numam-dpdk/lib/reorder/rte_reorder.c
Bruce Richardson 99a2dd955f lib: remove librte_ prefix from directory names
There is no reason for the DPDK libraries to all have 'librte_' prefix on
the directory names. This prefix makes the directory names longer and also
makes it awkward to add features referring to individual libraries in the
build - should the lib names be specified with or without the prefix.
Therefore, we can just remove the library prefix and use the library's
unique name as the directory name, i.e. 'eal' rather than 'librte_eal'

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2021-04-21 14:04:09 +02:00

412 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <inttypes.h>
#include <string.h>
#include <rte_string_fns.h>
#include <rte_log.h>
#include <rte_mbuf.h>
#include <rte_mbuf_dyn.h>
#include <rte_eal_memconfig.h>
#include <rte_errno.h>
#include <rte_malloc.h>
#include <rte_tailq.h>
#include "rte_reorder.h"
TAILQ_HEAD(rte_reorder_list, rte_tailq_entry);
static struct rte_tailq_elem rte_reorder_tailq = {
.name = "RTE_REORDER",
};
EAL_REGISTER_TAILQ(rte_reorder_tailq)
#define NO_FLAGS 0
#define RTE_REORDER_PREFIX "RO_"
#define RTE_REORDER_NAMESIZE 32
/* Macros for printing using RTE_LOG */
#define RTE_LOGTYPE_REORDER RTE_LOGTYPE_USER1
#define RTE_REORDER_SEQN_DYNFIELD_NAME "rte_reorder_seqn_dynfield"
int rte_reorder_seqn_dynfield_offset = -1;
/* A generic circular buffer */
struct cir_buffer {
unsigned int size; /**< Number of entries that can be stored */
unsigned int mask; /**< [buffer_size - 1]: used for wrap-around */
unsigned int head; /**< insertion point in buffer */
unsigned int tail; /**< extraction point in buffer */
struct rte_mbuf **entries;
} __rte_cache_aligned;
/* The reorder buffer data structure itself */
struct rte_reorder_buffer {
char name[RTE_REORDER_NAMESIZE];
uint32_t min_seqn; /**< Lowest seq. number that can be in the buffer */
unsigned int memsize; /**< memory area size of reorder buffer */
struct cir_buffer ready_buf; /**< temp buffer for dequeued entries */
struct cir_buffer order_buf; /**< buffer used to reorder entries */
int is_initialized;
} __rte_cache_aligned;
static void
rte_reorder_free_mbufs(struct rte_reorder_buffer *b);
struct rte_reorder_buffer *
rte_reorder_init(struct rte_reorder_buffer *b, unsigned int bufsize,
const char *name, unsigned int size)
{
const unsigned int min_bufsize = sizeof(*b) +
(2 * size * sizeof(struct rte_mbuf *));
if (b == NULL) {
RTE_LOG(ERR, REORDER, "Invalid reorder buffer parameter:"
" NULL\n");
rte_errno = EINVAL;
return NULL;
}
if (!rte_is_power_of_2(size)) {
RTE_LOG(ERR, REORDER, "Invalid reorder buffer size"
" - Not a power of 2\n");
rte_errno = EINVAL;
return NULL;
}
if (name == NULL) {
RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:"
" NULL\n");
rte_errno = EINVAL;
return NULL;
}
if (bufsize < min_bufsize) {
RTE_LOG(ERR, REORDER, "Invalid reorder buffer memory size: %u, "
"minimum required: %u\n", bufsize, min_bufsize);
rte_errno = EINVAL;
return NULL;
}
memset(b, 0, bufsize);
strlcpy(b->name, name, sizeof(b->name));
b->memsize = bufsize;
b->order_buf.size = b->ready_buf.size = size;
b->order_buf.mask = b->ready_buf.mask = size - 1;
b->ready_buf.entries = (void *)&b[1];
b->order_buf.entries = RTE_PTR_ADD(&b[1],
size * sizeof(b->ready_buf.entries[0]));
return b;
}
struct rte_reorder_buffer*
rte_reorder_create(const char *name, unsigned socket_id, unsigned int size)
{
struct rte_reorder_buffer *b = NULL;
struct rte_tailq_entry *te;
struct rte_reorder_list *reorder_list;
const unsigned int bufsize = sizeof(struct rte_reorder_buffer) +
(2 * size * sizeof(struct rte_mbuf *));
static const struct rte_mbuf_dynfield reorder_seqn_dynfield_desc = {
.name = RTE_REORDER_SEQN_DYNFIELD_NAME,
.size = sizeof(rte_reorder_seqn_t),
