f2fc83b40f
There is a common macro __rte_unused, avoiding warnings, which is now used where appropriate for consistency. Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
635 lines
17 KiB
C
635 lines
17 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
* Copyright(c) 2019 Arm Limited
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_memory.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_random.h>
|
|
#include <rte_hash_crc.h>
|
|
|
|
#include "test.h"
|
|
|
|
/*
|
|
* Atomic Variables
|
|
* ================
|
|
*
|
|
* - The main test function performs several subtests. The first
|
|
* checks that the usual inc/dec/add/sub functions are working
|
|
* correctly:
|
|
*
|
|
* - Initialize 16-bit, 32-bit and 64-bit atomic variables to specific
|
|
* values.
|
|
*
|
|
* - These variables are incremented and decremented on each core at
|
|
* the same time in ``test_atomic_usual()``.
|
|
*
|
|
* - The function checks that once all lcores finish their function,
|
|
* the value of the atomic variables are still the same.
|
|
*
|
|
* - Test "test and set" functions.
|
|
*
|
|
* - Initialize 16-bit, 32-bit and 64-bit atomic variables to zero.
|
|
*
|
|
* - Invoke ``test_atomic_tas()`` on each lcore: before doing anything
|
|
* else. The cores are waiting a synchro using ``while
|
|
* (rte_atomic32_read(&val) == 0)`` which is triggered by the main test
|
|
* function. Then all cores do a
|
|
* ``rte_atomicXX_test_and_set()`` at the same time. If it is successful,
|
|
* it increments another atomic counter.
|
|
*
|
|
* - The main function checks that the atomic counter was incremented
|
|
* twice only (one for 16-bit, one for 32-bit and one for 64-bit values).
|
|
*
|
|
* - Test "add/sub and return" functions
|
|
*
|
|
* - Initialize 16-bit, 32-bit and 64-bit atomic variables to zero.
|
|
*
|
|
* - Invoke ``test_atomic_addsub_return()`` on each lcore. Before doing
|
|
* anything else, the cores are waiting a synchro. Each lcore does
|
|
* this operation several times::
|
|
*
|
|
* tmp = rte_atomicXX_add_return(&a, 1);
|
|
* atomic_add(&count, tmp);
|
|
* tmp = rte_atomicXX_sub_return(&a, 1);
|
|
* atomic_sub(&count, tmp+1);
|
|
*
|
|
* - At the end of the test, the *count* value must be 0.
|
|
*
|
|
* - Test "128-bit compare and swap" (aarch64 and x86_64 only)
|
|
*
|
|
* - Initialize 128-bit atomic variables to zero.
|
|
*
|
|
* - Invoke ``test_atomic128_cmp_exchange()`` on each lcore. Before doing
|
|
* anything else, the cores are waiting a synchro. Each lcore does
|
|
* these compare and swap (CAS) operations several times::
|
|
*
|
|
* Acquired CAS update counter.val[0] + 2; counter.val[1] + 1;
|
|
* Released CAS update counter.val[0] + 2; counter.val[1] + 1;
|
|
* Acquired_Released CAS update counter.val[0] + 2; counter.val[1] + 1;
|
|
* Relaxed CAS update counter.val[0] + 2; counter.val[1] + 1;
|
|
*
|
|
* - At the end of the test, the *count128* first 64-bit value and
|
|
* second 64-bit value differ by the total iterations.
|
|
*
|
|
* - Test "atomic exchange" functions
|
|
*
|
|
* - Create a 64 bit token that can be tested for data integrity
|
|
*
|
|
* - Invoke ``test_atomic_exchange`` on each lcore. Before doing
|
|
* anything else, the cores wait for a synchronization event.
|
|
* Each core then does the follwoing for N iterations:
|
|
*
|
|
* Generate a new token with a data integrity check
|
|
* Exchange the new token for previously generated token
|
|
* Increment a counter if a corrupt token was received
|
|
*
|
|
* - At the end of the test, the number of corrupted tokens must be 0.
