numam-dpdk/drivers/net/i40e/i40e_ethdev_vf.c
Xueming Li 35d4f17b3d devargs: add common key definition
Add common devargs key definition for "bus", "class" and "driver".

Signed-off-by: Xueming Li <xuemingl@nvidia.com>
Acked-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
2021-07-05 16:33:18 +02:00

3016 lines
81 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_memory.h>
#include <rte_eal.h>
#include <rte_alarm.h>
#include <rte_ether.h>
#include <ethdev_driver.h>
#include <ethdev_pci.h>
#include <rte_malloc.h>
#include <rte_dev.h>
#include "i40e_logs.h"
#include "base/i40e_prototype.h"
#include "base/i40e_adminq_cmd.h"
#include "base/i40e_type.h"
#include "i40e_rxtx.h"
#include "i40e_ethdev.h"
#include "i40e_pf.h"
/* busy wait delay in msec */
#define I40EVF_BUSY_WAIT_DELAY 10
#define I40EVF_BUSY_WAIT_COUNT 50
#define MAX_RESET_WAIT_CNT 20
#define I40EVF_ALARM_INTERVAL 50000 /* us */
struct i40evf_arq_msg_info {
enum virtchnl_ops ops;
enum i40e_status_code result;
uint16_t buf_len;
uint16_t msg_len;
uint8_t *msg;
};
struct vf_cmd_info {
enum virtchnl_ops ops;
uint8_t *in_args;
uint32_t in_args_size;
uint8_t *out_buffer;
/* Input & output type. pass in buffer size and pass out
* actual return result
*/
uint32_t out_size;
};
enum i40evf_aq_result {
I40EVF_MSG_ERR = -1, /* Meet error when accessing admin queue */
I40EVF_MSG_NON, /* Read nothing from admin queue */
I40EVF_MSG_SYS, /* Read system msg from admin queue */
I40EVF_MSG_CMD, /* Read async command result */
};
static int i40evf_dev_configure(struct rte_eth_dev *dev);
static int i40evf_dev_start(struct rte_eth_dev *dev);
static int i40evf_dev_stop(struct rte_eth_dev *dev);
static int i40evf_dev_info_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int i40evf_dev_link_update(struct rte_eth_dev *dev,
int wait_to_complete);
static int i40evf_dev_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats);
static int i40evf_dev_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned n);
static int i40evf_dev_xstats_get_names(struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
unsigned limit);
static int i40evf_dev_xstats_reset(struct rte_eth_dev *dev);
static int i40evf_vlan_filter_set(struct rte_eth_dev *dev,
uint16_t vlan_id, int on);
static int i40evf_vlan_offload_set(struct rte_eth_dev *dev, int mask);
static int i40evf_dev_close(struct rte_eth_dev *dev);
static int i40evf_dev_reset(struct rte_eth_dev *dev);
static int i40evf_check_vf_reset_done(struct rte_eth_dev *dev);
static int i40evf_dev_promiscuous_enable(struct rte_eth_dev *dev);
static int i40evf_dev_promiscuous_disable(struct rte_eth_dev *dev);
static int i40evf_dev_allmulticast_enable(struct rte_eth_dev *dev);
static int i40evf_dev_allmulticast_disable(struct rte_eth_dev *dev);
static int i40evf_init_vlan(struct rte_eth_dev *dev);
static int i40evf_dev_rx_queue_start(struct rte_eth_dev *dev,
uint16_t rx_queue_id);
static int i40evf_dev_rx_queue_stop(struct rte_eth_dev *dev,
uint16_t rx_queue_id);
static int i40evf_dev_tx_queue_start(struct rte_eth_dev *dev,
uint16_t tx_queue_id);
static int i40evf_dev_tx_queue_stop(struct rte_eth_dev *dev,
uint16_t tx_queue_id);
static int i40evf_add_del_eth_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *addr,
bool add, uint8_t type);
static int i40evf_add_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *addr,
uint32_t index,
uint32_t pool);
static void i40evf_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
static int i40evf_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int i40evf_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int i40evf_config_rss(struct i40e_vf *vf);
static int i40evf_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int i40evf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf);
static int i40evf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int i40evf_set_default_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr);
static int
i40evf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
static int
i40evf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
static void i40evf_handle_pf_event(struct rte_eth_dev *dev,
uint8_t *msg,
uint16_t msglen);
static int
i40evf_add_del_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr, bool add);
static int
i40evf_set_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr);
static void
i40evf_dev_alarm_handler(void *param);
/* Default hash key buffer for RSS */
static uint32_t rss_key_default[I40E_VFQF_HKEY_MAX_INDEX + 1];
struct rte_i40evf_xstats_name_off {
char name[RTE_ETH_XSTATS_NAME_SIZE];
unsigned offset;
};
static const struct rte_i40evf_xstats_name_off rte_i40evf_stats_strings[] = {
{"rx_bytes", offsetof(struct i40e_eth_stats, rx_bytes)},
{"rx_unicast_packets", offsetof(struct i40e_eth_stats, rx_unicast)},
{"rx_multicast_packets", offsetof(struct i40e_eth_stats, rx_multicast)},
{"rx_broadcast_packets", offsetof(struct i40e_eth_stats, rx_broadcast)},
{"rx_dropped_packets", offsetof(struct i40e_eth_stats, rx_discards)},
{"rx_unknown_protocol_packets", offsetof(struct i40e_eth_stats,
rx_unknown_protocol)},
{"tx_bytes", offsetof(struct i40e_eth_stats, tx_bytes)},
{"tx_unicast_packets", offsetof(struct i40e_eth_stats, tx_unicast)},
{"tx_multicast_packets", offsetof(struct i40e_eth_stats, tx_multicast)},
{"tx_broadcast_packets", offsetof(struct i40e_eth_stats, tx_broadcast)},
{"tx_dropped_packets", offsetof(struct i40e_eth_stats, tx_discards)},
{"tx_error_packets", offsetof(struct i40e_eth_stats, tx_errors)},
};
#define I40EVF_NB_XSTATS (sizeof(rte_i40evf_stats_strings) / \
