
|
* @return
|
|
* - 0: best mempool ops choice for this port.
|
|
* - 1: mempool ops are supported for this port.
|
|
* - -ENOTSUP: mempool ops not supported for this port.
|
|
* - -ENODEV: Invalid port Identifier.
|
|
* - -EINVAL: Pool param is null.
|
|
*/
|
|
int
|
|
rte_eth_dev_pool_ops_supported(uint16_t port_id, const char *pool);
|
|
|
|
/**
|
|
* Get the security context for the Ethernet device.
|
|
*
|
|
* @param port_id
|
|
* Port identifier of the Ethernet device
|
|
* @return
|
|
* - NULL on error.
|
|
* - pointer to security context on success.
|
|
*/
|
|
void *
|
|
rte_eth_dev_get_sec_ctx(uint16_t port_id);
|
|
|
|
/**
|
|
* @warning
|
|
* @b EXPERIMENTAL: this API may change, or be removed, without prior notice
|
|
*
|
|
* Query the device hairpin capabilities.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param cap
|
|
* Pointer to a structure that will hold the hairpin capabilities.
|
|
* @return
|
|
* - (0) if successful.
|
|
* - (-ENOTSUP) if hardware doesn't support.
|
|
*/
|
|
__rte_experimental
|
|
int rte_eth_dev_hairpin_capability_get(uint16_t port_id,
|
|
struct rte_eth_hairpin_cap *cap);
|
|
|
|
#include <rte_ethdev_core.h>
|
|
|
|
/**
|
|
*
|
|
* Retrieve a burst of input packets from a receive queue of an Ethernet
|
|
* device. The retrieved packets are stored in *rte_mbuf* structures whose
|
|
* pointers are supplied in the *rx_pkts* array.
|
|
*
|
|
* The rte_eth_rx_burst() function loops, parsing the RX ring of the
|
|
* receive queue, up to *nb_pkts* packets, and for each completed RX
|
|
* descriptor in the ring, it performs the following operations:
|
|
*
|
|
* - Initialize the *rte_mbuf* data structure associated with the
|
|
* RX descriptor according to the information provided by the NIC into
|
|
* that RX descriptor.
|
|
*
|
|
* - Store the *rte_mbuf* data structure into the next entry of the
|
|
* *rx_pkts* array.
|
|
*
|
|
* - Replenish the RX descriptor with a new *rte_mbuf* buffer
|
|
* allocated from the memory pool associated with the receive queue at
|
|
* initialization time.
|
|
*
|
|
* When retrieving an input packet that was scattered by the controller
|
|
* into multiple receive descriptors, the rte_eth_rx_burst() function
|
|
* appends the associated *rte_mbuf* buffers to the first buffer of the
|
|
* packet.
|
|
*
|
|
* The rte_eth_rx_burst() function returns the number of packets
|
|
* actually retrieved, which is the number of *rte_mbuf* data structures
|
|
* effectively supplied into the *rx_pkts* array.
|
|
* A return value equal to *nb_pkts* indicates that the RX queue contained
|
|
* at least *rx_pkts* packets, and this is likely to signify that other
|
|
* received packets remain in the input queue. Applications implementing
|
|
* a "retrieve as much received packets as possible" policy can check this
|
|
* specific case and keep invoking the rte_eth_rx_burst() function until
|
|
* a value less than *nb_pkts* is returned.
|
|
*
|
|
* This receive method has the following advantages:
|
|
*
|
|
* - It allows a run-to-completion network stack engine to retrieve and
|
|
* to immediately process received packets in a fast burst-oriented
|
|
* approach, avoiding the overhead of unnecessary intermediate packet
|
|
* queue/dequeue operations.
|
|
*
|
|
* - Conversely, it also allows an asynchronous-oriented processing
|
|
* method to retrieve bursts of received packets and to immediately
|
|
* queue them for further parallel processing by another logical core,
|
|
* for instance. However, instead of having received packets being
|
|
* individually queued by the driver, this approach allows the caller
|
|
* of the rte_eth_rx_burst() function to queue a burst of retrieved
|
|
* packets at a time and therefore dramatically reduce the cost of
|
|
* enqueue/dequeue operations per packet.
|
|
*
|
|
* - It allows the rte_eth_rx_burst() function of the driver to take
|
|
* advantage of burst-oriented hardware features (CPU cache,
|
|
* prefetch instructions, and so on) to minimize the number of CPU
|
|
* cycles per packet.