|
|
*/
|
|
|
|
#define NUM_ATOMIC_TYPES 3
|
|
|
|
#define N 1000000
|
|
|
|
static rte_atomic16_t a16;
|
|
static rte_atomic32_t a32;
|
|
static rte_atomic64_t a64;
|
|
static rte_atomic64_t count;
|
|
static rte_atomic32_t synchro;
|
|
|
|
static int
|
|
test_atomic_usual(__rte_unused void *arg)
|
|
{
|
|
unsigned i;
|
|
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic16_inc(&a16);
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic16_dec(&a16);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic16_add(&a16, 5);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic16_sub(&a16, 5);
|
|
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic32_inc(&a32);
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic32_dec(&a32);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic32_add(&a32, 5);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic32_sub(&a32, 5);
|
|
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic64_inc(&a64);
|
|
for (i = 0; i < N; i++)
|
|
rte_atomic64_dec(&a64);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic64_add(&a64, 5);
|
|
for (i = 0; i < (N / 5); i++)
|
|
rte_atomic64_sub(&a64, 5);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_atomic_tas(__rte_unused void *arg)
|
|
{
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
if (rte_atomic16_test_and_set(&a16))
|
|
rte_atomic64_inc(&count);
|
|
if (rte_atomic32_test_and_set(&a32))
|
|
rte_atomic64_inc(&count);
|
|
if (rte_atomic64_test_and_set(&a64))
|
|
rte_atomic64_inc(&count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_atomic_addsub_and_return(__rte_unused void *arg)
|
|
{
|
|
uint32_t tmp16;
|
|
uint32_t tmp32;
|
|
uint64_t tmp64;
|
|
unsigned i;
|
|
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
for (i = 0; i < N; i++) {
|
|
tmp16 = rte_atomic16_add_return(&a16, 1);
|
|
rte_atomic64_add(&count, tmp16);
|
|
|
|
tmp16 = rte_atomic16_sub_return(&a16, 1);
|
|
rte_atomic64_sub(&count, tmp16+1);
|
|
|
|
tmp32 = rte_atomic32_add_return(&a32, 1);
|
|
rte_atomic64_add(&count, tmp32);
|
|
|
|
tmp32 = rte_atomic32_sub_return(&a32, 1);
|
|
rte_atomic64_sub(&count, tmp32+1);
|
|
|
|
tmp64 = rte_atomic64_add_return(&a64, 1);
|
|
rte_atomic64_add(&count, tmp64);
|
|
|
|
tmp64 = rte_atomic64_sub_return(&a64, 1);
|
|
rte_atomic64_sub(&count, tmp64+1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* rte_atomic32_inc_and_test() would increase a 32 bits counter by one and then
|
|
* test if that counter is equal to 0. It would return true if the counter is 0
|
|
* and false if the counter is not 0. rte_atomic64_inc_and_test() could do the
|
|
* same thing but for a 64 bits counter.
|
|
* Here checks that if the 32/64 bits counter is equal to 0 after being atomically
|
|
* increased by one. If it is, increase the variable of "count" by one which would
|
|
* be checked as the result later.
|
|
*
|
|
*/
|
|
static int
|
|
test_atomic_inc_and_test(__rte_unused void *arg)
|
|
{
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
if (rte_atomic16_inc_and_test(&a16)) {
|
|
rte_atomic64_inc(&count);
|
|
}
|
|
if (rte_atomic32_inc_and_test(&a32)) {
|
|
rte_atomic64_inc(&count);
|
|
}
|
|
if (rte_atomic64_inc_and_test(&a64)) {
|
|
rte_atomic64_inc(&count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* rte_atomicXX_dec_and_test() should decrease a 32 bits counter by one and then
|
|
* test if that counter is equal to 0. It should return true if the counter is 0
|
|
* and false if the counter is not 0.
|
|
* This test checks if the counter is equal to 0 after being atomically
|
|
* decreased by one. If it is, increase the value of "count" by one which is to
|
|
* be checked as the result later.
|
|
*/
|
|
static int
|
|
test_atomic_dec_and_test(__rte_unused void *arg)
|
|
{
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
if (rte_atomic16_dec_and_test(&a16))
|
|
rte_atomic64_inc(&count);
|
|
|
|
if (rte_atomic32_dec_and_test(&a32))
|
|
rte_atomic64_inc(&count);
|
|
|
|
if (rte_atomic64_dec_and_test(&a64))
|
|
rte_atomic64_inc(&count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_ARM64)
|
|
static rte_int128_t count128;
|
|
|
|
/*
|
|
* rte_atomic128_cmp_exchange() should update a 128 bits counter's first 64
|
|
* bits by 2 and the second 64 bits by 1 in this test. It should return true
|
|
* if the compare exchange operation is successful.
|
|
* This test repeats 128 bits compare and swap operations N rounds. In each
|
|
* iteration it runs compare and swap operation with different memory models.