sizeof(rte_i40evf_stats_strings[0]))
static const struct eth_dev_ops i40evf_eth_dev_ops = {
.dev_configure = i40evf_dev_configure,
.dev_start = i40evf_dev_start,
.dev_stop = i40evf_dev_stop,
.promiscuous_enable = i40evf_dev_promiscuous_enable,
.promiscuous_disable = i40evf_dev_promiscuous_disable,
.allmulticast_enable = i40evf_dev_allmulticast_enable,
.allmulticast_disable = i40evf_dev_allmulticast_disable,
.link_update = i40evf_dev_link_update,
.stats_get = i40evf_dev_stats_get,
.stats_reset = i40evf_dev_xstats_reset,
.xstats_get = i40evf_dev_xstats_get,
.xstats_get_names = i40evf_dev_xstats_get_names,
.xstats_reset = i40evf_dev_xstats_reset,
.dev_close = i40evf_dev_close,
.dev_reset = i40evf_dev_reset,
.dev_infos_get = i40evf_dev_info_get,
.dev_supported_ptypes_get = i40e_dev_supported_ptypes_get,
.vlan_filter_set = i40evf_vlan_filter_set,
.vlan_offload_set = i40evf_vlan_offload_set,
.rx_queue_start = i40evf_dev_rx_queue_start,
.rx_queue_stop = i40evf_dev_rx_queue_stop,
.tx_queue_start = i40evf_dev_tx_queue_start,
.tx_queue_stop = i40evf_dev_tx_queue_stop,
.rx_queue_setup = i40e_dev_rx_queue_setup,
.rx_queue_release = i40e_dev_rx_queue_release,
.rx_queue_intr_enable = i40evf_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = i40evf_dev_rx_queue_intr_disable,
.tx_queue_setup = i40e_dev_tx_queue_setup,
.tx_queue_release = i40e_dev_tx_queue_release,
.rxq_info_get = i40e_rxq_info_get,
.txq_info_get = i40e_txq_info_get,
.mac_addr_add = i40evf_add_mac_addr,
.mac_addr_remove = i40evf_del_mac_addr,
.set_mc_addr_list = i40evf_set_mc_addr_list,
.reta_update = i40evf_dev_rss_reta_update,
.reta_query = i40evf_dev_rss_reta_query,
.rss_hash_update = i40evf_dev_rss_hash_update,
.rss_hash_conf_get = i40evf_dev_rss_hash_conf_get,
.mtu_set = i40evf_dev_mtu_set,
.mac_addr_set = i40evf_set_default_mac_addr,
.tx_done_cleanup = i40e_tx_done_cleanup,
.get_monitor_addr = i40e_get_monitor_addr
};
/*
* Read data in admin queue to get msg from pf driver
*/
static enum i40evf_aq_result
i40evf_read_pfmsg(struct rte_eth_dev *dev, struct i40evf_arq_msg_info *data)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_arq_event_info event;
enum virtchnl_ops opcode;
enum i40e_status_code retval;
int ret;
enum i40evf_aq_result result = I40EVF_MSG_NON;
event.buf_len = data->buf_len;
event.msg_buf = data->msg;
ret = i40e_clean_arq_element(hw, &event, NULL);
/* Can't read any msg from adminQ */
if (ret) {
if (ret != I40E_ERR_ADMIN_QUEUE_NO_WORK)
result = I40EVF_MSG_ERR;
return result;
}
opcode = (enum virtchnl_ops)rte_le_to_cpu_32(event.desc.cookie_high);
retval = (enum i40e_status_code)rte_le_to_cpu_32(event.desc.cookie_low);
/* pf sys event */
if (opcode == VIRTCHNL_OP_EVENT) {
struct virtchnl_pf_event *vpe =
(struct virtchnl_pf_event *)event.msg_buf;
result = I40EVF_MSG_SYS;
switch (vpe->event) {
case VIRTCHNL_EVENT_LINK_CHANGE:
vf->link_up =
vpe->event_data.link_event.link_status;
vf->link_speed =
vpe->event_data.link_event.link_speed;
vf->pend_msg |= PFMSG_LINK_CHANGE;
PMD_DRV_LOG(INFO, "Link status update:%s",
vf->link_up ? "up" : "down");
break;
case VIRTCHNL_EVENT_RESET_IMPENDING:
vf->vf_reset = true;
vf->pend_msg |= PFMSG_RESET_IMPENDING;
PMD_DRV_LOG(INFO, "VF is resetting");
break;
case VIRTCHNL_EVENT_PF_DRIVER_CLOSE:
vf->dev_closed = true;
vf->pend_msg |= PFMSG_DRIVER_CLOSE;
PMD_DRV_LOG(INFO, "PF driver closed");
break;
default:
PMD_DRV_LOG(ERR, "%s: Unknown event %d from pf",
__func__, vpe->event);
}
} else {
/* async reply msg on command issued by vf previously */
result = I40EVF_MSG_CMD;
/* Actual data length read from PF */
data->msg_len = event.msg_len;
}
data->result = retval;
data->ops = opcode;
return result;
}
/**
* clear current command. Only call in case execute
* _atomic_set_cmd successfully.
*/
static inline void
_clear_cmd(struct i40e_vf *vf)
{
rte_wmb();
vf->pend_cmd = VIRTCHNL_OP_UNKNOWN;
}
/*
* Check there is pending cmd in execution. If none, set new command.
*/
static inline int
_atomic_set_cmd(struct i40e_vf *vf, enum virtchnl_ops ops)
{
int ret = rte_atomic32_cmpset(&vf->pend_cmd,
VIRTCHNL_OP_UNKNOWN, ops);
if (!ret)
PMD_DRV_LOG(ERR, "There is incomplete cmd %d", vf->pend_cmd);
return !ret;
}
#define MAX_TRY_TIMES 200
#define ASQ_DELAY_MS 10
static int
_i40evf_execute_vf_cmd(struct rte_eth_dev *dev, struct vf_cmd_info *args)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40evf_arq_msg_info info;
enum i40evf_aq_result ret;
int err, i = 0;
if (_atomic_set_cmd(vf, args->ops))
return -1;
info.msg = args->out_buffer;
info.buf_len = args->out_size;
info.ops = VIRTCHNL_OP_UNKNOWN;
info.result = I40E_SUCCESS;
err = i40e_aq_send_msg_to_pf(hw, args->ops, I40E_SUCCESS,
args->in_args, args->in_args_size, NULL);
if (err) {
PMD_DRV_LOG(ERR, "fail to send cmd %d", args->ops);
_clear_cmd(vf);
return err;
}
switch (args->ops) {
case VIRTCHNL_OP_RESET_VF:
/*no need to process in this function */
err = 0;
break;
case VIRTCHNL_OP_VERSION:
case VIRTCHNL_OP_GET_VF_RESOURCES:
/* for init adminq commands, need to poll the response */
err = -1;
do {
ret = i40evf_read_pfmsg(dev, &info);
vf->cmd_retval = info.result;
if (ret == I40EVF_MSG_CMD) {
err = 0;
break;
} else if (ret == I40EVF_MSG_ERR)
break;
rte_delay_ms(ASQ_DELAY_MS);
/* If don't read msg or read sys event, continue */
} while (i++ < MAX_TRY_TIMES);
_clear_cmd(vf);
break;
case VIRTCHNL_OP_REQUEST_QUEUES:
/**
* ignore async reply, only wait for system message,
* vf_reset = true if get VIRTCHNL_EVENT_RESET_IMPENDING,
* if not, means request queues failed.
