numam-dpdk/drivers/net/qede/qede_fdir.c
Rasesh Mody 30ecf67308 net/qede/base: remove unused parameters
This is an attempt to clean up many unused API parameters across the base
code. Most of the changes are related to removing unused p_hwfn or p_ptt
handlers. The warnings are generated using 'unused-parameter' cflags.

Signed-off-by: Rasesh Mody <rasesh.mody@cavium.com>
2017-10-06 02:49:49 +02:00

470 lines
14 KiB
C

/*
* Copyright (c) 2017 QLogic Corporation.
* All rights reserved.
* www.qlogic.com
*
* See LICENSE.qede_pmd for copyright and licensing details.
*/
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include <rte_errno.h>
#include "qede_ethdev.h"
#define IP_VERSION (0x40)
#define IP_HDRLEN (0x5)
#define QEDE_FDIR_IP_DEFAULT_VERSION_IHL (IP_VERSION | IP_HDRLEN)
#define QEDE_FDIR_TCP_DEFAULT_DATAOFF (0x50)
#define QEDE_FDIR_IPV4_DEF_TTL (64)
/* Sum of length of header types of L2, L3, L4.
* L2 : ether_hdr + vlan_hdr + vxlan_hdr
* L3 : ipv6_hdr
* L4 : tcp_hdr
*/
#define QEDE_MAX_FDIR_PKT_LEN (86)
#ifndef IPV6_ADDR_LEN
#define IPV6_ADDR_LEN (16)
#endif
#define QEDE_VALID_FLOW(flow_type) \
((flow_type) == RTE_ETH_FLOW_NONFRAG_IPV4_TCP || \
(flow_type) == RTE_ETH_FLOW_NONFRAG_IPV4_UDP || \
(flow_type) == RTE_ETH_FLOW_NONFRAG_IPV6_TCP || \
(flow_type) == RTE_ETH_FLOW_NONFRAG_IPV6_UDP)
/* Note: Flowdir support is only partial.
* For ex: drop_queue, FDIR masks, flex_conf are not supported.
* Parameters like pballoc/status fields are irrelevant here.
*/
int qede_check_fdir_support(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct rte_fdir_conf *fdir = &eth_dev->data->dev_conf.fdir_conf;
/* check FDIR modes */
switch (fdir->mode) {
case RTE_FDIR_MODE_NONE:
qdev->fdir_info.arfs.arfs_enable = false;
DP_INFO(edev, "flowdir is disabled\n");
break;
case RTE_FDIR_MODE_PERFECT:
if (edev->num_hwfns > 1) {
DP_ERR(edev, "flowdir is not supported in 100G mode\n");
qdev->fdir_info.arfs.arfs_enable = false;
return -ENOTSUP;
}
qdev->fdir_info.arfs.arfs_enable = true;
DP_INFO(edev, "flowdir is enabled\n");
break;
case RTE_FDIR_MODE_PERFECT_TUNNEL:
case RTE_FDIR_MODE_SIGNATURE:
case RTE_FDIR_MODE_PERFECT_MAC_VLAN:
DP_ERR(edev, "Unsupported flowdir mode %d\n", fdir->mode);
return -ENOTSUP;
}
return 0;
}
void qede_fdir_dealloc_resc(struct rte_eth_dev *eth_dev)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct qede_fdir_entry *tmp = NULL;
SLIST_FOREACH(tmp, &qdev->fdir_info.fdir_list_head, list) {
if (tmp) {
if (tmp->mz)
rte_memzone_free(tmp->mz);
SLIST_REMOVE(&qdev->fdir_info.fdir_list_head, tmp,
qede_fdir_entry, list);
rte_free(tmp);
}
}
}
static int
qede_config_cmn_fdir_filter(struct rte_eth_dev *eth_dev,
struct rte_eth_fdir_filter *fdir_filter,
bool add)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
char mz_name[RTE_MEMZONE_NAMESIZE] = {0};
struct qede_fdir_entry *tmp = NULL;
struct qede_fdir_entry *fdir = NULL;
const struct rte_memzone *mz;
struct ecore_hwfn *p_hwfn;
enum _ecore_status_t rc;
uint16_t pkt_len;
void *pkt;
if (add) {
if (qdev->fdir_info.filter_count == QEDE_RFS_MAX_FLTR - 1) {
DP_ERR(edev, "Reached max flowdir filter limit\n");
return -EINVAL;
}
fdir = rte_malloc(NULL, sizeof(struct qede_fdir_entry),
RTE_CACHE_LINE_SIZE);
if (!fdir) {
DP_ERR(edev, "Did not allocate memory for fdir\n");
return -ENOMEM;
}
}
/* soft_id could have been used as memzone string, but soft_id is
* not currently used so it has no significance.