|
|
*
|
|
* To summarize, the proposed receive API enables many
|
|
* burst-oriented optimizations in both synchronous and asynchronous
|
|
* packet processing environments with no overhead in both cases.
|
|
*
|
|
* The rte_eth_rx_burst() function does not provide any error
|
|
* notification to avoid the corresponding overhead. As a hint, the
|
|
* upper-level application might check the status of the device link once
|
|
* being systematically returned a 0 value for a given number of tries.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The index of the receive queue from which to retrieve input packets.
|
|
* The value must be in the range [0, nb_rx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param rx_pkts
|
|
* The address of an array of pointers to *rte_mbuf* structures that
|
|
* must be large enough to store *nb_pkts* pointers in it.
|
|
* @param nb_pkts
|
|
* The maximum number of packets to retrieve.
|
|
* @return
|
|
* The number of packets actually retrieved, which is the number
|
|
* of pointers to *rte_mbuf* structures effectively supplied to the
|
|
* *rx_pkts* array.
|
|
*/
|
|
static inline uint16_t
|
|
rte_eth_rx_burst(uint16_t port_id, uint16_t queue_id,
|
|
struct rte_mbuf **rx_pkts, const uint16_t nb_pkts)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
|
|
uint16_t nb_rx;
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
RTE_ETH_VALID_PORTID_OR_ERR_RET(port_id, 0);
|
|
RTE_FUNC_PTR_OR_ERR_RET(*dev->rx_pkt_burst, 0);
|
|
|
|
if (queue_id >= dev->data->nb_rx_queues) {
|
|
RTE_ETHDEV_LOG(ERR, "Invalid RX queue_id=%u\n", queue_id);
|
|
return 0;
|
|
}
|
|
#endif
|
|
nb_rx = (*dev->rx_pkt_burst)(dev->data->rx_queues[queue_id],
|
|
rx_pkts, nb_pkts);
|
|
|
|
#ifdef RTE_ETHDEV_RXTX_CALLBACKS
|
|
if (unlikely(dev->post_rx_burst_cbs[queue_id] != NULL)) {
|
|
struct rte_eth_rxtx_callback *cb =
|
|
dev->post_rx_burst_cbs[queue_id];
|
|
|
|
do {
|
|
nb_rx = cb->fn.rx(port_id, queue_id, rx_pkts, nb_rx,
|
|
nb_pkts, cb->param);
|
|
cb = cb->next;
|
|
} while (cb != NULL);
|
|
}
|
|
#endif
|
|
|
|
rte_ethdev_trace_rx_burst(port_id, queue_id, (void **)rx_pkts, nb_rx);
|
|
return nb_rx;
|
|
}
|
|
|
|
/**
|
|
* Get the number of used descriptors of a rx queue
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The queue id on the specific port.
|
|
* @return
|
|
* The number of used descriptors in the specific queue, or:
|
|
* (-EINVAL) if *port_id* or *queue_id* is invalid
|
|
* (-ENOTSUP) if the device does not support this function
|
|
*/
|
|
static inline int
|
|
rte_eth_rx_queue_count(uint16_t port_id, uint16_t queue_id)
|
|
{
|
|
struct rte_eth_dev *dev;
|
|
|
|
RTE_ETH_VALID_PORTID_OR_ERR_RET(port_id, -EINVAL);
|
|
dev = &rte_eth_devices[port_id];
|
|
RTE_FUNC_PTR_OR_ERR_RET(*dev->rx_queue_count, -ENOTSUP);
|
|
if (queue_id >= dev->data->nb_rx_queues)
|
|
return -EINVAL;
|
|
|
|
return (int)(*dev->rx_queue_count)(dev, queue_id);
|
|
}
|
|
|
|
/**
|
|
* Check if the DD bit of the specific RX descriptor in the queue has been set
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The queue id on the specific port.
|
|
* @param offset
|
|
* The offset of the descriptor ID from tail.
|
|
* @return
|
|
* - (1) if the specific DD bit is set.
|
|
* - (0) if the specific DD bit is not set.
|
|
* - (-ENODEV) if *port_id* invalid.
