numam-dpdk/app/test/test_pmd_perf.c
Ivan Dyukov a357d09d54 app: remove extra new line after link duplex
This is testpmd part of new line cleanup.

Fixes: 002ade70e9 ("app/test: measure cycles per packet in Rx/Tx")
Fixes: ce8d561418 ("app/testpmd: add port configuration settings")
Cc: stable@dpdk.org

Signed-off-by: Ivan Dyukov <i.dyukov@samsung.com>
Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
2020-05-12 04:07:22 +02:00

889 lines
21 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <inttypes.h>
#include <signal.h>
#include <unistd.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_byteorder.h>
#include <rte_atomic.h>
#include <rte_malloc.h>
#include "packet_burst_generator.h"
#include "test.h"
#define NB_ETHPORTS_USED (1)
#define NB_SOCKETS (2)
#define MEMPOOL_CACHE_SIZE 250
#define MAX_PKT_BURST (32)
#define RTE_TEST_RX_DESC_DEFAULT (1024)
#define RTE_TEST_TX_DESC_DEFAULT (1024)
#define RTE_PORT_ALL (~(uint16_t)0x0)
/* how long test would take at full line rate */
#define RTE_TEST_DURATION (2)
/*
* RX and TX Prefetch, Host, and Write-back threshold values should be
* carefully set for optimal performance. Consult the network
* controller's datasheet and supporting DPDK documentation for guidance
* on how these parameters should be set.
*/
#define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */
#define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */
#define RX_WTHRESH 0 /**< Default values of RX write-back threshold reg. */
/*
* These default values are optimized for use with the Intel(R) 82599 10 GbE
* Controller and the DPDK ixgbe PMD. Consider using other values for other
* network controllers and/or network drivers.
*/
#define TX_PTHRESH 32 /**< Default values of TX prefetch threshold reg. */
#define TX_HTHRESH 0 /**< Default values of TX host threshold reg. */
#define TX_WTHRESH 0 /**< Default values of TX write-back threshold reg. */
#define MAX_TRAFFIC_BURST 2048
#define NB_MBUF RTE_MAX( \
(unsigned)(nb_ports*nb_rx_queue*nb_rxd + \
nb_ports*nb_lcores*MAX_PKT_BURST + \
nb_ports*nb_tx_queue*nb_txd + \
nb_lcores*MEMPOOL_CACHE_SIZE + \
nb_ports*MAX_TRAFFIC_BURST), \
(unsigned)8192)
static struct rte_mempool *mbufpool[NB_SOCKETS];
/* ethernet addresses of ports */
static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
static struct rte_eth_conf port_conf = {
.rxmode = {
.mq_mode = ETH_MQ_RX_NONE,
.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
.split_hdr_size = 0,
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
.lpbk_mode = 1, /* enable loopback */
};
static struct rte_eth_rxconf rx_conf = {
.rx_thresh = {
.pthresh = RX_PTHRESH,
.hthresh = RX_HTHRESH,
.wthresh = RX_WTHRESH,
},
.rx_free_thresh = 32,
};
static struct rte_eth_txconf tx_conf = {
.tx_thresh = {
.pthresh = TX_PTHRESH,
.hthresh = TX_HTHRESH,
.wthresh = TX_WTHRESH,
},
.tx_free_thresh = 32, /* Use PMD default values */
.tx_rs_thresh = 32, /* Use PMD default values */
};
enum {
LCORE_INVALID = 0,
LCORE_AVAIL,
LCORE_USED,
};
struct lcore_conf {
uint8_t status;
uint8_t socketid;
uint16_t nb_ports;
uint16_t portlist[RTE_MAX_ETHPORTS];
} __rte_cache_aligned;
struct lcore_conf lcore_conf[RTE_MAX_LCORE];
static uint64_t link_mbps;