*/
snprintf(mz_name, sizeof(mz_name) - 1, "%lx",
(unsigned long)rte_get_timer_cycles());
mz = rte_memzone_reserve_aligned(mz_name, QEDE_MAX_FDIR_PKT_LEN,
SOCKET_ID_ANY, 0, RTE_CACHE_LINE_SIZE);
if (!mz) {
DP_ERR(edev, "Failed to allocate memzone for fdir, err = %s\n",
rte_strerror(rte_errno));
rc = -rte_errno;
goto err1;
}
pkt = mz->addr;
memset(pkt, 0, QEDE_MAX_FDIR_PKT_LEN);
pkt_len = qede_fdir_construct_pkt(eth_dev, fdir_filter, pkt,
&qdev->fdir_info.arfs);
if (pkt_len == 0) {
rc = -EINVAL;
goto err2;
}
DP_INFO(edev, "pkt_len = %u memzone = %s\n", pkt_len, mz_name);
if (add) {
SLIST_FOREACH(tmp, &qdev->fdir_info.fdir_list_head, list) {
if (memcmp(tmp->mz->addr, pkt, pkt_len) == 0) {
DP_ERR(edev, "flowdir filter exist\n");
rc = -EEXIST;
goto err2;
}
}
} else {
SLIST_FOREACH(tmp, &qdev->fdir_info.fdir_list_head, list) {
if (memcmp(tmp->mz->addr, pkt, pkt_len) == 0)
break;
}
if (!tmp) {
DP_ERR(edev, "flowdir filter does not exist\n");
rc = -EEXIST;
goto err2;
}
}
p_hwfn = ECORE_LEADING_HWFN(edev);
if (add) {
if (!qdev->fdir_info.arfs.arfs_enable) {
/* Force update */
eth_dev->data->dev_conf.fdir_conf.mode =
RTE_FDIR_MODE_PERFECT;
qdev->fdir_info.arfs.arfs_enable = true;
DP_INFO(edev, "Force enable flowdir in perfect mode\n");
}
/* Enable ARFS searcher with updated flow_types */
ecore_arfs_mode_configure(p_hwfn, p_hwfn->p_arfs_ptt,
&qdev->fdir_info.arfs);
}
/* configure filter with ECORE_SPQ_MODE_EBLOCK */
rc = ecore_configure_rfs_ntuple_filter(p_hwfn, NULL,
(dma_addr_t)mz->phys_addr,
pkt_len,
fdir_filter->action.rx_queue,
0, add);
if (rc == ECORE_SUCCESS) {
if (add) {
fdir->rx_queue = fdir_filter->action.rx_queue;
fdir->pkt_len = pkt_len;
fdir->mz = mz;
SLIST_INSERT_HEAD(&qdev->fdir_info.fdir_list_head,
fdir, list);
qdev->fdir_info.filter_count++;
DP_INFO(edev, "flowdir filter added, count = %d\n",
qdev->fdir_info.filter_count);
} else {
rte_memzone_free(tmp->mz);
SLIST_REMOVE(&qdev->fdir_info.fdir_list_head, tmp,
qede_fdir_entry, list);
rte_free(tmp); /* the node deleted */
rte_memzone_free(mz); /* temp node allocated */
qdev->fdir_info.filter_count--;
DP_INFO(edev, "Fdir filter deleted, count = %d\n",
qdev->fdir_info.filter_count);
}
} else {
DP_ERR(edev, "flowdir filter failed, rc=%d filter_count=%d\n",
rc, qdev->fdir_info.filter_count);
}
/* Disable ARFS searcher if there are no more filters */
if (qdev->fdir_info.filter_count == 0) {
memset(&qdev->fdir_info.arfs, 0,
sizeof(struct ecore_arfs_config_params));
DP_INFO(edev, "Disabling flowdir\n");
qdev->fdir_info.arfs.arfs_enable = false;
ecore_arfs_mode_configure(p_hwfn, p_hwfn->p_arfs_ptt,
&qdev->fdir_info.arfs);
}
return 0;
err2:
rte_memzone_free(mz);
err1:
if (add)
rte_free(fdir);
return rc;
}
static int
qede_fdir_filter_add(struct rte_eth_dev *eth_dev,
struct rte_eth_fdir_filter *fdir,
bool add)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
if (!QEDE_VALID_FLOW(fdir->input.flow_type)) {
DP_ERR(edev, "invalid flow_type input\n");
return -EINVAL;
}
if (fdir->action.rx_queue >= QEDE_RSS_COUNT(qdev)) {
DP_ERR(edev, "invalid queue number %u\n",
fdir->action.rx_queue);