*/
err = -1;
do {
ret = i40evf_read_pfmsg(dev, &info);
vf->cmd_retval = info.result;
if (ret == I40EVF_MSG_SYS && vf->vf_reset) {
err = 0;
break;
} else if (ret == I40EVF_MSG_ERR ||
ret == I40EVF_MSG_CMD) {
break;
}
rte_delay_ms(ASQ_DELAY_MS);
/* If don't read msg or read sys event, continue */
} while (i++ < MAX_TRY_TIMES);
_clear_cmd(vf);
break;
default:
/* for other adminq in running time, waiting the cmd done flag */
err = -1;
do {
if (vf->pend_cmd == VIRTCHNL_OP_UNKNOWN) {
err = 0;
break;
}
rte_delay_ms(ASQ_DELAY_MS);
/* If don't read msg or read sys event, continue */
} while (i++ < MAX_TRY_TIMES);
/* If there's no response is received, clear command */
if (i >= MAX_TRY_TIMES) {
PMD_DRV_LOG(WARNING, "No response for %d", args->ops);
_clear_cmd(vf);
}
break;
}
return err | vf->cmd_retval;
}
static int
i40evf_execute_vf_cmd(struct rte_eth_dev *dev, struct vf_cmd_info *args)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int err;
while (!rte_spinlock_trylock(&vf->cmd_send_lock))
rte_delay_us_sleep(50);
err = _i40evf_execute_vf_cmd(dev, args);
rte_spinlock_unlock(&vf->cmd_send_lock);
return err;
}
/*
* Check API version with sync wait until version read or fail from admin queue
*/
static int
i40evf_check_api_version(struct rte_eth_dev *dev)
{
struct virtchnl_version_info version, *pver;
int err;
struct vf_cmd_info args;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
version.major = VIRTCHNL_VERSION_MAJOR;
version.minor = VIRTCHNL_VERSION_MINOR;
args.ops = VIRTCHNL_OP_VERSION;
args.in_args = (uint8_t *)&version;
args.in_args_size = sizeof(version);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err) {
PMD_INIT_LOG(ERR, "fail to execute command OP_VERSION");
return err;
}
pver = (struct virtchnl_version_info *)args.out_buffer;
vf->version_major = pver->major;
vf->version_minor = pver->minor;
if ((vf->version_major == VIRTCHNL_VERSION_MAJOR) &&
(vf->version_minor <= VIRTCHNL_VERSION_MINOR))
PMD_DRV_LOG(INFO, "Peer is Linux PF host");
else {
PMD_INIT_LOG(ERR, "PF/VF API version mismatch:(%u.%u)-(%u.%u)",
vf->version_major, vf->version_minor,
VIRTCHNL_VERSION_MAJOR,
VIRTCHNL_VERSION_MINOR);
return -1;
}
return 0;
}
static int
i40evf_get_vf_resource(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int err;
struct vf_cmd_info args;
uint32_t caps, len;
args.ops = VIRTCHNL_OP_GET_VF_RESOURCES;
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
if (PF_IS_V11(vf)) {
caps = VIRTCHNL_VF_OFFLOAD_L2 |
VIRTCHNL_VF_OFFLOAD_RSS_AQ |
VIRTCHNL_VF_OFFLOAD_RSS_REG |
VIRTCHNL_VF_OFFLOAD_VLAN |
VIRTCHNL_VF_OFFLOAD_RX_POLLING |
VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
args.in_args = (uint8_t *)&caps;
args.in_args_size = sizeof(caps);
} else {
args.in_args = NULL;
args.in_args_size = 0;
}
err = i40evf_execute_vf_cmd(dev, &args);
if (err) {
PMD_DRV_LOG(ERR, "fail to execute command OP_GET_VF_RESOURCE");
return err;
}
len = sizeof(struct virtchnl_vf_resource) +
I40E_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource);
rte_memcpy(vf->vf_res, args.out_buffer,
RTE_MIN(args.out_size, len));
i40e_vf_parse_hw_config(hw, vf->vf_res);
return 0;
}
static int
i40evf_config_promisc(struct rte_eth_dev *dev,
bool enable_unicast,
bool enable_multicast)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int err;
struct vf_cmd_info args;
struct virtchnl_promisc_info promisc;
promisc.flags = 0;
promisc.vsi_id = vf->vsi_res->vsi_id;
if (enable_unicast)
promisc.flags |= FLAG_VF_UNICAST_PROMISC;
if (enable_multicast)
promisc.flags |= FLAG_VF_MULTICAST_PROMISC;
args.ops = VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE;
args.in_args = (uint8_t *)&promisc;
args.in_args_size = sizeof(promisc);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err) {
PMD_DRV_LOG(ERR, "fail to execute command "
"CONFIG_PROMISCUOUS_MODE");
if (err == I40E_NOT_SUPPORTED)
return -ENOTSUP;
return -EAGAIN;
}
vf->promisc_unicast_enabled = enable_unicast;
vf->promisc_multicast_enabled = enable_multicast;
return 0;
}
static int
i40evf_enable_vlan_strip(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct vf_cmd_info args;
int ret;
memset(&args, 0, sizeof(args));
args.ops = VIRTCHNL_OP_ENABLE_VLAN_STRIPPING;
args.in_args = NULL;
args.in_args_size = 0;
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
ret = i40evf_execute_vf_cmd(dev, &args);
if (ret)
PMD_DRV_LOG(ERR, "Failed to execute command of "
"VIRTCHNL_OP_ENABLE_VLAN_STRIPPING");
return ret;
}
static int
i40evf_disable_vlan_strip(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct vf_cmd_info args;
int ret;
memset(&args, 0, sizeof(args));
args.ops = VIRTCHNL_OP_DISABLE_VLAN_STRIPPING;
args.in_args = NULL;
args.in_args_size = 0;
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
ret = i40evf_execute_vf_cmd(dev, &args);
if (ret)
PMD_DRV_LOG(ERR, "Failed to execute command of "
"VIRTCHNL_OP_DISABLE_VLAN_STRIPPING");
return ret;
}
static void
i40evf_fill_virtchnl_vsi_txq_info(struct virtchnl_txq_info *txq_info,
uint16_t vsi_id,
uint16_t queue_id,
uint16_t nb_txq,
struct i40e_tx_queue *txq)
{
txq_info->vsi_id = vsi_id;
txq_info->queue_id = queue_id;
if (queue_id < nb_txq && txq) {
txq_info->ring_len = txq->nb_tx_desc;
txq_info->dma_ring_addr = txq->tx_ring_phys_addr;
}
}
static void
i40evf_fill_virtchnl_vsi_rxq_info(struct virtchnl_rxq_info *rxq_info,
uint16_t vsi_id,
uint16_t queue_id,
uint16_t nb_rxq,
uint32_t max_pkt_size,
struct i40e_rx_queue *rxq)
{
rxq_info->vsi_id = vsi_id;
rxq_info->queue_id = queue_id;
rxq_info->max_pkt_size = max_pkt_size;
if (queue_id < nb_rxq && rxq) {
rxq_info->ring_len = rxq->nb_rx_desc;
rxq_info->dma_ring_addr = rxq->rx_ring_phys_addr;
rxq_info->databuffer_size =
(rte_pktmbuf_data_room_size(rxq->mp) -
RTE_PKTMBUF_HEADROOM);
}
}
static int
i40evf_configure_vsi_queues(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_rx_queue **rxq =
(struct i40e_rx_queue **)dev->data->rx_queues;