enum {
SC_CONTINUOUS = 0,
SC_BURST_POLL_FIRST,
SC_BURST_XMIT_FIRST,
};
static uint32_t sc_flag;
/* Check the link status of all ports in up to 3s, and print them finally */
static void
check_all_ports_link_status(uint16_t port_num, uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 30 /* 3s (30 * 100ms) in total */
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
int ret;
printf("Checking link statuses...\n");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
for (portid = 0; portid < port_num; portid++) {
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get_nowait(portid, &link);
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
portid, rte_strerror(-ret));
continue;
}
/* print link status if flag set */
if (print_flag == 1) {
if (link.link_status) {
printf(
"Port%d Link Up. Speed %u Mbps - %s\n",
portid, link.link_speed,
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex"));
if (link_mbps == 0)
link_mbps = link.link_speed;
} else
printf("Port %d Link Down\n", portid);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1))
print_flag = 1;
}
}
static void
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
static int
init_traffic(struct rte_mempool *mp,
struct rte_mbuf **pkts_burst, uint32_t burst_size)
{
struct rte_ether_hdr pkt_eth_hdr;
struct rte_ipv4_hdr pkt_ipv4_hdr;
struct rte_udp_hdr pkt_udp_hdr;
uint32_t pktlen;
static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF };
static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA };
initialize_eth_header(&pkt_eth_hdr,
(struct rte_ether_addr *)src_mac,
(struct rte_ether_addr *)dst_mac, RTE_ETHER_TYPE_IPV4, 0, 0);
pktlen = initialize_ipv4_header(&pkt_ipv4_hdr,
IPV4_ADDR(10, 0, 0, 1),
IPV4_ADDR(10, 0, 0, 2), 26);
printf("IPv4 pktlen %u\n", pktlen);
pktlen = initialize_udp_header(&pkt_udp_hdr, 0, 0, 18);
printf("UDP pktlen %u\n", pktlen);
return generate_packet_burst(mp, pkts_burst, &pkt_eth_hdr,
0, &pkt_ipv4_hdr, 1,
&pkt_udp_hdr, burst_size,
PACKET_BURST_GEN_PKT_LEN, 1);
}
static int
init_lcores(void)
{
unsigned lcore_id;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
lcore_conf[lcore_id].socketid =
rte_lcore_to_socket_id(lcore_id);
if (rte_lcore_is_enabled(lcore_id) == 0) {
lcore_conf[lcore_id].status = LCORE_INVALID;
continue;
} else
lcore_conf[lcore_id].status = LCORE_AVAIL;
}
return 0;
}
static int
init_mbufpool(unsigned nb_mbuf)
{
int socketid;
unsigned lcore_id;
char s[64];
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
socketid = rte_lcore_to_socket_id(lcore_id);
if (socketid >= NB_SOCKETS) {
rte_exit(EXIT_FAILURE,
"Socket %d of lcore %u is out of range %d\n",
socketid, lcore_id, NB_SOCKETS);
}
if (mbufpool[socketid] == NULL) {
snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
mbufpool[socketid] =
rte_pktmbuf_pool_create(s, nb_mbuf,
MEMPOOL_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE, socketid);
if (mbufpool[socketid] == NULL)
rte_exit(EXIT_FAILURE,
"Cannot init mbuf pool on socket %d\n",
socketid);
else
printf("Allocated mbuf pool on socket %d\n",
socketid);
}
}
return 0;
}
static uint16_t
alloc_lcore(uint16_t socketid)
{
unsigned lcore_id;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (LCORE_AVAIL != lcore_conf[lcore_id].status ||
