Andrew Rybchenko f201b886b7 net/sfc/base: use simpler EF10 family conditional check
Fixes: 4f12e20c85dc ("net/sfc/base: introduce EVB module for SR-IOV")
Fixes: 18c8e84d7726 ("net/sfc/base: support proxy auth operations for SR-IOV")
Cc: stable@dpdk.org

Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
2020-05-05 15:54:26 +02:00

545 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2020 Xilinx, Inc.
* Copyright(c) 2018-2019 Solarflare Communications Inc.
*/
#include "efx.h"
#include "efx_impl.h"
#if EFSYS_OPT_EVB
#if EFSYS_OPT_SIENA
static const efx_evb_ops_t __efx_evb_dummy_ops = {
NULL, /* eeo_init */
NULL, /* eeo_fini */
NULL, /* eeo_vswitch_alloc */
NULL, /* eeo_vswitch_free */
NULL, /* eeo_vport_alloc */
NULL, /* eeo_vport_free */
NULL, /* eeo_vport_mac_addr_add */
NULL, /* eeo_vport_mac_addr_del */
NULL, /* eeo_vadaptor_alloc */
NULL, /* eeo_vadaptor_free */
NULL, /* eeo_vport_assign */
NULL, /* eeo_vport_reconfigure */
NULL, /* eeo_vport_stats */
};
#endif /* EFSYS_OPT_SIENA */
#if EFX_OPTS_EF10()
static const efx_evb_ops_t __efx_evb_ef10_ops = {
ef10_evb_init, /* eeo_init */
ef10_evb_fini, /* eeo_fini */
ef10_evb_vswitch_alloc, /* eeo_vswitch_alloc */
ef10_evb_vswitch_free, /* eeo_vswitch_free */
ef10_evb_vport_alloc, /* eeo_vport_alloc */
ef10_evb_vport_free, /* eeo_vport_free */
ef10_evb_vport_mac_addr_add, /* eeo_vport_mac_addr_add */
ef10_evb_vport_mac_addr_del, /* eeo_vport_mac_addr_del */
ef10_evb_vadaptor_alloc, /* eeo_vadaptor_alloc */
ef10_evb_vadaptor_free, /* eeo_vadaptor_free */
ef10_evb_vport_assign, /* eeo_vport_assign */
ef10_evb_vport_reconfigure, /* eeo_vport_reconfigure */
ef10_evb_vport_stats, /* eeo_vport_stats */
};
#endif /* EFX_OPTS_EF10() */
__checkReturn efx_rc_t
efx_evb_init(
__in efx_nic_t *enp)
{
const efx_evb_ops_t *eeop;
efx_rc_t rc;
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_EVB));
switch (enp->en_family) {
#if EFSYS_OPT_SIENA
case EFX_FAMILY_SIENA:
eeop = &__efx_evb_dummy_ops;
break;
#endif /* EFSYS_OPT_SIENA */
#if EFSYS_OPT_HUNTINGTON
case EFX_FAMILY_HUNTINGTON:
eeop = &__efx_evb_ef10_ops;
break;
#endif /* EFSYS_OPT_HUNTINGTON */
#if EFSYS_OPT_MEDFORD
case EFX_FAMILY_MEDFORD:
eeop = &__efx_evb_ef10_ops;
break;
#endif /* EFSYS_OPT_MEDFORD */
#if EFSYS_OPT_MEDFORD2
case EFX_FAMILY_MEDFORD2:
eeop = &__efx_evb_ef10_ops;
break;
#endif /* EFSYS_OPT_MEDFORD2 */
default:
EFSYS_ASSERT(0);
rc = ENOTSUP;
goto fail1;
}
if (!encp->enc_datapath_cap_evb || !eeop->eeo_init) {
rc = ENOTSUP;
goto fail2;
}
if ((rc = eeop->eeo_init(enp)) != 0)
goto fail3;
enp->en_eeop = eeop;
enp->en_mod_flags |= EFX_MOD_EVB;
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
void
efx_evb_fini(
__in efx_nic_t *enp)
{
const efx_evb_ops_t *eeop = enp->en_eeop;
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_PROBE);
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_RX));
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_TX));
if (eeop && eeop->eeo_fini)
eeop->eeo_fini(enp);
enp->en_eeop = NULL;
enp->en_mod_flags &= ~EFX_MOD_EVB;
}
/*
* efx_is_zero_eth_addr returns TRUE if the passed MAC address has all bytes
* equal to zero. A vport is assigned a MAC address after creation and this
* function checks if that has happened. It is called in the clean-up function
* before calling eeo_vport_mac_addr_del to ensure that the vport actually had
* an allocated MAC address.