struct i40e_tx_queue **txq =
(struct i40e_tx_queue **)dev->data->tx_queues;
struct virtchnl_vsi_queue_config_info *vc_vqci;
struct virtchnl_queue_pair_info *vc_qpi;
struct vf_cmd_info args;
uint16_t i, nb_qp = vf->num_queue_pairs;
const uint32_t size =
I40E_VIRTCHNL_CONFIG_VSI_QUEUES_SIZE(vc_vqci, nb_qp);
uint8_t buff[size];
int ret;
memset(buff, 0, sizeof(buff));
vc_vqci = (struct virtchnl_vsi_queue_config_info *)buff;
vc_vqci->vsi_id = vf->vsi_res->vsi_id;
vc_vqci->num_queue_pairs = nb_qp;
for (i = 0, vc_qpi = vc_vqci->qpair; i < nb_qp; i++, vc_qpi++) {
i40evf_fill_virtchnl_vsi_txq_info(&vc_qpi->txq,
vc_vqci->vsi_id, i, dev->data->nb_tx_queues,
txq ? txq[i] : NULL);
i40evf_fill_virtchnl_vsi_rxq_info(&vc_qpi->rxq,
vc_vqci->vsi_id, i, dev->data->nb_rx_queues,
vf->max_pkt_len, rxq ? rxq[i] : NULL);
}
memset(&args, 0, sizeof(args));
args.ops = VIRTCHNL_OP_CONFIG_VSI_QUEUES;
args.in_args = (uint8_t *)vc_vqci;
args.in_args_size = size;
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
ret = i40evf_execute_vf_cmd(dev, &args);
if (ret)
PMD_DRV_LOG(ERR, "Failed to execute command of "
"VIRTCHNL_OP_CONFIG_VSI_QUEUES");
return ret;
}
static int
i40evf_config_irq_map(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct vf_cmd_info args;
uint8_t *cmd_buffer = NULL;
struct virtchnl_irq_map_info *map_info;
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t vec, cmd_buffer_size, max_vectors, nb_msix, msix_base, i;
uint16_t rxq_map[vf->vf_res->max_vectors];
int err;
memset(rxq_map, 0, sizeof(rxq_map));
if (dev->data->dev_conf.intr_conf.rxq != 0 &&
rte_intr_allow_others(intr_handle)) {
msix_base = I40E_RX_VEC_START;
/* For interrupt mode, available vector id is from 1. */
max_vectors = vf->vf_res->max_vectors - 1;
nb_msix = RTE_MIN(max_vectors, intr_handle->nb_efd);
vec = msix_base;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq_map[vec] |= 1 << i;
intr_handle->intr_vec[i] = vec++;
if (vec >= vf->vf_res->max_vectors)
vec = msix_base;
}
} else {
msix_base = I40E_MISC_VEC_ID;
nb_msix = 1;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq_map[msix_base] |= 1 << i;
if (rte_intr_dp_is_en(intr_handle))
intr_handle->intr_vec[i] = msix_base;
}
}
cmd_buffer_size = sizeof(struct virtchnl_irq_map_info) +
sizeof(struct virtchnl_vector_map) * nb_msix;
cmd_buffer = rte_zmalloc("i40e", cmd_buffer_size, 0);
if (!cmd_buffer) {
PMD_DRV_LOG(ERR, "Failed to allocate memory");
return I40E_ERR_NO_MEMORY;
}
map_info = (struct virtchnl_irq_map_info *)cmd_buffer;
map_info->num_vectors = nb_msix;
for (i = 0; i < nb_msix; i++) {
map_info->vecmap[i].rxitr_idx = I40E_ITR_INDEX_DEFAULT;
map_info->vecmap[i].vsi_id = vf->vsi_res->vsi_id;
map_info->vecmap[i].vector_id = msix_base + i;
map_info->vecmap[i].txq_map = 0;
map_info->vecmap[i].rxq_map = rxq_map[msix_base + i];
}
args.ops = VIRTCHNL_OP_CONFIG_IRQ_MAP;
args.in_args = (u8 *)cmd_buffer;
args.in_args_size = cmd_buffer_size;
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command OP_ENABLE_QUEUES");
rte_free(cmd_buffer);
return err;
}
static int
i40evf_switch_queue(struct rte_eth_dev *dev, bool isrx, uint16_t qid,
bool on)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct virtchnl_queue_select queue_select;
int err;
struct vf_cmd_info args;
memset(&queue_select, 0, sizeof(queue_select));
queue_select.vsi_id = vf->vsi_res->vsi_id;
if (isrx)
queue_select.rx_queues |= 1 << qid;
else
queue_select.tx_queues |= 1 << qid;
if (on)
args.ops = VIRTCHNL_OP_ENABLE_QUEUES;
else
args.ops = VIRTCHNL_OP_DISABLE_QUEUES;
args.in_args = (u8 *)&queue_select;
args.in_args_size = sizeof(queue_select);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to switch %s %u %s",
isrx ? "RX" : "TX", qid, on ? "on" : "off");
return err;
}
static int
i40evf_start_queues(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *dev_data = dev->data;
int i;
struct i40e_rx_queue *rxq;
struct i40e_tx_queue *txq;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev_data->rx_queues[i];
if (rxq->rx_deferred_start)
continue;
if (i40evf_dev_rx_queue_start(dev, i) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
return -1;
}
}
for (i = 0; i < dev->data->nb_tx_queues; i++) {
txq = dev_data->tx_queues[i];
if (txq->tx_deferred_start)
continue;
if (i40evf_dev_tx_queue_start(dev, i) != 0) {
PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
return -1;
}
}
return 0;
}
static int
i40evf_stop_queues(struct rte_eth_dev *dev)
{
int i;
/* Stop TX queues first */
for (i = 0; i < dev->data->nb_tx_queues; i++) {
if (i40evf_dev_tx_queue_stop(dev, i) != 0) {
PMD_DRV_LOG(ERR, "Fail to stop queue %u", i);
}
}
/* Then stop RX queues */
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (i40evf_dev_rx_queue_stop(dev, i) != 0) {
PMD_DRV_LOG(ERR, "Fail to stop queue %u", i);
}
}
return 0;
}
static int
i40evf_add_del_eth_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *addr,
bool add, uint8_t type)
{
struct virtchnl_ether_addr_list *list;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint8_t cmd_buffer[sizeof(struct virtchnl_ether_addr_list) + \
sizeof(struct virtchnl_ether_addr)];
int err;
struct vf_cmd_info args;
list = (struct virtchnl_ether_addr_list *)cmd_buffer;
list->vsi_id = vf->vsi_res->vsi_id;
list->num_elements = 1;
list->list[0].type = type;
rte_memcpy(list->list[0].addr, addr->addr_bytes,
sizeof(addr->addr_bytes));
args.ops = add ? VIRTCHNL_OP_ADD_ETH_ADDR : VIRTCHNL_OP_DEL_ETH_ADDR;
args.in_args = cmd_buffer;
args.in_args_size = sizeof(cmd_buffer);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command %s",
add ? "OP_ADD_ETH_ADDR" : "OP_DEL_ETH_ADDR");
return err;
}
static int
i40evf_add_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *addr,
__rte_unused uint32_t index,
__rte_unused uint32_t pool)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int err;
if (rte_is_zero_ether_addr(addr)) {