lcore_conf[lcore_id].socketid != socketid ||
lcore_id == rte_get_master_lcore())
continue;
lcore_conf[lcore_id].status = LCORE_USED;
lcore_conf[lcore_id].nb_ports = 0;
return lcore_id;
}
return (uint16_t)-1;
}
static volatile uint64_t stop;
static uint64_t count;
static uint64_t drop;
static uint64_t idle;
static void
reset_count(void)
{
count = 0;
drop = 0;
idle = 0;
}
static void
stats_display(uint16_t port_id)
{
struct rte_eth_stats stats;
rte_eth_stats_get(port_id, &stats);
printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: "
"%-"PRIu64"\n",
stats.ipackets, stats.imissed, stats.ibytes);
printf(" RX-errors: %-10"PRIu64" RX-nombuf: %-10"PRIu64"\n",
stats.ierrors, stats.rx_nombuf);
printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: "
"%-"PRIu64"\n",
stats.opackets, stats.oerrors, stats.obytes);
}
static void
signal_handler(int signum)
{
/* USR1 signal, stop testing */
if (signum == SIGUSR1) {
printf("Force Stop!\n");
stop = 1;
}
/* USR2 signal, print stats */
if (signum == SIGUSR2)
stats_display(0);
}
struct rte_mbuf **tx_burst;
uint64_t (*do_measure)(struct lcore_conf *conf,
struct rte_mbuf *pkts_burst[],
uint64_t total_pkts);
static uint64_t
measure_rxtx(struct lcore_conf *conf,
struct rte_mbuf *pkts_burst[],
uint64_t total_pkts)
{
unsigned i, portid, nb_rx, nb_tx;
uint64_t prev_tsc, cur_tsc;
prev_tsc = rte_rdtsc();
while (likely(!stop)) {
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
nb_rx = rte_eth_rx_burst(portid, 0,
pkts_burst, MAX_PKT_BURST);
if (unlikely(nb_rx == 0)) {
idle++;
continue;
}
count += nb_rx;
nb_tx = rte_eth_tx_burst(portid, 0, pkts_burst, nb_rx);
if (unlikely(nb_tx < nb_rx)) {
drop += (nb_rx - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_rx);
}
}
if (unlikely(count >= total_pkts))
break;
}
cur_tsc = rte_rdtsc();
return cur_tsc - prev_tsc;
}
static uint64_t
measure_rxonly(struct lcore_conf *conf,
struct rte_mbuf *pkts_burst[],
uint64_t total_pkts)
{
unsigned i, portid, nb_rx, nb_tx;
uint64_t diff_tsc, cur_tsc;
diff_tsc = 0;
while (likely(!stop)) {
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
cur_tsc = rte_rdtsc();
nb_rx = rte_eth_rx_burst(portid, 0,
pkts_burst, MAX_PKT_BURST);
if (unlikely(nb_rx == 0)) {
idle++;
continue;
}
diff_tsc += rte_rdtsc() - cur_tsc;
count += nb_rx;
nb_tx = rte_eth_tx_burst(portid, 0, pkts_burst, nb_rx);
if (unlikely(nb_tx < nb_rx)) {
drop += (nb_rx - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_rx);
}
}
if (unlikely(count >= total_pkts))
break;
}
return diff_tsc;
}
static uint64_t
measure_txonly(struct lcore_conf *conf,
struct rte_mbuf *pkts_burst[],
uint64_t total_pkts)
{
unsigned i, portid, nb_rx, nb_tx;
uint64_t diff_tsc, cur_tsc;
printf("do tx measure\n");
diff_tsc = 0;
while (likely(!stop)) {
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
nb_rx = rte_eth_rx_burst(portid, 0,
pkts_burst, MAX_PKT_BURST);
if (unlikely(nb_rx == 0)) {
idle++;
continue;
}
count += nb_rx;
cur_tsc = rte_rdtsc();
nb_tx = rte_eth_tx_burst(portid, 0, pkts_burst, nb_rx);
if (unlikely(nb_tx < nb_rx)) {
drop += (nb_rx - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_rx);
}