|
|
*/
|
|
static int
|
|
test_atomic128_cmp_exchange(__rte_unused void *arg)
|
|
{
|
|
rte_int128_t expected;
|
|
int success;
|
|
unsigned int i;
|
|
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
expected = count128;
|
|
|
|
for (i = 0; i < N; i++) {
|
|
do {
|
|
rte_int128_t desired;
|
|
|
|
desired.val[0] = expected.val[0] + 2;
|
|
desired.val[1] = expected.val[1] + 1;
|
|
|
|
success = rte_atomic128_cmp_exchange(&count128,
|
|
&expected, &desired, 1,
|
|
__ATOMIC_ACQUIRE, __ATOMIC_RELAXED);
|
|
} while (success == 0);
|
|
|
|
do {
|
|
rte_int128_t desired;
|
|
|
|
desired.val[0] = expected.val[0] + 2;
|
|
desired.val[1] = expected.val[1] + 1;
|
|
|
|
success = rte_atomic128_cmp_exchange(&count128,
|
|
&expected, &desired, 1,
|
|
__ATOMIC_RELEASE, __ATOMIC_RELAXED);
|
|
} while (success == 0);
|
|
|
|
do {
|
|
rte_int128_t desired;
|
|
|
|
desired.val[0] = expected.val[0] + 2;
|
|
desired.val[1] = expected.val[1] + 1;
|
|
|
|
success = rte_atomic128_cmp_exchange(&count128,
|
|
&expected, &desired, 1,
|
|
__ATOMIC_ACQ_REL, __ATOMIC_RELAXED);
|
|
} while (success == 0);
|
|
|
|
do {
|
|
rte_int128_t desired;
|
|
|
|
desired.val[0] = expected.val[0] + 2;
|
|
desired.val[1] = expected.val[1] + 1;
|
|
|
|
success = rte_atomic128_cmp_exchange(&count128,
|
|
&expected, &desired, 1,
|
|
__ATOMIC_RELAXED, __ATOMIC_RELAXED);
|
|
} while (success == 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Helper definitions/variables/functions for
|
|
* atomic exchange tests
|
|
*/
|
|
typedef union {
|
|
uint16_t u16;
|
|
uint8_t u8[2];
|
|
} test16_t;
|
|
|
|
typedef union {
|
|
uint32_t u32;
|
|
uint16_t u16[2];
|
|
uint8_t u8[4];
|
|
} test32_t;
|
|
|
|
typedef union {
|
|
uint64_t u64;
|
|
uint32_t u32[2];
|
|
uint16_t u16[4];
|
|
uint8_t u8[8];
|
|
} test64_t;
|
|
|
|
const uint8_t CRC8_POLY = 0x91;
|
|
uint8_t crc8_table[256];
|
|
|
|
volatile uint16_t token16;
|
|
volatile uint32_t token32;
|
|
volatile uint64_t token64;
|
|
|
|
static void
|
|
build_crc8_table(void)
|
|
{
|
|
uint8_t val;
|
|
int i, j;
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
val = i;
|
|
for (j = 0; j < 8; j++) {
|
|
if (val & 1)
|
|
val ^= CRC8_POLY;
|
|
val >>= 1;
|
|
}
|
|
crc8_table[i] = val;
|
|
}
|
|
}
|
|
|
|
static uint8_t
|
|
get_crc8(uint8_t *message, int length)
|
|
{
|
|
uint8_t crc = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < length; i++)
|
|
crc = crc8_table[crc ^ message[i]];
|
|
return crc;
|
|
}
|
|
|
|
/*
|
|
* The atomic exchange test sets up a token in memory and
|
|
* then spins up multiple lcores whose job is to generate
|
|
* new tokens, exchange that new token for the old one held
|
|
* in memory, and then verify that the old token is still
|
|
* valid (i.e. the exchange did not corrupt the token).
|
|
*
|
|
* A token is made up of random data and 8 bits of crc
|
|
* covering that random data. The following is an example
|
|
* of a 64bit token.
|
|
*
|
|
* +------------+------------+
|
|
* | 63 56 | 55 0 |
|
|
* +------------+------------+
|
|
* | CRC8 | Data |
|
|
* +------------+------------+
|
|
*/
|
|
static int
|
|
test_atomic_exchange(__rte_unused void *arg)
|
|
{
|
|
int i;
|
|
test16_t nt16, ot16; /* new token, old token */
|
|
test32_t nt32, ot32;
|
|
test64_t nt64, ot64;
|
|
|
|
/* Wait until all of the other threads have been dispatched */
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
;
|
|
|
|
/*
|
|
* Let the battle begin! Every thread attempts to steal the current
|
|
* token with an atomic exchange operation and install its own newly
|
|
* generated token. If the old token is valid (i.e. it has the
|
|
* appropriate crc32 hash for the data) then the test iteration has
|
|
* passed. If the token is invalid, increment the counter.