.align = __alignof__(rte_reorder_seqn_t),
};
reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
/* Check user arguments. */
if (!rte_is_power_of_2(size)) {
RTE_LOG(ERR, REORDER, "Invalid reorder buffer size"
" - Not a power of 2\n");
rte_errno = EINVAL;
return NULL;
}
if (name == NULL) {
RTE_LOG(ERR, REORDER, "Invalid reorder buffer name ptr:"
" NULL\n");
rte_errno = EINVAL;
return NULL;
}
rte_reorder_seqn_dynfield_offset =
rte_mbuf_dynfield_register(&reorder_seqn_dynfield_desc);
if (rte_reorder_seqn_dynfield_offset < 0) {
RTE_LOG(ERR, REORDER, "Failed to register mbuf field for reorder sequence number\n");
rte_errno = ENOMEM;
return NULL;
}
rte_mcfg_tailq_write_lock();
/* guarantee there's no existing */
TAILQ_FOREACH(te, reorder_list, next) {
b = (struct rte_reorder_buffer *) te->data;
if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0)
break;
}
if (te != NULL)
goto exit;
/* allocate tailq entry */
te = rte_zmalloc("REORDER_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, REORDER, "Failed to allocate tailq entry\n");
rte_errno = ENOMEM;
b = NULL;
goto exit;
}
/* Allocate memory to store the reorder buffer structure. */
b = rte_zmalloc_socket("REORDER_BUFFER", bufsize, 0, socket_id);
if (b == NULL) {
RTE_LOG(ERR, REORDER, "Memzone allocation failed\n");
rte_errno = ENOMEM;
rte_free(te);
} else {
rte_reorder_init(b, bufsize, name, size);
te->data = (void *)b;
TAILQ_INSERT_TAIL(reorder_list, te, next);
}
exit:
rte_mcfg_tailq_write_unlock();
return b;
}
void
rte_reorder_reset(struct rte_reorder_buffer *b)
{
char name[RTE_REORDER_NAMESIZE];
rte_reorder_free_mbufs(b);
strlcpy(name, b->name, sizeof(name));
/* No error checking as current values should be valid */
rte_reorder_init(b, b->memsize, name, b->order_buf.size);
}
static void
rte_reorder_free_mbufs(struct rte_reorder_buffer *b)
{
unsigned i;
/* Free up the mbufs of order buffer & ready buffer */
for (i = 0; i < b->order_buf.size; i++) {
if (b->order_buf.entries[i])
rte_pktmbuf_free(b->order_buf.entries[i]);
if (b->ready_buf.entries[i])
rte_pktmbuf_free(b->ready_buf.entries[i]);
}
}
void
rte_reorder_free(struct rte_reorder_buffer *b)
{
struct rte_reorder_list *reorder_list;
struct rte_tailq_entry *te;
/* Check user arguments. */
if (b == NULL)
return;
reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
rte_mcfg_tailq_write_lock();
/* find our tailq entry */
TAILQ_FOREACH(te, reorder_list, next) {
if (te->data == (void *) b)
break;
}
if (te == NULL) {
rte_mcfg_tailq_write_unlock();
return;
}
TAILQ_REMOVE(reorder_list, te, next);
rte_mcfg_tailq_write_unlock();
rte_reorder_free_mbufs(b);
rte_free(b);
rte_free(te);
}
struct rte_reorder_buffer *
rte_reorder_find_existing(const char *name)
{
struct rte_reorder_buffer *b = NULL;
struct rte_tailq_entry *te;
struct rte_reorder_list *reorder_list;
if (name == NULL) {
rte_errno = EINVAL;
return NULL;
}
reorder_list = RTE_TAILQ_CAST(rte_reorder_tailq.head, rte_reorder_list);
rte_mcfg_tailq_read_lock();
TAILQ_FOREACH(te, reorder_list, next) {
b = (struct rte_reorder_buffer *) te->data;
if (strncmp(name, b->name, RTE_REORDER_NAMESIZE) == 0)
break;
}
rte_mcfg_tailq_read_unlock();
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return b;
}
static unsigned
rte_reorder_fill_overflow(struct rte_reorder_buffer *b, unsigned n)
{
/*
* 1. Move all ready entries that fit to the ready_buf
* 2. check if we meet the minimum needed (n).
* 3. If not, then skip any gaps and keep moving.
* 4. If at any point the ready buffer is full, stop
* 5. Return the number of positions the order_buf head has moved
*/
struct cir_buffer *order_buf = &b->order_buf,
*ready_buf = &b->ready_buf;
unsigned int order_head_adv = 0;
/*
* move at least n packets to ready buffer, assuming ready buffer
* has room for those packets.