diff_tsc += rte_rdtsc() - cur_tsc;
}
if (unlikely(count >= total_pkts))
break;
}
return diff_tsc;
}
/* main processing loop */
static int
main_loop(__rte_unused void *args)
{
#define PACKET_SIZE 64
#define FRAME_GAP 12
#define MAC_PREAMBLE 8
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
unsigned i, portid, nb_rx = 0, nb_tx = 0;
struct lcore_conf *conf;
int pkt_per_port;
uint64_t diff_tsc;
uint64_t packets_per_second, total_packets;
lcore_id = rte_lcore_id();
conf = &lcore_conf[lcore_id];
if (conf->status != LCORE_USED)
return 0;
pkt_per_port = MAX_TRAFFIC_BURST;
int idx = 0;
for (i = 0; i < conf->nb_ports; i++) {
int num = pkt_per_port;
portid = conf->portlist[i];
printf("inject %d packet to port %d\n", num, portid);
while (num) {
nb_tx = RTE_MIN(MAX_PKT_BURST, num);
nb_tx = rte_eth_tx_burst(portid, 0,
&tx_burst[idx], nb_tx);
num -= nb_tx;
idx += nb_tx;
}
}
printf("Total packets inject to prime ports = %u\n", idx);
packets_per_second = (link_mbps * 1000 * 1000) /
((PACKET_SIZE + FRAME_GAP + MAC_PREAMBLE) * CHAR_BIT);
printf("Each port will do %"PRIu64" packets per second\n",
packets_per_second);
total_packets = RTE_TEST_DURATION * conf->nb_ports * packets_per_second;
printf("Test will stop after at least %"PRIu64" packets received\n",
+ total_packets);
diff_tsc = do_measure(conf, pkts_burst, total_packets);
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
int nb_free = 0;
uint64_t timeout = 10000;
do { /* dry out */
nb_rx = rte_eth_rx_burst(portid, 0,
pkts_burst, MAX_PKT_BURST);
nb_tx = 0;
while (nb_tx < nb_rx)
rte_pktmbuf_free(pkts_burst[nb_tx++]);
nb_free += nb_rx;
if (unlikely(nb_rx == 0))
timeout--;
} while (nb_free != pkt_per_port && timeout != 0);
printf("free %d (expected %d) mbuf left in port %u\n", nb_free,
pkt_per_port, portid);
}
if (count == 0)
return -1;
printf("%"PRIu64" packet, %"PRIu64" drop, %"PRIu64" idle\n",
count, drop, idle);
printf("Result: %"PRIu64" cycles per packet\n", diff_tsc / count);
return 0;
}
static rte_atomic64_t start;
static inline int
poll_burst(void *args)
{
#define MAX_IDLE (10000)
unsigned lcore_id;
struct rte_mbuf **pkts_burst;
uint64_t diff_tsc, cur_tsc;
uint16_t next[RTE_MAX_ETHPORTS];
struct lcore_conf *conf;
uint32_t pkt_per_port = *((uint32_t *)args);
unsigned i, portid, nb_rx = 0;
uint64_t total;
uint64_t timeout = MAX_IDLE;
int num[RTE_MAX_ETHPORTS];
lcore_id = rte_lcore_id();
conf = &lcore_conf[lcore_id];
if (conf->status != LCORE_USED)
return 0;
total = pkt_per_port * conf->nb_ports;
printf("start to receive total expect %"PRIu64"\n", total);
pkts_burst = (struct rte_mbuf **)
rte_calloc_socket("poll_burst",
total, sizeof(void *),
RTE_CACHE_LINE_SIZE, conf->socketid);
if (!pkts_burst)
return -1;
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
next[portid] = i * pkt_per_port;
num[portid] = pkt_per_port;
}
while (!rte_atomic64_read(&start))
;
cur_tsc = rte_rdtsc();
while (total) {
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
nb_rx = rte_eth_rx_burst(portid, 0,
&pkts_burst[next[portid]],
RTE_MIN(MAX_PKT_BURST, num[portid]));
if (unlikely(nb_rx == 0)) {
timeout--;
if (unlikely(timeout == 0))
goto timeout;
continue;
}
next[portid] += nb_rx;
num[portid] -= nb_rx;