PMD_DRV_LOG(ERR, "Invalid mac:%x:%x:%x:%x:%x:%x",
addr->addr_bytes[0], addr->addr_bytes[1],
addr->addr_bytes[2], addr->addr_bytes[3],
addr->addr_bytes[4], addr->addr_bytes[5]);
return I40E_ERR_INVALID_MAC_ADDR;
}
err = i40evf_add_del_eth_addr(dev, addr, TRUE, VIRTCHNL_ETHER_ADDR_EXTRA);
if (err)
PMD_DRV_LOG(ERR, "fail to add MAC address");
else
vf->vsi.mac_num++;
return err;
}
static void
i40evf_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct rte_eth_dev_data *data = dev->data;
struct rte_ether_addr *addr;
int err;
addr = &data->mac_addrs[index];
err = i40evf_add_del_eth_addr(dev, addr, FALSE, VIRTCHNL_ETHER_ADDR_EXTRA);
if (err)
PMD_DRV_LOG(ERR, "fail to delete MAC address");
else
vf->vsi.mac_num--;
return;
}
static int
i40evf_query_stats(struct rte_eth_dev *dev, struct i40e_eth_stats **pstats)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct virtchnl_queue_select q_stats;
int err;
struct vf_cmd_info args;
memset(&q_stats, 0, sizeof(q_stats));
q_stats.vsi_id = vf->vsi_res->vsi_id;
args.ops = VIRTCHNL_OP_GET_STATS;
args.in_args = (u8 *)&q_stats;
args.in_args_size = sizeof(q_stats);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err) {
PMD_DRV_LOG(ERR, "fail to execute command OP_GET_STATS");
*pstats = NULL;
return err;
}
*pstats = (struct i40e_eth_stats *)args.out_buffer;
return 0;
}
static void
i40evf_stat_update_48(uint64_t *offset,
uint64_t *stat)
{
if (*stat >= *offset)
*stat = *stat - *offset;
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << I40E_48_BIT_WIDTH)) - *offset);
*stat &= I40E_48_BIT_MASK;
}
static void
i40evf_stat_update_32(uint64_t *offset,
uint64_t *stat)
{
if (*stat >= *offset)
*stat = (uint64_t)(*stat - *offset);
else
*stat = (uint64_t)((*stat +
((uint64_t)1 << I40E_32_BIT_WIDTH)) - *offset);
}
static void
i40evf_update_stats(struct i40e_vsi *vsi,
struct i40e_eth_stats *nes)
{
struct i40e_eth_stats *oes = &vsi->eth_stats_offset;
i40evf_stat_update_48(&oes->rx_bytes,
&nes->rx_bytes);
i40evf_stat_update_48(&oes->rx_unicast,
&nes->rx_unicast);
i40evf_stat_update_48(&oes->rx_multicast,
&nes->rx_multicast);
i40evf_stat_update_48(&oes->rx_broadcast,
&nes->rx_broadcast);
i40evf_stat_update_32(&oes->rx_discards,
&nes->rx_discards);
i40evf_stat_update_32(&oes->rx_unknown_protocol,
&nes->rx_unknown_protocol);
i40evf_stat_update_48(&oes->tx_bytes,
&nes->tx_bytes);
i40evf_stat_update_48(&oes->tx_unicast,
&nes->tx_unicast);
i40evf_stat_update_48(&oes->tx_multicast,
&nes->tx_multicast);
i40evf_stat_update_48(&oes->tx_broadcast,
&nes->tx_broadcast);
i40evf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
i40evf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
}
static int
i40evf_dev_xstats_reset(struct rte_eth_dev *dev)
{
int ret;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_eth_stats *pstats = NULL;
/* read stat values to clear hardware registers */
ret = i40evf_query_stats(dev, &pstats);
/* set stats offset base on current values */
if (ret == 0)
vf->vsi.eth_stats_offset = *pstats;
return ret;
}
static int i40evf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_xstat_name *xstats_names,
__rte_unused unsigned limit)
{
unsigned i;
if (xstats_names != NULL)
for (i = 0; i < I40EVF_NB_XSTATS; i++) {
snprintf(xstats_names[i].name,
sizeof(xstats_names[i].name),
"%s", rte_i40evf_stats_strings[i].name);
}
return I40EVF_NB_XSTATS;
}
static int i40evf_dev_xstats_get(struct rte_eth_dev *dev,
struct rte_eth_xstat *xstats, unsigned n)
{
int ret;
unsigned i;
struct i40e_eth_stats *pstats = NULL;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_vsi *vsi = &vf->vsi;
if (n < I40EVF_NB_XSTATS)
return I40EVF_NB_XSTATS;
ret = i40evf_query_stats(dev, &pstats);
if (ret != 0)
return 0;
if (!xstats)
return 0;
i40evf_update_stats(vsi, pstats);
/* loop over xstats array and values from pstats */
for (i = 0; i < I40EVF_NB_XSTATS; i++) {
xstats[i].id = i;
xstats[i].value = *(uint64_t *)(((char *)pstats) +
rte_i40evf_stats_strings[i].offset);
}
return I40EVF_NB_XSTATS;
}
static int
i40evf_add_vlan(struct rte_eth_dev *dev, uint16_t vlanid)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct virtchnl_vlan_filter_list *vlan_list;
uint8_t cmd_buffer[sizeof(struct virtchnl_vlan_filter_list) +
sizeof(uint16_t)];
int err;
struct vf_cmd_info args;
vlan_list = (struct virtchnl_vlan_filter_list *)cmd_buffer;
vlan_list->vsi_id = vf->vsi_res->vsi_id;
vlan_list->num_elements = 1;
vlan_list->vlan_id[0] = vlanid;
args.ops = VIRTCHNL_OP_ADD_VLAN;
args.in_args = (u8 *)&cmd_buffer;
args.in_args_size = sizeof(cmd_buffer);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err) {
PMD_DRV_LOG(ERR, "fail to execute command OP_ADD_VLAN");
return err;
}
/**
* In linux kernel driver on receiving ADD_VLAN it enables
* VLAN_STRIP by default. So reconfigure the vlan_offload
* as it was done by the app earlier.
*/
err = i40evf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
if (err)
PMD_DRV_LOG(ERR, "fail to set vlan_strip");
return err;
}
static int
i40evf_request_queues(struct rte_eth_dev *dev, uint16_t num)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct virtchnl_vf_res_request vfres;
struct vf_cmd_info args;
int err;
vfres.num_queue_pairs = num;
args.ops = VIRTCHNL_OP_REQUEST_QUEUES;
args.in_args = (u8 *)&vfres;
args.in_args_size = sizeof(vfres);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
rte_eal_alarm_cancel(i40evf_dev_alarm_handler, dev);
err = i40evf_execute_vf_cmd(dev, &args);
rte_eal_alarm_set(I40EVF_ALARM_INTERVAL, i40evf_dev_alarm_handler, dev);
if (err != I40E_SUCCESS) {
PMD_DRV_LOG(ERR, "fail to execute command OP_REQUEST_QUEUES");
return err;
}
/* The PF will issue a reset to the VF when change the number of
* queues. The PF will set I40E_VFGEN_RSTAT to COMPLETE first, then
* wait 10ms and set it to ACTIVE. In this duration, vf may not catch
* the moment that COMPLETE is set. So, for vf, we'll try to wait a
* long time.