return -EINVAL;
}
if (fdir->input.flow_ext.is_vf) {
DP_ERR(edev, "flowdir is not supported over VF\n");
return -EINVAL;
}
return qede_config_cmn_fdir_filter(eth_dev, fdir, add);
}
/* Fills the L3/L4 headers and returns the actual length of flowdir packet */
uint16_t
qede_fdir_construct_pkt(struct rte_eth_dev *eth_dev,
struct rte_eth_fdir_filter *fdir,
void *buff,
struct ecore_arfs_config_params *params)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
uint16_t *ether_type;
uint8_t *raw_pkt;
struct rte_eth_fdir_input *input;
static uint8_t vlan_frame[] = {0x81, 0, 0, 0};
struct ipv4_hdr *ip;
struct ipv6_hdr *ip6;
struct udp_hdr *udp;
struct tcp_hdr *tcp;
uint16_t len;
static const uint8_t next_proto[] = {
[RTE_ETH_FLOW_NONFRAG_IPV4_TCP] = IPPROTO_TCP,
[RTE_ETH_FLOW_NONFRAG_IPV4_UDP] = IPPROTO_UDP,
[RTE_ETH_FLOW_NONFRAG_IPV6_TCP] = IPPROTO_TCP,
[RTE_ETH_FLOW_NONFRAG_IPV6_UDP] = IPPROTO_UDP,
};
raw_pkt = (uint8_t *)buff;
input = &fdir->input;
DP_INFO(edev, "flow_type %d\n", input->flow_type);
len = 2 * sizeof(struct ether_addr);
raw_pkt += 2 * sizeof(struct ether_addr);
if (input->flow_ext.vlan_tci) {
DP_INFO(edev, "adding VLAN header\n");
rte_memcpy(raw_pkt, vlan_frame, sizeof(vlan_frame));
rte_memcpy(raw_pkt + sizeof(uint16_t),
&input->flow_ext.vlan_tci,
sizeof(uint16_t));
raw_pkt += sizeof(vlan_frame);
len += sizeof(vlan_frame);
}
ether_type = (uint16_t *)raw_pkt;
raw_pkt += sizeof(uint16_t);
len += sizeof(uint16_t);
switch (input->flow_type) {
case RTE_ETH_FLOW_NONFRAG_IPV4_TCP:
case RTE_ETH_FLOW_NONFRAG_IPV4_UDP:
/* fill the common ip header */
ip = (struct ipv4_hdr *)raw_pkt;
*ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
ip->version_ihl = QEDE_FDIR_IP_DEFAULT_VERSION_IHL;
ip->total_length = sizeof(struct ipv4_hdr);
ip->next_proto_id = input->flow.ip4_flow.proto ?
input->flow.ip4_flow.proto :
next_proto[input->flow_type];
ip->time_to_live = input->flow.ip4_flow.ttl ?
input->flow.ip4_flow.ttl :
QEDE_FDIR_IPV4_DEF_TTL;
ip->type_of_service = input->flow.ip4_flow.tos;
ip->dst_addr = input->flow.ip4_flow.dst_ip;
ip->src_addr = input->flow.ip4_flow.src_ip;
len += sizeof(struct ipv4_hdr);
params->ipv4 = true;
raw_pkt = (uint8_t *)buff;
/* UDP */
if (input->flow_type == RTE_ETH_FLOW_NONFRAG_IPV4_UDP) {
udp = (struct udp_hdr *)(raw_pkt + len);
udp->dst_port = input->flow.udp4_flow.dst_port;
udp->src_port = input->flow.udp4_flow.src_port;
udp->dgram_len = sizeof(struct udp_hdr);
len += sizeof(struct udp_hdr);
/* adjust ip total_length */
ip->total_length += sizeof(struct udp_hdr);
params->udp = true;
} else { /* TCP */
tcp = (struct tcp_hdr *)(raw_pkt + len);
tcp->src_port = input->flow.tcp4_flow.src_port;
tcp->dst_port = input->flow.tcp4_flow.dst_port;
tcp->data_off = QEDE_FDIR_TCP_DEFAULT_DATAOFF;
len += sizeof(struct tcp_hdr);
/* adjust ip total_length */
ip->total_length += sizeof(struct tcp_hdr);
params->tcp = true;
}
break;
case RTE_ETH_FLOW_NONFRAG_IPV6_TCP:
case RTE_ETH_FLOW_NONFRAG_IPV6_UDP:
ip6 = (struct ipv6_hdr *)raw_pkt;
*ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
ip6->proto = input->flow.ipv6_flow.proto ?