total -= nb_rx;
}
}
timeout:
diff_tsc = rte_rdtsc() - cur_tsc;
printf("%"PRIu64" packets lost, IDLE %"PRIu64" times\n",
total, MAX_IDLE - timeout);
/* clean up */
total = pkt_per_port * conf->nb_ports - total;
for (i = 0; i < total; i++)
rte_pktmbuf_free(pkts_burst[i]);
rte_free(pkts_burst);
if (total > 0)
return diff_tsc / total;
else
return -1;
}
static int
exec_burst(uint32_t flags, int lcore)
{
unsigned i, portid, nb_tx = 0;
struct lcore_conf *conf;
uint32_t pkt_per_port;
int num, idx = 0;
int diff_tsc;
conf = &lcore_conf[lcore];
pkt_per_port = MAX_TRAFFIC_BURST;
num = pkt_per_port * conf->nb_ports;
rte_atomic64_init(&start);
/* start polling thread, but not actually poll yet */
rte_eal_remote_launch(poll_burst,
(void *)&pkt_per_port, lcore);
/* Only when polling first */
if (flags == SC_BURST_POLL_FIRST)
rte_atomic64_set(&start, 1);
/* start xmit */
while (num) {
nb_tx = RTE_MIN(MAX_PKT_BURST, num);
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
nb_tx = rte_eth_tx_burst(portid, 0,
&tx_burst[idx], nb_tx);
idx += nb_tx;
num -= nb_tx;
}
}
sleep(5);
/* only when polling second */
if (flags == SC_BURST_XMIT_FIRST)
rte_atomic64_set(&start, 1);
/* wait for polling finished */
diff_tsc = rte_eal_wait_lcore(lcore);
if (diff_tsc < 0) {
printf("exec_burst: Failed to measure cycles per packet\n");
return -1;
}
printf("Result: %d cycles per packet\n", diff_tsc);
return 0;
}
static int
test_pmd_perf(void)
{
uint16_t nb_ports, num, nb_lcores, slave_id = (uint16_t)-1;
uint16_t nb_rxd = MAX_TRAFFIC_BURST;
uint16_t nb_txd = MAX_TRAFFIC_BURST;
uint16_t portid;
uint16_t nb_rx_queue = 1, nb_tx_queue = 1;
int socketid = -1;
int ret;
printf("Start PMD RXTX cycles cost test.\n");
signal(SIGUSR1, signal_handler);
signal(SIGUSR2, signal_handler);
nb_ports = rte_eth_dev_count_avail();
if (nb_ports < NB_ETHPORTS_USED) {
printf("At least %u port(s) used for perf. test\n",
NB_ETHPORTS_USED);
return -1;
}
nb_lcores = rte_lcore_count();
memset(lcore_conf, 0, sizeof(lcore_conf));
init_lcores();
init_mbufpool(NB_MBUF);
if (sc_flag == SC_CONTINUOUS) {
nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
nb_txd = RTE_TEST_TX_DESC_DEFAULT;
}
printf("CONFIG RXD=%d TXD=%d\n", nb_rxd, nb_txd);
reset_count();
num = 0;
RTE_ETH_FOREACH_DEV(portid) {
if (socketid == -1) {
socketid = rte_eth_dev_socket_id(portid);
slave_id = alloc_lcore(socketid);
if (slave_id == (uint16_t)-1) {
printf("No avail lcore to run test\n");
return -1;
}
printf("Performance test runs on lcore %u socket %u\n",
slave_id, socketid);
}
if (socketid != rte_eth_dev_socket_id(portid)) {
printf("Skip port %d\n", portid);
continue;
}
/* port configure */
ret = rte_eth_dev_configure(portid, nb_rx_queue,
nb_tx_queue, &port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot configure device: err=%d, port=%d\n",
ret, portid);
ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot get mac address: err=%d, port=%d\n",
ret, portid);
printf("Port %u ", portid);
print_ethaddr("Address:", &ports_eth_addr[portid]);
printf("\n");
/* tx queue setup */
ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,
socketid, &tx_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_tx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