*/
rte_delay_ms(100);
err = i40evf_check_vf_reset_done(dev);
if (err)
PMD_DRV_LOG(ERR, "VF is still resetting");
return err;
}
static int
i40evf_del_vlan(struct rte_eth_dev *dev, uint16_t vlanid)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct virtchnl_vlan_filter_list *vlan_list;
uint8_t cmd_buffer[sizeof(struct virtchnl_vlan_filter_list) +
sizeof(uint16_t)];
int err;
struct vf_cmd_info args;
vlan_list = (struct virtchnl_vlan_filter_list *)cmd_buffer;
vlan_list->vsi_id = vf->vsi_res->vsi_id;
vlan_list->num_elements = 1;
vlan_list->vlan_id[0] = vlanid;
args.ops = VIRTCHNL_OP_DEL_VLAN;
args.in_args = (u8 *)&cmd_buffer;
args.in_args_size = sizeof(cmd_buffer);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err)
PMD_DRV_LOG(ERR, "fail to execute command OP_DEL_VLAN");
return err;
}
static const struct rte_pci_id pci_id_i40evf_map[] = {
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_VF) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_VF_HV) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_X722_A0_VF) },
{ RTE_PCI_DEVICE(I40E_INTEL_VENDOR_ID, I40E_DEV_ID_X722_VF) },
{ .vendor_id = 0, /* sentinel */ },
};
/* Disable IRQ0 */
static inline void
i40evf_disable_irq0(struct i40e_hw *hw)
{
/* Disable all interrupt types */
I40E_WRITE_REG(hw, I40E_VFINT_ICR0_ENA1, 0);
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01,
I40E_VFINT_DYN_CTL01_ITR_INDX_MASK);
I40EVF_WRITE_FLUSH(hw);
}
/* Enable IRQ0 */
static inline void
i40evf_enable_irq0(struct i40e_hw *hw)
{
/* Enable admin queue interrupt trigger */
uint32_t val;
i40evf_disable_irq0(hw);
val = I40E_READ_REG(hw, I40E_VFINT_ICR0_ENA1);
val |= I40E_VFINT_ICR0_ENA1_ADMINQ_MASK |
I40E_VFINT_ICR0_ENA1_LINK_STAT_CHANGE_MASK;
I40E_WRITE_REG(hw, I40E_VFINT_ICR0_ENA1, val);
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01,
I40E_VFINT_DYN_CTL01_INTENA_MASK |
I40E_VFINT_DYN_CTL01_CLEARPBA_MASK |
I40E_VFINT_DYN_CTL01_ITR_INDX_MASK);
I40EVF_WRITE_FLUSH(hw);
}
static int
i40evf_check_vf_reset_done(struct rte_eth_dev *dev)
{
int i, reset;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
for (i = 0; i < MAX_RESET_WAIT_CNT; i++) {
reset = I40E_READ_REG(hw, I40E_VFGEN_RSTAT) &
I40E_VFGEN_RSTAT_VFR_STATE_MASK;
reset = reset >> I40E_VFGEN_RSTAT_VFR_STATE_SHIFT;
if (reset == VIRTCHNL_VFR_VFACTIVE ||
reset == VIRTCHNL_VFR_COMPLETED)
break;
rte_delay_ms(50);
}
if (i >= MAX_RESET_WAIT_CNT)
return -1;
vf->pend_msg &= ~PFMSG_RESET_IMPENDING;
return 0;
}
static int
i40evf_reset_vf(struct rte_eth_dev *dev)
{
int ret;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (i40e_vf_reset(hw) != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "Reset VF NIC failed");
return -1;
}
/**
* After issuing vf reset command to pf, pf won't necessarily
* reset vf, it depends on what state it exactly is. If it's not
* initialized yet, it won't have vf reset since it's in a certain
* state. If not, it will try to reset. Even vf is reset, pf will
* set I40E_VFGEN_RSTAT to COMPLETE first, then wait 10ms and set
* it to ACTIVE. In this duration, vf may not catch the moment that
* COMPLETE is set. So, for vf, we'll try to wait a long time.
*/
rte_delay_ms(500);
ret = i40evf_check_vf_reset_done(dev);
if (ret) {
PMD_INIT_LOG(ERR, "VF is still resetting");
return ret;
}
return 0;
}
static int
i40evf_init_vf(struct rte_eth_dev *dev)
{
int i, err, bufsz;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint16_t interval =
i40e_calc_itr_interval(0, 0);
vf->adapter = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
vf->dev_data = dev->data;
rte_spinlock_init(&vf->cmd_send_lock);
err = i40e_set_mac_type(hw);
if (err) {
PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
goto err;
}
err = i40evf_check_vf_reset_done(dev);
if (err)
goto err;
i40e_init_adminq_parameter(hw);
err = i40e_init_adminq(hw);
if (err) {
PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
goto err;
}
/* Reset VF and wait until it's complete */
if (i40evf_reset_vf(dev)) {
PMD_INIT_LOG(ERR, "reset NIC failed");
goto err_aq;
}
/* VF reset, shutdown admin queue and initialize again */
if (i40e_shutdown_adminq(hw) != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "i40e_shutdown_adminq failed");
goto err;
}
i40e_init_adminq_parameter(hw);
if (i40e_init_adminq(hw) != I40E_SUCCESS) {
PMD_INIT_LOG(ERR, "init_adminq failed");
goto err;
}
vf->aq_resp = rte_zmalloc("vf_aq_resp", I40E_AQ_BUF_SZ, 0);
if (!vf->aq_resp) {
PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
goto err_aq;
}
if (i40evf_check_api_version(dev) != 0) {
PMD_INIT_LOG(ERR, "check_api version failed");
goto err_api;
}
bufsz = sizeof(struct virtchnl_vf_resource) +
(I40E_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
if (!vf->vf_res) {
PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
goto err_api;
}
if (i40evf_get_vf_resource(dev) != 0) {
PMD_INIT_LOG(ERR, "i40evf_get_vf_config failed");
goto err_alloc;
}
/* got VF config message back from PF, now we can parse it */