*/
__checkReturn boolean_t
efx_is_zero_eth_addr(
__in_bcount(EFX_MAC_ADDR_LEN) const uint8_t *addrp)
{
return (!(addrp[0] | addrp[1] | addrp[2] |
addrp[3] | addrp[4] | addrp[5]));
}
static void
efx_evb_free_vport(
__in efx_nic_t *enp,
__in efx_vswitch_id_t vswitch_id,
__inout efx_vport_config_t *configp)
{
const efx_evb_ops_t *eeop = enp->en_eeop;
/* If any callback fails, continue clean-up with others functions */
if (EFX_VPORT_PCI_FUNCTION_IS_PF(configp)) {
/* free vadaptor */
if ((configp->evc_vport_id != EFX_VPORT_ID_INVALID) &&
(eeop->eeo_vadaptor_free(enp, vswitch_id,
configp->evc_vport_id) != 0)) {
EFSYS_PROBE2(eeo_vadaptor_free,
uint16_t, configp->evc_function,
uint32_t, configp->evc_vport_id);
}
} else {
if (configp->evc_vport_assigned == B_TRUE) {
if (eeop->eeo_vport_assign(enp, vswitch_id,
EVB_PORT_ID_NULL,
configp->evc_function) != 0) {
EFSYS_PROBE1(eeo_vport_assign,
uint16_t, configp->evc_function);
}
configp->evc_vport_assigned = B_FALSE;
}
}
/*
* Call eeo_vport_mac_addr_del after checking that this vport is
* actually allocated a MAC address in call to efx_evb_configure_vport
*/
if (!efx_is_zero_eth_addr(configp->evc_mac_addr)) {
if (eeop->eeo_vport_mac_addr_del(enp, vswitch_id,
configp->evc_vport_id,
configp->evc_mac_addr) != 0) {
EFSYS_PROBE1(eeo_vport_mac_addr_del,
uint16_t, configp->evc_function);
}
memset(configp->evc_mac_addr, 0x00, EFX_MAC_ADDR_LEN);
}
if (configp->evc_vport_id != EFX_VPORT_ID_INVALID) {
if (eeop->eeo_vport_free(enp, vswitch_id,
configp->evc_vport_id) != 0) {
EFSYS_PROBE1(eeo_vport_free,
uint16_t, configp->evc_function);
}
configp->evc_vport_id = EFX_VPORT_ID_INVALID;
}
}
static void
efx_evb_free_vports(
__in efx_nic_t *enp,
__in efx_vswitch_id_t vswitch_id,
__in uint32_t num_vports,
__inout_ecount(num_vports) efx_vport_config_t *vport_configp)
{
efx_vport_config_t *configp;
uint32_t i;
if (vport_configp == NULL) {
EFSYS_PROBE(null_vport_config);
return;
}
for (i = 0; i < num_vports; i++) {
configp = vport_configp + i;
efx_evb_free_vport(enp, vswitch_id, configp);
}
}
static __checkReturn efx_rc_t
efx_evb_configure_vport(
__in efx_nic_t *enp,
__in efx_vswitch_id_t vswitch_id,
__in const efx_evb_ops_t *eeop,
__inout efx_vport_config_t *configp)
{
efx_rc_t rc;
efx_vport_id_t vport_id;
if ((rc = eeop->eeo_vport_alloc(enp, vswitch_id,
EFX_VPORT_TYPE_NORMAL, configp->evc_vid,
configp->evc_vlan_restrict, &vport_id)) != 0)
goto fail1;
configp->evc_vport_id = vport_id;
if ((rc = eeop->eeo_vport_mac_addr_add(enp, vswitch_id,
configp->evc_vport_id,
configp->evc_mac_addr)) != 0)
goto fail2;
if (EFX_VPORT_PCI_FUNCTION_IS_PF(configp)) {
if ((rc = eeop->eeo_vadaptor_alloc(enp, vswitch_id,