|
|
* - (-ENOTSUP) if the device does not support this function
|
|
*/
|
|
__rte_deprecated
|
|
static inline int
|
|
rte_eth_rx_descriptor_done(uint16_t port_id, uint16_t queue_id, uint16_t offset)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
|
|
RTE_ETH_VALID_PORTID_OR_ERR_RET(port_id, -ENODEV);
|
|
RTE_FUNC_PTR_OR_ERR_RET(*dev->rx_descriptor_done, -ENOTSUP);
|
|
return (*dev->rx_descriptor_done)(dev->data->rx_queues[queue_id], offset);
|
|
}
|
|
|
|
#define RTE_ETH_RX_DESC_AVAIL 0 /**< Desc available for hw. */
|
|
#define RTE_ETH_RX_DESC_DONE 1 /**< Desc done, filled by hw. */
|
|
#define RTE_ETH_RX_DESC_UNAVAIL 2 /**< Desc used by driver or hw. */
|
|
|
|
/**
|
|
* Check the status of a Rx descriptor in the queue
|
|
*
|
|
* It should be called in a similar context than the Rx function:
|
|
* - on a dataplane core
|
|
* - not concurrently on the same queue
|
|
*
|
|
* Since it's a dataplane function, no check is performed on port_id and
|
|
* queue_id. The caller must therefore ensure that the port is enabled
|
|
* and the queue is configured and running.
|
|
*
|
|
* Note: accessing to a random descriptor in the ring may trigger cache
|
|
* misses and have a performance impact.
|
|
*
|
|
* @param port_id
|
|
* A valid port identifier of the Ethernet device which.
|
|
* @param queue_id
|
|
* A valid Rx queue identifier on this port.
|
|
* @param offset
|
|
* The offset of the descriptor starting from tail (0 is the next
|
|
* packet to be received by the driver).
|
|
*
|
|
* @return
|
|
* - (RTE_ETH_RX_DESC_AVAIL): Descriptor is available for the hardware to
|
|
* receive a packet.
|
|
* - (RTE_ETH_RX_DESC_DONE): Descriptor is done, it is filled by hw, but
|
|
* not yet processed by the driver (i.e. in the receive queue).
|
|
* - (RTE_ETH_RX_DESC_UNAVAIL): Descriptor is unavailable, either hold by
|
|
* the driver and not yet returned to hw, or reserved by the hw.
|
|
* - (-EINVAL) bad descriptor offset.
|
|
* - (-ENOTSUP) if the device does not support this function.
|
|
* - (-ENODEV) bad port or queue (only if compiled with debug).
|
|
*/
|
|
static inline int
|
|
rte_eth_rx_descriptor_status(uint16_t port_id, uint16_t queue_id,
|
|
uint16_t offset)
|
|
{
|
|
struct rte_eth_dev *dev;
|
|
void *rxq;
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
RTE_ETH_VALID_PORTID_OR_ERR_RET(port_id, -ENODEV);
|
|
#endif
|
|
dev = &rte_eth_devices[port_id];
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
if (queue_id >= dev->data->nb_rx_queues)
|
|
return -ENODEV;
|
|
#endif
|
|
RTE_FUNC_PTR_OR_ERR_RET(*dev->rx_descriptor_status, -ENOTSUP);
|
|
rxq = dev->data->rx_queues[queue_id];
|
|
|
|
return (*dev->rx_descriptor_status)(rxq, offset);
|
|
}
|
|
|
|
#define RTE_ETH_TX_DESC_FULL 0 /**< Desc filled for hw, waiting xmit. */
|
|
#define RTE_ETH_TX_DESC_DONE 1 /**< Desc done, packet is transmitted. */
|
|
#define RTE_ETH_TX_DESC_UNAVAIL 2 /**< Desc used by driver or hw. */
|
|
|
|
/**
|
|
* Check the status of a Tx descriptor in the queue.
|
|
*
|
|
* It should be called in a similar context than the Tx function:
|
|
* - on a dataplane core
|
|
* - not concurrently on the same queue
|
|
*
|
|
* Since it's a dataplane function, no check is performed on port_id and
|
|
* queue_id. The caller must therefore ensure that the port is enabled
|
|
* and the queue is configured and running.
|
|
*
|
|
* Note: accessing to a random descriptor in the ring may trigger cache
|
|
* misses and have a performance impact.
|
|
*
|
|
* @param port_id
|
|
* A valid port identifier of the Ethernet device which.
|
|
* @param queue_id
|
|
* A valid Tx queue identifier on this port.
|
|
* @param offset
|
|
* The offset of the descriptor starting from tail (0 is the place where
|
|
* the next packet will be send).
|
|
*
|
|
* @return
|
|
* - (RTE_ETH_TX_DESC_FULL) Descriptor is being processed by the hw, i.e.
|
|
* in the transmit queue.
|
|
* - (RTE_ETH_TX_DESC_DONE) Hardware is done with this descriptor, it can
|
|
* be reused by the driver.