|
|
*/
|
|
for (i = 0; i < N; i++) {
|
|
|
|
/* Test 64bit Atomic Exchange */
|
|
nt64.u64 = rte_rand();
|
|
nt64.u8[7] = get_crc8(&nt64.u8[0], sizeof(nt64) - 1);
|
|
ot64.u64 = rte_atomic64_exchange(&token64, nt64.u64);
|
|
if (ot64.u8[7] != get_crc8(&ot64.u8[0], sizeof(ot64) - 1))
|
|
rte_atomic64_inc(&count);
|
|
|
|
/* Test 32bit Atomic Exchange */
|
|
nt32.u32 = (uint32_t)rte_rand();
|
|
nt32.u8[3] = get_crc8(&nt32.u8[0], sizeof(nt32) - 1);
|
|
ot32.u32 = rte_atomic32_exchange(&token32, nt32.u32);
|
|
if (ot32.u8[3] != get_crc8(&ot32.u8[0], sizeof(ot32) - 1))
|
|
rte_atomic64_inc(&count);
|
|
|
|
/* Test 16bit Atomic Exchange */
|
|
nt16.u16 = (uint16_t)rte_rand();
|
|
nt16.u8[1] = get_crc8(&nt16.u8[0], sizeof(nt16) - 1);
|
|
ot16.u16 = rte_atomic16_exchange(&token16, nt16.u16);
|
|
if (ot16.u8[1] != get_crc8(&ot16.u8[0], sizeof(ot16) - 1))
|
|
rte_atomic64_inc(&count);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
static int
|
|
test_atomic(void)
|
|
{
|
|
rte_atomic16_init(&a16);
|
|
rte_atomic32_init(&a32);
|
|
rte_atomic64_init(&a64);
|
|
rte_atomic64_init(&count);
|
|
rte_atomic32_init(&synchro);
|
|
|
|
rte_atomic16_set(&a16, 1UL << 10);
|
|
rte_atomic32_set(&a32, 1UL << 10);
|
|
rte_atomic64_set(&a64, 1ULL << 33);
|
|
|
|
printf("usual inc/dec/add/sub functions\n");
|
|
|
|
rte_eal_mp_remote_launch(test_atomic_usual, NULL, SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_set(&synchro, 0);
|
|
|
|
if (rte_atomic16_read(&a16) != 1UL << 10) {
|
|
printf("Atomic16 usual functions failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (rte_atomic32_read(&a32) != 1UL << 10) {
|
|
printf("Atomic32 usual functions failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (rte_atomic64_read(&a64) != 1ULL << 33) {
|
|
printf("Atomic64 usual functions failed\n");
|
|
return -1;
|
|
}
|
|
|
|
printf("test and set\n");
|
|
|
|
rte_atomic64_set(&a64, 0);
|
|
rte_atomic32_set(&a32, 0);
|
|
rte_atomic16_set(&a16, 0);
|
|
rte_atomic64_set(&count, 0);
|
|
rte_eal_mp_remote_launch(test_atomic_tas, NULL, SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_set(&synchro, 0);
|
|
|
|
if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
|
|
printf("Atomic test and set failed\n");
|
|
return -1;
|
|
}
|
|
|
|
printf("add/sub and return\n");
|
|
|
|
rte_atomic64_set(&a64, 0);
|
|
rte_atomic32_set(&a32, 0);
|
|
rte_atomic16_set(&a16, 0);
|
|
rte_atomic64_set(&count, 0);
|
|
rte_eal_mp_remote_launch(test_atomic_addsub_and_return, NULL,
|
|
SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_set(&synchro, 0);
|
|
|
|
if (rte_atomic64_read(&count) != 0) {
|
|
printf("Atomic add/sub+return failed\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Set a64, a32 and a16 with the same value of minus "number of slave
|
|
* lcores", launch all slave lcores to atomically increase by one and
|
|
* test them respectively.
|
|
* Each lcore should have only one chance to increase a64 by one and
|
|
* then check if it is equal to 0, but there should be only one lcore
|
|
* that finds that it is 0. It is similar for a32 and a16.
|
|
* Then a variable of "count", initialized to zero, is increased by
|
|
* one if a64, a32 or a16 is 0 after being increased and tested
|
|
* atomically.
|
|
* We can check if "count" is finally equal to 3 to see if all slave
|
|
* lcores performed "atomic inc and test" right.