input->flow.ipv6_flow.proto :
next_proto[input->flow_type];
rte_memcpy(&ip6->src_addr, &input->flow.ipv6_flow.dst_ip,
IPV6_ADDR_LEN);
rte_memcpy(&ip6->dst_addr, &input->flow.ipv6_flow.src_ip,
IPV6_ADDR_LEN);
len += sizeof(struct ipv6_hdr);
raw_pkt = (uint8_t *)buff;
/* UDP */
if (input->flow_type == RTE_ETH_FLOW_NONFRAG_IPV6_UDP) {
udp = (struct udp_hdr *)(raw_pkt + len);
udp->src_port = input->flow.udp6_flow.dst_port;
udp->dst_port = input->flow.udp6_flow.src_port;
len += sizeof(struct udp_hdr);
params->udp = true;
} else { /* TCP */
tcp = (struct tcp_hdr *)(raw_pkt + len);
tcp->src_port = input->flow.tcp4_flow.src_port;
tcp->dst_port = input->flow.tcp4_flow.dst_port;
tcp->data_off = QEDE_FDIR_TCP_DEFAULT_DATAOFF;
len += sizeof(struct tcp_hdr);
params->tcp = true;
}
break;
default:
DP_ERR(edev, "Unsupported flow_type %u\n",
input->flow_type);
return 0;
}
return len;
}
int
qede_fdir_filter_conf(struct rte_eth_dev *eth_dev,
enum rte_filter_op filter_op,
void *arg)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct rte_eth_fdir_filter *fdir;
int ret;
fdir = (struct rte_eth_fdir_filter *)arg;
switch (filter_op) {
case RTE_ETH_FILTER_NOP:
/* Typically used to query flowdir support */
if (edev->num_hwfns > 1) {
DP_ERR(edev, "flowdir is not supported in 100G mode\n");
return -ENOTSUP;
}
return 0; /* means supported */
case RTE_ETH_FILTER_ADD:
ret = qede_fdir_filter_add(eth_dev, fdir, 1);
break;
case RTE_ETH_FILTER_DELETE:
ret = qede_fdir_filter_add(eth_dev, fdir, 0);
break;
case RTE_ETH_FILTER_FLUSH:
case RTE_ETH_FILTER_UPDATE:
case RTE_ETH_FILTER_INFO:
return -ENOTSUP;
break;
default:
DP_ERR(edev, "unknown operation %u", filter_op);
ret = -EINVAL;
}
return ret;
}
int qede_ntuple_filter_conf(struct rte_eth_dev *eth_dev,
enum rte_filter_op filter_op,
void *arg)
{
struct qede_dev *qdev = QEDE_INIT_QDEV(eth_dev);
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct rte_eth_ntuple_filter *ntuple;
struct rte_eth_fdir_filter fdir_entry;
struct rte_eth_tcpv4_flow *tcpv4_flow;
struct rte_eth_udpv4_flow *udpv4_flow;
bool add = false;
switch (filter_op) {
case RTE_ETH_FILTER_NOP:
/* Typically used to query fdir support */
if (edev->num_hwfns > 1) {
DP_ERR(edev, "flowdir is not supported in 100G mode\n");
return -ENOTSUP;
}
return 0; /* means supported */
case RTE_ETH_FILTER_ADD:
add = true;
break;
case RTE_ETH_FILTER_DELETE:
break;
case RTE_ETH_FILTER_INFO:
case RTE_ETH_FILTER_GET:
case RTE_ETH_FILTER_UPDATE:
case RTE_ETH_FILTER_FLUSH:
case RTE_ETH_FILTER_SET:
case RTE_ETH_FILTER_STATS:
case RTE_ETH_FILTER_OP_MAX:
DP_ERR(edev, "Unsupported filter_op %d\n", filter_op);
return -ENOTSUP;
}
ntuple = (struct rte_eth_ntuple_filter *)arg;
/* Internally convert ntuple to fdir entry */
memset(&fdir_entry, 0, sizeof(fdir_entry));
if (ntuple->proto == IPPROTO_TCP) {
fdir_entry.input.flow_type = RTE_ETH_FLOW_NONFRAG_IPV4_TCP;
tcpv4_flow = &fdir_entry.input.flow.tcp4_flow;
tcpv4_flow->ip.src_ip = ntuple->src_ip;
tcpv4_flow->ip.dst_ip = ntuple->dst_ip;
tcpv4_flow->ip.proto = IPPROTO_TCP;
tcpv4_flow->src_port = ntuple->src_port;
tcpv4_flow->dst_port = ntuple->dst_port;
} else {
fdir_entry.input.flow_type = RTE_ETH_FLOW_NONFRAG_IPV4_UDP;
udpv4_flow = &fdir_entry.input.flow.udp4_flow;
udpv4_flow->ip.src_ip = ntuple->src_ip;
udpv4_flow->ip.dst_ip = ntuple->dst_ip;
udpv4_flow->ip.proto = IPPROTO_TCP;
udpv4_flow->src_port = ntuple->src_port;
udpv4_flow->dst_port = ntuple->dst_port;
}
return qede_config_cmn_fdir_filter(eth_dev, &fdir_entry, add);
}