configp->evc_vport_id)) != 0)
goto fail3;
} else {
if ((rc = eeop->eeo_vport_assign(enp, vswitch_id,
configp->evc_vport_id,
configp->evc_function)) != 0)
goto fail4;
configp->evc_vport_assigned = B_TRUE;
}
return (0);
fail4:
EFSYS_PROBE(fail4);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_evb_vswitch_create(
__in efx_nic_t *enp,
__in uint32_t num_vports,
__inout_ecount(num_vports) efx_vport_config_t *vport_configp,
__deref_out efx_vswitch_t **evpp)
{
efx_vswitch_t *evp;
efx_rc_t rc;
efx_vswitch_id_t vswitch_id;
efx_vport_config_t *configp;
const efx_evb_ops_t *eeop = enp->en_eeop;
uint32_t i;
/* vport_configp is a caller allocated array filled in with vports
* configuration. Index 0 carries the PF vport configuration and next
* num_vports - 1 indices carry VFs configuration.
*/
EFSYS_ASSERT((num_vports != 0) && (vport_configp != NULL) &&
(evpp != NULL));
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_EVB);
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NIC));
if ((eeop->eeo_vswitch_alloc == NULL) ||
(eeop->eeo_vport_alloc == NULL) ||
(eeop->eeo_vport_free == NULL) ||
(eeop->eeo_vport_mac_addr_add == NULL) ||
(eeop->eeo_vport_mac_addr_del == NULL) ||
(eeop->eeo_vadaptor_alloc == NULL) ||
(eeop->eeo_vadaptor_free == NULL) ||
(eeop->eeo_vport_assign == NULL) ||
(eeop->eeo_vswitch_free == NULL)) {
rc = ENOTSUP;
goto fail1;
}
/* Allocate a vSwitch object */
EFSYS_KMEM_ALLOC(enp->en_esip, sizeof (efx_vswitch_t), evp);
if (evp == NULL) {
rc = ENOMEM;
goto fail2;
}
if ((rc = eeop->eeo_vswitch_alloc(enp, &vswitch_id)) != 0)
goto fail3;
evp->ev_enp = enp;
evp->ev_num_vports = num_vports;
evp->ev_evcp = vport_configp;
evp->ev_vswitch_id = vswitch_id;
for (i = 0; i < num_vports; i++) {
configp = vport_configp + i;
if ((rc = efx_evb_configure_vport(enp, vswitch_id, eeop,
configp)) != 0)
goto fail4;
}
enp->en_vswitchp = evp;
*evpp = evp;
return (0);
fail4:
EFSYS_PROBE(fail4);
efx_evb_free_vports(enp, vswitch_id, i + 1, vport_configp);
/* Free the vSwitch */
eeop->eeo_vswitch_free(enp, vswitch_id);
fail3:
EFSYS_PROBE(fail3);
/* Free the vSwitch object */
EFSYS_KMEM_FREE(enp->en_esip, sizeof (efx_vswitch_t), evp);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_evb_vport_mac_set(
__in efx_nic_t *enp,
__in efx_vswitch_t *evp,
__in efx_vport_id_t vport_id,
__in_bcount(EFX_MAC_ADDR_LEN) uint8_t *addrp)
{
const efx_evb_ops_t *eeop = enp->en_eeop;
efx_rc_t rc;
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_EVB);
if (eeop->eeo_vport_reconfigure == NULL) {
rc = ENOTSUP;
goto fail1;
}
if (addrp == NULL) {
rc = EINVAL;
goto fail2;
}
rc = eeop->eeo_vport_reconfigure(enp, evp->ev_vswitch_id, vport_id,