|
|
*/
|
|
printf("inc and test\n");
|
|
|
|
rte_atomic64_clear(&a64);
|
|
rte_atomic32_clear(&a32);
|
|
rte_atomic16_clear(&a16);
|
|
rte_atomic32_clear(&synchro);
|
|
rte_atomic64_clear(&count);
|
|
|
|
rte_atomic64_set(&a64, (int64_t)(1 - (int64_t)rte_lcore_count()));
|
|
rte_atomic32_set(&a32, (int32_t)(1 - (int32_t)rte_lcore_count()));
|
|
rte_atomic16_set(&a16, (int16_t)(1 - (int16_t)rte_lcore_count()));
|
|
rte_eal_mp_remote_launch(test_atomic_inc_and_test, NULL, SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_clear(&synchro);
|
|
|
|
if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
|
|
printf("Atomic inc and test failed %d\n", (int)count.cnt);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Same as above, but this time we set the values to "number of slave
|
|
* lcores", and decrement instead of increment.
|
|
*/
|
|
printf("dec and test\n");
|
|
|
|
rte_atomic32_clear(&synchro);
|
|
rte_atomic64_clear(&count);
|
|
|
|
rte_atomic64_set(&a64, (int64_t)(rte_lcore_count() - 1));
|
|
rte_atomic32_set(&a32, (int32_t)(rte_lcore_count() - 1));
|
|
rte_atomic16_set(&a16, (int16_t)(rte_lcore_count() - 1));
|
|
rte_eal_mp_remote_launch(test_atomic_dec_and_test, NULL, SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_clear(&synchro);
|
|
|
|
if (rte_atomic64_read(&count) != NUM_ATOMIC_TYPES) {
|
|
printf("Atomic dec and test failed\n");
|
|
return -1;
|
|
}
|
|
|
|
#if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_ARM64)
|
|
/*
|
|
* This case tests the functionality of rte_atomic128_cmp_exchange
|
|
* API. It calls rte_atomic128_cmp_exchange with four kinds of memory
|
|
* models successively on each slave core. Once each 128-bit atomic
|
|
* compare and swap operation is successful, it updates the global
|
|
* 128-bit counter by 2 for the first 64-bit and 1 for the second
|
|
* 64-bit. Each slave core iterates this test N times.
|
|
* At the end of test, verify whether the first 64-bits of the 128-bit
|
|
* counter and the second 64bits is differ by the total iterations. If
|
|
* it is, the test passes.
|
|
*/
|
|
printf("128-bit compare and swap test\n");
|
|
uint64_t iterations = 0;
|
|
|
|
rte_atomic32_clear(&synchro);
|
|
count128.val[0] = 0;
|
|
count128.val[1] = 0;
|
|
|
|
rte_eal_mp_remote_launch(test_atomic128_cmp_exchange, NULL,
|
|
SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_clear(&synchro);
|
|
|
|
iterations = count128.val[0] - count128.val[1];
|
|
if (iterations != 4*N*(rte_lcore_count()-1)) {
|
|
printf("128-bit compare and swap failed\n");
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Test 16/32/64bit atomic exchange.
|
|
*/
|
|
test64_t t;
|
|
|
|
printf("exchange test\n");
|
|
|
|
rte_atomic32_clear(&synchro);
|
|
rte_atomic64_clear(&count);
|
|
|
|
/* Generate the CRC8 lookup table */
|
|
build_crc8_table();
|
|
|
|
/* Create the initial tokens used by the test */
|
|
t.u64 = rte_rand();
|
|
token16 = (get_crc8(&t.u8[0], sizeof(token16) - 1) << 8)
|
|
| (t.u16[0] & 0x00ff);
|
|
token32 = ((uint32_t)get_crc8(&t.u8[0], sizeof(token32) - 1) << 24)
|
|
| (t.u32[0] & 0x00ffffff);
|
|
token64 = ((uint64_t)get_crc8(&t.u8[0], sizeof(token64) - 1) << 56)
|
|
| (t.u64 & 0x00ffffffffffffff);
|
|
|
|
rte_eal_mp_remote_launch(test_atomic_exchange, NULL, SKIP_MASTER);
|
|
rte_atomic32_set(&synchro, 1);
|
|
rte_eal_mp_wait_lcore();
|
|
rte_atomic32_clear(&synchro);
|
|
|
|
if (rte_atomic64_read(&count) > 0) {
|
|
printf("Atomic exchange test failed\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
REGISTER_TEST_COMMAND(atomic_autotest, test_atomic);
|