for (i = 0; i < vf->vf_res->num_vsis; i++) {
if (vf->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
vf->vsi_res = &vf->vf_res->vsi_res[i];
}
if (!vf->vsi_res) {
PMD_INIT_LOG(ERR, "no LAN VSI found");
goto err_alloc;
}
if (hw->mac.type == I40E_MAC_X722_VF)
vf->flags = I40E_FLAG_RSS_AQ_CAPABLE;
vf->vsi.vsi_id = vf->vsi_res->vsi_id;
switch (vf->vsi_res->vsi_type) {
case VIRTCHNL_VSI_SRIOV:
vf->vsi.type = I40E_VSI_SRIOV;
break;
default:
vf->vsi.type = I40E_VSI_TYPE_UNKNOWN;
break;
}
vf->vsi.nb_qps = vf->vsi_res->num_queue_pairs;
vf->vsi.adapter = I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
/* Store the MAC address configured by host, or generate random one */
if (!rte_is_valid_assigned_ether_addr(
(struct rte_ether_addr *)hw->mac.addr))
rte_eth_random_addr(hw->mac.addr); /* Generate a random one */
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01,
(I40E_ITR_INDEX_DEFAULT <<
I40E_VFINT_DYN_CTL0_ITR_INDX_SHIFT) |
(interval <<
I40E_VFINT_DYN_CTL0_INTERVAL_SHIFT));
I40EVF_WRITE_FLUSH(hw);
return 0;
err_alloc:
rte_free(vf->vf_res);
vf->vsi_res = NULL;
err_api:
rte_free(vf->aq_resp);
err_aq:
i40e_shutdown_adminq(hw); /* ignore error */
err:
return -1;
}
static int
i40evf_uninit_vf(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (hw->adapter_closed == 0)
i40evf_dev_close(dev);
return 0;
}
static void
i40evf_handle_pf_event(struct rte_eth_dev *dev, uint8_t *msg,
__rte_unused uint16_t msglen)
{
struct virtchnl_pf_event *pf_msg =
(struct virtchnl_pf_event *)msg;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
switch (pf_msg->event) {
case VIRTCHNL_EVENT_RESET_IMPENDING:
PMD_DRV_LOG(DEBUG, "VIRTCHNL_EVENT_RESET_IMPENDING event");
vf->vf_reset = true;
rte_eth_dev_callback_process(dev,
RTE_ETH_EVENT_INTR_RESET, NULL);
break;
case VIRTCHNL_EVENT_LINK_CHANGE:
PMD_DRV_LOG(DEBUG, "VIRTCHNL_EVENT_LINK_CHANGE event");
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
vf->link_up =
pf_msg->event_data.link_event_adv.link_status;
switch (pf_msg->event_data.link_event_adv.link_speed) {
case ETH_SPEED_NUM_100M:
vf->link_speed = VIRTCHNL_LINK_SPEED_100MB;
break;
case ETH_SPEED_NUM_1G:
vf->link_speed = VIRTCHNL_LINK_SPEED_1GB;
break;
case ETH_SPEED_NUM_2_5G:
vf->link_speed = VIRTCHNL_LINK_SPEED_2_5GB;
break;
case ETH_SPEED_NUM_5G:
vf->link_speed = VIRTCHNL_LINK_SPEED_5GB;
break;
case ETH_SPEED_NUM_10G:
vf->link_speed = VIRTCHNL_LINK_SPEED_10GB;
break;
case ETH_SPEED_NUM_20G:
vf->link_speed = VIRTCHNL_LINK_SPEED_20GB;
break;
case ETH_SPEED_NUM_25G:
vf->link_speed = VIRTCHNL_LINK_SPEED_25GB;
break;
case ETH_SPEED_NUM_40G:
vf->link_speed = VIRTCHNL_LINK_SPEED_40GB;
break;
default:
vf->link_speed = VIRTCHNL_LINK_SPEED_UNKNOWN;
break;
}
} else {
vf->link_up =
pf_msg->event_data.link_event.link_status;
vf->link_speed =
pf_msg->event_data.link_event.link_speed;
}
i40evf_dev_link_update(dev, 0);
rte_eth_dev_callback_process(dev,
RTE_ETH_EVENT_INTR_LSC, NULL);
break;
case VIRTCHNL_EVENT_PF_DRIVER_CLOSE:
PMD_DRV_LOG(DEBUG, "VIRTCHNL_EVENT_PF_DRIVER_CLOSE event");
break;
default:
PMD_DRV_LOG(ERR, " unknown event received %u", pf_msg->event);
break;
}
}
static void
i40evf_handle_aq_msg(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_arq_event_info info;
uint16_t pending, aq_opc;
enum virtchnl_ops msg_opc;
enum i40e_status_code msg_ret;
int ret;
info.buf_len = I40E_AQ_BUF_SZ;
if (!vf->aq_resp) {
PMD_DRV_LOG(ERR, "Buffer for adminq resp should not be NULL");
return;
}
info.msg_buf = vf->aq_resp;
pending = 1;
while (pending) {
ret = i40e_clean_arq_element(hw, &info, &pending);
if (ret != I40E_SUCCESS) {
PMD_DRV_LOG(INFO, "Failed to read msg from AdminQ,"
"ret: %d", ret);
break;
}
aq_opc = rte_le_to_cpu_16(info.desc.opcode);
/* For the message sent from pf to vf, opcode is stored in
* cookie_high of struct i40e_aq_desc, while return error code
* are stored in cookie_low, Which is done by
* i40e_aq_send_msg_to_vf in PF driver.*/
msg_opc = (enum virtchnl_ops)rte_le_to_cpu_32(
info.desc.cookie_high);
msg_ret = (enum i40e_status_code)rte_le_to_cpu_32(
info.desc.cookie_low);
switch (aq_opc) {
case i40e_aqc_opc_send_msg_to_vf:
if (msg_opc == VIRTCHNL_OP_EVENT)
/* process event*/
i40evf_handle_pf_event(dev, info.msg_buf,
info.msg_len);
else {
/* read message and it's expected one */
if ((volatile uint32_t)msg_opc ==
vf->pend_cmd) {
vf->cmd_retval = msg_ret;
/* prevent compiler reordering */
rte_compiler_barrier();
_clear_cmd(vf);
} else
PMD_DRV_LOG(ERR, "command mismatch,"
"expect %u, get %u",
vf->pend_cmd, msg_opc);
PMD_DRV_LOG(DEBUG, "adminq response is received,"
" opcode = %d", msg_opc);
}
break;
default:
PMD_DRV_LOG(DEBUG, "Request %u is not supported yet",
aq_opc);
break;
}
}
}
/**
* Interrupt handler triggered by NIC for handling
* specific interrupt. Only adminq interrupt is processed in VF.
*
* @param handle
* Pointer to interrupt handle.
* @param param
* The address of parameter (struct rte_eth_dev *) regsitered before.