/* rx queue steup */
ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
socketid, &rx_conf,
mbufpool[socketid]);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d,"
"port=%d\n", ret, portid);
/* Start device */
stop = 0;
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_dev_start: err=%d, port=%d\n",
ret, portid);
/* always eanble promiscuous */
ret = rte_eth_promiscuous_enable(portid);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"rte_eth_promiscuous_enable: err=%s, port=%d\n",
rte_strerror(-ret), portid);
lcore_conf[slave_id].portlist[num++] = portid;
lcore_conf[slave_id].nb_ports++;
}
check_all_ports_link_status(nb_ports, RTE_PORT_ALL);
if (tx_burst == NULL) {
tx_burst = (struct rte_mbuf **)
rte_calloc_socket("tx_buff",
MAX_TRAFFIC_BURST * nb_ports,
sizeof(void *),
RTE_CACHE_LINE_SIZE, socketid);
if (!tx_burst)
return -1;
}
init_traffic(mbufpool[socketid],
tx_burst, MAX_TRAFFIC_BURST * nb_ports);
printf("Generate %d packets @socket %d\n",
MAX_TRAFFIC_BURST * nb_ports, socketid);
if (sc_flag == SC_CONTINUOUS) {
/* do both rxtx by default */
if (NULL == do_measure)
do_measure = measure_rxtx;
rte_eal_remote_launch(main_loop, NULL, slave_id);
if (rte_eal_wait_lcore(slave_id) < 0)
return -1;
} else if (sc_flag == SC_BURST_POLL_FIRST ||
sc_flag == SC_BURST_XMIT_FIRST)
if (exec_burst(sc_flag, slave_id) < 0)
return -1;
/* port tear down */
RTE_ETH_FOREACH_DEV(portid) {
if (socketid != rte_eth_dev_socket_id(portid))
continue;
rte_eth_dev_stop(portid);
}
return 0;
}
int
test_set_rxtx_conf(cmdline_fixed_string_t mode)
{
printf("mode switch to %s\n", mode);
if (!strcmp(mode, "vector")) {
/* vector rx, tx */
tx_conf.tx_rs_thresh = 32;
tx_conf.tx_free_thresh = 32;
return 0;
} else if (!strcmp(mode, "scalar")) {
/* bulk alloc rx, full-featured tx */
tx_conf.tx_rs_thresh = 32;
tx_conf.tx_free_thresh = 32;
port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_CHECKSUM;
return 0;
} else if (!strcmp(mode, "hybrid")) {
/* bulk alloc rx, vector tx
* when vec macro not define,
* using the same rx/tx as scalar
*/
tx_conf.tx_rs_thresh = 32;
tx_conf.tx_free_thresh = 32;
port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_CHECKSUM;
return 0;
} else if (!strcmp(mode, "full")) {
/* full feature rx,tx pair */
tx_conf.tx_rs_thresh = 32;
tx_conf.tx_free_thresh = 32;
port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SCATTER;
return 0;
}
return -1;
}
int
test_set_rxtx_anchor(cmdline_fixed_string_t type)
{
printf("type switch to %s\n", type);
if (!strcmp(type, "rxtx")) {
do_measure = measure_rxtx;
return 0;
} else if (!strcmp(type, "rxonly")) {
do_measure = measure_rxonly;
return 0;
} else if (!strcmp(type, "txonly")) {
do_measure = measure_txonly;
return 0;
}
return -1;
}
int
test_set_rxtx_sc(cmdline_fixed_string_t type)
{
printf("stream control switch to %s\n", type);
if (!strcmp(type, "continuous")) {
sc_flag = SC_CONTINUOUS;
return 0;
} else if (!strcmp(type, "poll_before_xmit")) {
sc_flag = SC_BURST_POLL_FIRST;
return 0;
} else if (!strcmp(type, "poll_after_xmit")) {
sc_flag = SC_BURST_XMIT_FIRST;
return 0;
}
return -1;
}
REGISTER_TEST_COMMAND(pmd_perf_autotest, test_pmd_perf);