*/
while (order_head_adv < n &&
((ready_buf->head + 1) & ready_buf->mask) != ready_buf->tail) {
/* if we are blocked waiting on a packet, skip it */
if (order_buf->entries[order_buf->head] == NULL) {
order_buf->head = (order_buf->head + 1) & order_buf->mask;
order_head_adv++;
}
/* Move all ready entries that fit to the ready_buf */
while (order_buf->entries[order_buf->head] != NULL) {
ready_buf->entries[ready_buf->head] =
order_buf->entries[order_buf->head];
order_buf->entries[order_buf->head] = NULL;
order_head_adv++;
order_buf->head = (order_buf->head + 1) & order_buf->mask;
if (((ready_buf->head + 1) & ready_buf->mask) == ready_buf->tail)
break;
ready_buf->head = (ready_buf->head + 1) & ready_buf->mask;
}
}
b->min_seqn += order_head_adv;
/* Return the number of positions the order_buf head has moved */
return order_head_adv;
}
int
rte_reorder_insert(struct rte_reorder_buffer *b, struct rte_mbuf *mbuf)
{
uint32_t offset, position;
struct cir_buffer *order_buf;
if (b == NULL || mbuf == NULL) {
rte_errno = EINVAL;
return -1;
}
order_buf = &b->order_buf;
if (!b->is_initialized) {
b->min_seqn = *rte_reorder_seqn(mbuf);
b->is_initialized = 1;
}
/*
* calculate the offset from the head pointer we need to go.
* The subtraction takes care of the sequence number wrapping.
* For example (using 16-bit for brevity):
* min_seqn = 0xFFFD
* mbuf_seqn = 0x0010
* offset = 0x0010 - 0xFFFD = 0x13
*/
offset = *rte_reorder_seqn(mbuf) - b->min_seqn;
/*
* action to take depends on offset.
* offset < buffer->size: the mbuf fits within the current window of
* sequence numbers we can reorder. EXPECTED CASE.
* offset > buffer->size: the mbuf is outside the current window. There
* are a number of cases to consider:
* 1. The packet sequence is just outside the window, then we need
* to see about shifting the head pointer and taking any ready
* to return packets out of the ring. If there was a delayed
* or dropped packet preventing drains from shifting the window
* this case will skip over the dropped packet instead, and any
* packets dequeued here will be returned on the next drain call.
* 2. The packet sequence number is vastly outside our window, taken
* here as having offset greater than twice the buffer size. In
* this case, the packet is probably an old or late packet that
* was previously skipped, so just enqueue the packet for
* immediate return on the next drain call, or else return error.
*/
if (offset < b->order_buf.size) {
position = (order_buf->head + offset) & order_buf->mask;
order_buf->entries[position] = mbuf;
} else if (offset < 2 * b->order_buf.size) {
if (rte_reorder_fill_overflow(b, offset + 1 - order_buf->size)
< (offset + 1 - order_buf->size)) {
/* Put in handling for enqueue straight to output */
rte_errno = ENOSPC;
return -1;
}
offset = *rte_reorder_seqn(mbuf) - b->min_seqn;
position = (order_buf->head + offset) & order_buf->mask;
order_buf->entries[position] = mbuf;
} else {
/* Put in handling for enqueue straight to output */
rte_errno = ERANGE;
return -1;
}
return 0;
}
unsigned int
rte_reorder_drain(struct rte_reorder_buffer *b, struct rte_mbuf **mbufs,
unsigned max_mbufs)
{
unsigned int drain_cnt = 0;
struct cir_buffer *order_buf = &b->order_buf,
*ready_buf = &b->ready_buf;
/* Try to fetch requested number of mbufs from ready buffer */
while ((drain_cnt < max_mbufs) && (ready_buf->tail != ready_buf->head)) {
mbufs[drain_cnt++] = ready_buf->entries[ready_buf->tail];
ready_buf->tail = (ready_buf->tail + 1) & ready_buf->mask;
}
/*
* If requested number of buffers not fetched from ready buffer, fetch
* remaining buffers from order buffer
*/
while ((drain_cnt < max_mbufs) &&
(order_buf->entries[order_buf->head] != NULL)) {
mbufs[drain_cnt++] = order_buf->entries[order_buf->head];
order_buf->entries[order_buf->head] = NULL;
b->min_seqn++;
order_buf->head = (order_buf->head + 1) & order_buf->mask;
}
return drain_cnt;
}