|
|
* - (RTE_ETH_TX_DESC_UNAVAIL): Descriptor is unavailable, reserved by the
|
|
* driver or the hardware.
|
|
* - (-EINVAL) bad descriptor offset.
|
|
* - (-ENOTSUP) if the device does not support this function.
|
|
* - (-ENODEV) bad port or queue (only if compiled with debug).
|
|
*/
|
|
static inline int rte_eth_tx_descriptor_status(uint16_t port_id,
|
|
uint16_t queue_id, uint16_t offset)
|
|
{
|
|
struct rte_eth_dev *dev;
|
|
void *txq;
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
RTE_ETH_VALID_PORTID_OR_ERR_RET(port_id, -ENODEV);
|
|
#endif
|
|
dev = &rte_eth_devices[port_id];
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
if (queue_id >= dev->data->nb_tx_queues)
|
|
return -ENODEV;
|
|
#endif
|
|
RTE_FUNC_PTR_OR_ERR_RET(*dev->tx_descriptor_status, -ENOTSUP);
|
|
txq = dev->data->tx_queues[queue_id];
|
|
|
|
return (*dev->tx_descriptor_status)(txq, offset);
|
|
}
|
|
|
|
/**
|
|
* Send a burst of output packets on a transmit queue of an Ethernet device.
|
|
*
|
|
* The rte_eth_tx_burst() function is invoked to transmit output packets
|
|
* on the output queue *queue_id* of the Ethernet device designated by its
|
|
* *port_id*.
|
|
* The *nb_pkts* parameter is the number of packets to send which are
|
|
* supplied in the *tx_pkts* array of *rte_mbuf* structures, each of them
|
|
* allocated from a pool created with rte_pktmbuf_pool_create().
|
|
* The rte_eth_tx_burst() function loops, sending *nb_pkts* packets,
|
|
* up to the number of transmit descriptors available in the TX ring of the
|
|
* transmit queue.
|
|
* For each packet to send, the rte_eth_tx_burst() function performs
|
|
* the following operations:
|
|
*
|
|
* - Pick up the next available descriptor in the transmit ring.
|
|
*
|
|
* - Free the network buffer previously sent with that descriptor, if any.
|
|
*
|
|
* - Initialize the transmit descriptor with the information provided
|
|
* in the *rte_mbuf data structure.
|
|
*
|
|
* In the case of a segmented packet composed of a list of *rte_mbuf* buffers,
|
|
* the rte_eth_tx_burst() function uses several transmit descriptors
|
|
* of the ring.
|
|
*
|
|
* The rte_eth_tx_burst() function returns the number of packets it
|
|
* actually sent. A return value equal to *nb_pkts* means that all packets
|
|
* have been sent, and this is likely to signify that other output packets
|
|
* could be immediately transmitted again. Applications that implement a
|
|
* "send as many packets to transmit as possible" policy can check this
|
|
* specific case and keep invoking the rte_eth_tx_burst() function until
|
|
* a value less than *nb_pkts* is returned.
|
|
*
|
|
* It is the responsibility of the rte_eth_tx_burst() function to
|
|
* transparently free the memory buffers of packets previously sent.
|
|
* This feature is driven by the *tx_free_thresh* value supplied to the
|
|
* rte_eth_dev_configure() function at device configuration time.
|
|
* When the number of free TX descriptors drops below this threshold, the
|
|
* rte_eth_tx_burst() function must [attempt to] free the *rte_mbuf* buffers
|
|
* of those packets whose transmission was effectively completed.
|
|
*
|
|
* If the PMD is DEV_TX_OFFLOAD_MT_LOCKFREE capable, multiple threads can
|
|
* invoke this function concurrently on the same tx queue without SW lock.
|
|
* @see rte_eth_dev_info_get, struct rte_eth_txconf::offloads
|
|
*
|
|
* @see rte_eth_tx_prepare to perform some prior checks or adjustments
|
|
* for offloads.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The index of the transmit queue through which output packets must be
|
|
* sent.
|
|
* The value must be in the range [0, nb_tx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param tx_pkts
|
|
* The address of an array of *nb_pkts* pointers to *rte_mbuf* structures
|
|
* which contain the output packets.
|
|
* @param nb_pkts
|
|
* The maximum number of packets to transmit.
|
|
* @return
|
|
* The number of output packets actually stored in transmit descriptors of
|
|
* the transmit ring. The return value can be less than the value of the
|
|
* *tx_pkts* parameter when the transmit ring is full or has been filled up.