NULL, addrp, NULL);
if (rc != 0)
goto fail3;
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_evb_vport_vlan_set(
__in efx_nic_t *enp,
__in efx_vswitch_t *evp,
__in efx_vport_id_t vport_id,
__in uint16_t vid)
{
const efx_evb_ops_t *eeop = enp->en_eeop;
efx_rc_t rc;
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_EVB);
if (eeop->eeo_vport_reconfigure == NULL) {
rc = ENOTSUP;
goto fail1;
}
rc = eeop->eeo_vport_reconfigure(enp, evp->ev_vswitch_id, vport_id,
&vid, NULL, NULL);
if (rc != 0)
goto fail2;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_evb_vport_reset(
__in efx_nic_t *enp,
__in efx_vswitch_t *evp,
__in efx_vport_id_t vport_id,
__in_bcount(EFX_MAC_ADDR_LEN) uint8_t *addrp,
__in uint16_t vid,
__out boolean_t *is_fn_resetp)
{
const efx_evb_ops_t *eeop = enp->en_eeop;
efx_rc_t rc;
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_EVB);
if (eeop->eeo_vport_reconfigure == NULL) {
rc = ENOTSUP;
goto fail1;
}
if (is_fn_resetp == NULL) {
rc = EINVAL;
goto fail2;
}
rc = eeop->eeo_vport_reconfigure(enp, evp->ev_vswitch_id, vport_id,
&vid, addrp, is_fn_resetp);
if (rc != 0)
goto fail3;
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_evb_vswitch_destroy(
__in efx_nic_t *enp,
__in efx_vswitch_t *evp)
{
const efx_evb_ops_t *eeop = enp->en_eeop;
efx_vswitch_id_t vswitch_id;
efx_rc_t rc;
EFSYS_ASSERT(evp != NULL);
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_EVB);
if ((eeop->eeo_vport_mac_addr_del == NULL) ||
(eeop->eeo_vadaptor_free == NULL) ||
(eeop->eeo_vport_assign == NULL) ||
(eeop->eeo_vport_free == NULL) ||
(eeop->eeo_vswitch_free == NULL)) {
rc = ENOTSUP;
goto fail1;
}
vswitch_id = evp->ev_vswitch_id;
efx_evb_free_vports(enp, vswitch_id,
evp->ev_num_vports, evp->ev_evcp);
/* Free the vSwitch object */
EFSYS_KMEM_FREE(enp->en_esip, sizeof (efx_vswitch_t), evp);
enp->en_vswitchp = NULL;
/* Free the vSwitch */
if ((rc = eeop->eeo_vswitch_free(enp, vswitch_id)) != 0)
goto fail2;
return (0);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
__checkReturn efx_rc_t
efx_evb_vport_stats(
__in efx_nic_t *enp,
__in efx_vswitch_t *evp,
__in efx_vport_id_t vport_id,
__out efsys_mem_t *stats_bufferp)
{
efx_rc_t rc;
const efx_evb_ops_t *eeop = enp->en_eeop;
EFSYS_ASSERT(enp->en_mod_flags & EFX_MOD_EVB);
if (eeop->eeo_vport_stats == NULL) {
rc = ENOTSUP;
goto fail1;
}
if (stats_bufferp == NULL) {
rc = EINVAL;
goto fail2;
}
rc = eeop->eeo_vport_stats(enp, evp->ev_vswitch_id,
vport_id, stats_bufferp);
if (rc != 0)
goto fail3;
return (0);
fail3:
EFSYS_PROBE(fail3);
fail2:
EFSYS_PROBE(fail2);
fail1:
EFSYS_PROBE1(fail1, efx_rc_t, rc);
return (rc);
}
#endif