|
|
*/
|
|
static inline uint16_t
|
|
rte_eth_tx_burst(uint16_t port_id, uint16_t queue_id,
|
|
struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
RTE_ETH_VALID_PORTID_OR_ERR_RET(port_id, 0);
|
|
RTE_FUNC_PTR_OR_ERR_RET(*dev->tx_pkt_burst, 0);
|
|
|
|
if (queue_id >= dev->data->nb_tx_queues) {
|
|
RTE_ETHDEV_LOG(ERR, "Invalid TX queue_id=%u\n", queue_id);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef RTE_ETHDEV_RXTX_CALLBACKS
|
|
struct rte_eth_rxtx_callback *cb = dev->pre_tx_burst_cbs[queue_id];
|
|
|
|
if (unlikely(cb != NULL)) {
|
|
do {
|
|
nb_pkts = cb->fn.tx(port_id, queue_id, tx_pkts, nb_pkts,
|
|
cb->param);
|
|
cb = cb->next;
|
|
} while (cb != NULL);
|
|
}
|
|
#endif
|
|
|
|
rte_ethdev_trace_tx_burst(port_id, queue_id, (void **)tx_pkts,
|
|
nb_pkts);
|
|
return (*dev->tx_pkt_burst)(dev->data->tx_queues[queue_id], tx_pkts, nb_pkts);
|
|
}
|
|
|
|
/**
|
|
* Process a burst of output packets on a transmit queue of an Ethernet device.
|
|
*
|
|
* The rte_eth_tx_prepare() function is invoked to prepare output packets to be
|
|
* transmitted on the output queue *queue_id* of the Ethernet device designated
|
|
* by its *port_id*.
|
|
* The *nb_pkts* parameter is the number of packets to be prepared which are
|
|
* supplied in the *tx_pkts* array of *rte_mbuf* structures, each of them
|
|
* allocated from a pool created with rte_pktmbuf_pool_create().
|
|
* For each packet to send, the rte_eth_tx_prepare() function performs
|
|
* the following operations:
|
|
*
|
|
* - Check if packet meets devices requirements for tx offloads.
|
|
*
|
|
* - Check limitations about number of segments.
|
|
*
|
|
* - Check additional requirements when debug is enabled.
|
|
*
|
|
* - Update and/or reset required checksums when tx offload is set for packet.
|
|
*
|
|
* Since this function can modify packet data, provided mbufs must be safely
|
|
* writable (e.g. modified data cannot be in shared segment).
|
|
*
|
|
* The rte_eth_tx_prepare() function returns the number of packets ready to be
|
|
* sent. A return value equal to *nb_pkts* means that all packets are valid and
|
|
* ready to be sent, otherwise stops processing on the first invalid packet and
|
|
* leaves the rest packets untouched.
|
|
*
|
|
* When this functionality is not implemented in the driver, all packets are
|
|
* are returned untouched.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* The value must be a valid port id.
|
|
* @param queue_id
|
|
* The index of the transmit queue through which output packets must be
|
|
* sent.
|
|
* The value must be in the range [0, nb_tx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param tx_pkts
|
|
* The address of an array of *nb_pkts* pointers to *rte_mbuf* structures
|
|
* which contain the output packets.
|
|
* @param nb_pkts
|
|
* The maximum number of packets to process.
|
|
* @return
|
|
* The number of packets correct and ready to be sent. The return value can be
|
|
* less than the value of the *tx_pkts* parameter when some packet doesn't
|
|
* meet devices requirements with rte_errno set appropriately:
|
|
* - EINVAL: offload flags are not correctly set
|
|
* - ENOTSUP: the offload feature is not supported by the hardware
|
|
*
|
|
*/
|
|
|
|
#ifndef RTE_ETHDEV_TX_PREPARE_NOOP
|
|
|
|
static inline uint16_t
|
|
rte_eth_tx_prepare(uint16_t port_id, uint16_t queue_id,
|
|
struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
struct rte_eth_dev *dev;
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
if (!rte_eth_dev_is_valid_port(port_id)) {
|
|
RTE_ETHDEV_LOG(ERR, "Invalid TX port_id=%u\n", port_id);
|
|
rte_errno = EINVAL;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
dev = &rte_eth_devices[port_id];
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
if (queue_id >= dev->data->nb_tx_queues) {
|
|
RTE_ETHDEV_LOG(ERR, "Invalid TX queue_id=%u\n", queue_id);
|
|
rte_errno = EINVAL;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
if (!dev->tx_pkt_prepare)
|
|
return nb_pkts;
|
|
|
|
return (*dev->tx_pkt_prepare)(dev->data->tx_queues[queue_id],
|
|
tx_pkts, nb_pkts);
|
|
}
|
|
|
|
#else
|
|
|
|
/*
|
|
* Native NOOP operation for compilation targets which doesn't require any
|
|
* preparations steps, and functional NOOP may introduce unnecessary performance
|
|
* drop.
|
|
*
|
|
* Generally this is not a good idea to turn it on globally and didn't should
|
|
* be used if behavior of tx_preparation can change.
|
|
*/
|
|
|
|
static inline uint16_t
|
|
rte_eth_tx_prepare(__rte_unused uint16_t port_id,
|
|
__rte_unused uint16_t queue_id,
|
|
__rte_unused struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
{
|
|
return nb_pkts;
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Send any packets queued up for transmission on a port and HW queue
|
|
*
|
|
* This causes an explicit flush of packets previously buffered via the
|
|
* rte_eth_tx_buffer() function. It returns the number of packets successfully
|
|
* sent to the NIC, and calls the error callback for any unsent packets. Unless
|
|
* explicitly set up otherwise, the default callback simply frees the unsent
|
|
* packets back to the owning mempool.
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The index of the transmit queue through which output packets must be
|
|
* sent.
|
|
* The value must be in the range [0, nb_tx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param buffer
|
|
* Buffer of packets to be transmit.
|
|
* @return
|
|
* The number of packets successfully sent to the Ethernet device. The error
|
|
* callback is called for any packets which could not be sent.
|
|
*/
|
|
static inline uint16_t
|
|
rte_eth_tx_buffer_flush(uint16_t port_id, uint16_t queue_id,
|
|
struct rte_eth_dev_tx_buffer *buffer)
|
|
{
|
|
uint16_t sent;
|
|
uint16_t to_send = buffer->length;
|
|
|
|
if (to_send == 0)
|
|
return 0;
|
|
|
|
sent = rte_eth_tx_burst(port_id, queue_id, buffer->pkts, to_send);
|
|
|
|
buffer->length = 0;
|
|
|
|
/* All packets sent, or to be dealt with by callback below */
|
|
if (unlikely(sent != to_send))
|
|
buffer->error_callback(&buffer->pkts[sent],
|
|
(uint16_t)(to_send - sent),
|
|
buffer->error_userdata);
|
|
|
|
return sent;
|
|
}
|
|
|
|
/**
|
|
* Buffer a single packet for future transmission on a port and queue
|
|
*
|
|
* This function takes a single mbuf/packet and buffers it for later
|
|
* transmission on the particular port and queue specified. Once the buffer is
|
|
* full of packets, an attempt will be made to transmit all the buffered
|
|
* packets. In case of error, where not all packets can be transmitted, a
|
|
* callback is called with the unsent packets as a parameter. If no callback
|
|
* is explicitly set up, the unsent packets are just freed back to the owning
|
|
* mempool. The function returns the number of packets actually sent i.e.
|
|
* 0 if no buffer flush occurred, otherwise the number of packets successfully
|
|
* flushed
|
|
*
|
|
* @param port_id
|
|
* The port identifier of the Ethernet device.
|
|
* @param queue_id
|
|
* The index of the transmit queue through which output packets must be
|
|
* sent.
|
|
* The value must be in the range [0, nb_tx_queue - 1] previously supplied
|
|
* to rte_eth_dev_configure().
|
|
* @param buffer
|
|
* Buffer used to collect packets to be sent.
|
|
* @param tx_pkt
|
|
* Pointer to the packet mbuf to be sent.
|
|
* @return
|
|
* 0 = packet has been buffered for later transmission
|
|
* N > 0 = packet has been buffered, and the buffer was subsequently flushed,
|
|
* causing N packets to be sent, and the error callback to be called for
|
|
* the rest.
|
|
*/
|
|
static __rte_always_inline uint16_t
|
|
rte_eth_tx_buffer(uint16_t port_id, uint16_t queue_id,
|
|
struct rte_eth_dev_tx_buffer *buffer, struct rte_mbuf *tx_pkt)
|
|
{
|
|
buffer->pkts[buffer->length++] = tx_pkt;
|
|
if (buffer->length < buffer->size)
|
|
return 0;
|
|
|
|
return rte_eth_tx_buffer_flush(port_id, queue_id, buffer);
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif /* _RTE_ETHDEV_H_ */
|