*
* @return
* void
*/
static void
i40evf_dev_alarm_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t icr0;
i40evf_disable_irq0(hw);
/* read out interrupt causes */
icr0 = I40E_READ_REG(hw, I40E_VFINT_ICR01);
/* No interrupt event indicated */
if (!(icr0 & I40E_VFINT_ICR01_INTEVENT_MASK))
goto done;
if (icr0 & I40E_VFINT_ICR01_ADMINQ_MASK) {
PMD_DRV_LOG(DEBUG, "ICR01_ADMINQ is reported");
i40evf_handle_aq_msg(dev);
}
/* Link Status Change interrupt */
if (icr0 & I40E_VFINT_ICR01_LINK_STAT_CHANGE_MASK)
PMD_DRV_LOG(DEBUG, "LINK_STAT_CHANGE is reported,"
" do nothing");
done:
i40evf_enable_irq0(hw);
rte_eal_alarm_set(I40EVF_ALARM_INTERVAL,
i40evf_dev_alarm_handler, dev);
}
static int
i40evf_dev_init(struct rte_eth_dev *eth_dev)
{
struct i40e_hw *hw
= I40E_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
PMD_INIT_FUNC_TRACE();
/* assign ops func pointer */
eth_dev->dev_ops = &i40evf_eth_dev_ops;
eth_dev->rx_queue_count = i40e_dev_rx_queue_count;
eth_dev->rx_descriptor_done = i40e_dev_rx_descriptor_done;
eth_dev->rx_descriptor_status = i40e_dev_rx_descriptor_status;
eth_dev->tx_descriptor_status = i40e_dev_tx_descriptor_status;
eth_dev->rx_pkt_burst = &i40e_recv_pkts;
eth_dev->tx_pkt_burst = &i40e_xmit_pkts;
/*
* For secondary processes, we don't initialise any further as primary
* has already done this work.
*/
if (rte_eal_process_type() != RTE_PROC_PRIMARY){
i40e_set_rx_function(eth_dev);
i40e_set_tx_function(eth_dev);
return 0;
}
i40e_set_default_ptype_table(eth_dev);
rte_eth_copy_pci_info(eth_dev, pci_dev);
eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
hw->vendor_id = pci_dev->id.vendor_id;
hw->device_id = pci_dev->id.device_id;
hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
hw->bus.device = pci_dev->addr.devid;
hw->bus.func = pci_dev->addr.function;
hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
hw->adapter_stopped = 1;
hw->adapter_closed = 0;
if(i40evf_init_vf(eth_dev) != 0) {
PMD_INIT_LOG(ERR, "Init vf failed");
return -1;
}
i40e_set_default_pctype_table(eth_dev);
rte_eal_alarm_set(I40EVF_ALARM_INTERVAL,
i40evf_dev_alarm_handler, eth_dev);
/* configure and enable device interrupt */
i40evf_enable_irq0(hw);
/* copy mac addr */
eth_dev->data->mac_addrs = rte_zmalloc("i40evf_mac",
RTE_ETHER_ADDR_LEN * I40E_NUM_MACADDR_MAX,
0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
" store MAC addresses",
RTE_ETHER_ADDR_LEN * I40E_NUM_MACADDR_MAX);
return -ENOMEM;
}
rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
&eth_dev->data->mac_addrs[0]);
return 0;
}
static int
i40evf_dev_uninit(struct rte_eth_dev *eth_dev)
{
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
if (i40evf_uninit_vf(eth_dev) != 0) {
PMD_INIT_LOG(ERR, "i40evf_uninit_vf failed");
return -1;
}
return 0;
}
static int
i40evf_check_driver_handler(__rte_unused const char *key,
const char *value, __rte_unused void *opaque)
{
if (strcmp(value, "i40evf"))
return -1;
return 0;
}
static int
i40evf_driver_selected(struct rte_devargs *devargs)
{
struct rte_kvargs *kvlist;
int ret = 0;
if (devargs == NULL)
return 0;
kvlist = rte_kvargs_parse(devargs->args, NULL);
if (kvlist == NULL)
return 0;
if (!rte_kvargs_count(kvlist, RTE_DEVARGS_KEY_DRIVER))
goto exit;
/* i40evf driver selected when there's a key-value pair:
* driver=i40evf
*/
if (rte_kvargs_process(kvlist, RTE_DEVARGS_KEY_DRIVER,
i40evf_check_driver_handler, NULL) < 0)
goto exit;
ret = 1;
exit:
rte_kvargs_free(kvlist);
return ret;
}
static int eth_i40evf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
if (!i40evf_driver_selected(pci_dev->device.devargs))
return 1;
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct i40e_adapter), i40evf_dev_init);
}
static int eth_i40evf_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, i40evf_dev_uninit);
}
/*
* virtual function driver struct
*/
static struct rte_pci_driver rte_i40evf_pmd = {
.id_table = pci_id_i40evf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
.probe = eth_i40evf_pci_probe,
.remove = eth_i40evf_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_i40e_vf, rte_i40evf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_i40e_vf, pci_id_i40evf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_i40e_vf, "* igb_uio | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_i40e_vf, "driver=i40evf");
static int
i40evf_dev_configure(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_adapter *ad =
I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
dev->data->nb_tx_queues);
/* Initialize to TRUE. If any of Rx queues doesn't meet the bulk
* allocation or vector Rx preconditions we will reset it.
*/
ad->rx_bulk_alloc_allowed = true;
ad->rx_vec_allowed = true;
ad->tx_simple_allowed = true;
ad->tx_vec_allowed = true;
dev->data->dev_conf.intr_conf.lsc =
!!(dev->data->dev_flags & RTE_ETH_DEV_INTR_LSC);
if (num_queue_pairs > vf->vsi_res->num_queue_pairs) {
struct i40e_hw *hw;
int ret;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
PMD_DRV_LOG(ERR,
"For secondary processes, change queue pairs is not supported!");
return -ENOTSUP;
}
hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
if (!hw->adapter_stopped) {
PMD_DRV_LOG(ERR, "Device must be stopped first!");
return -EBUSY;
}
PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
vf->vsi_res->num_queue_pairs, num_queue_pairs);
ret = i40evf_request_queues(dev, num_queue_pairs);
if (ret != 0)
return ret;
ret = i40evf_dev_reset(dev);
if (ret != 0)
return ret;
}
return i40evf_init_vlan(dev);
}
static int
i40evf_init_vlan(struct rte_eth_dev *dev)
{
/* Apply vlan offload setting */
i40evf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
return 0;
}
static int
i40evf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
return -ENOTSUP;
/* Vlan stripping setting */
if (mask & ETH_VLAN_STRIP_MASK) {
/* Enable or disable VLAN stripping */
if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
i40evf_enable_vlan_strip(dev);
else
i40evf_disable_vlan_strip(dev);
}
return 0;
}
static int
i40evf_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct i40e_rx_queue *rxq;
int err;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
rxq = dev->data->rx_queues[rx_queue_id];
err = i40e_alloc_rx_queue_mbufs(rxq);
if (err) {
PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
return err;
}
rte_wmb();
/* Init the RX tail register. */
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
I40EVF_WRITE_FLUSH(hw);
/* Ready to switch the queue on */
err = i40evf_switch_queue(dev, TRUE, rx_queue_id, TRUE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
rx_queue_id);
return err;
}
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static int
i40evf_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct i40e_rx_queue *rxq;
int err;
rxq = dev->data->rx_queues[rx_queue_id];
err = i40evf_switch_queue(dev, TRUE, rx_queue_id, FALSE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
rx_queue_id);
return err;
}
i40e_rx_queue_release_mbufs(rxq);
i40e_reset_rx_queue(rxq);
dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
i40evf_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
int err;
PMD_INIT_FUNC_TRACE();
/* Ready to switch the queue on */
err = i40evf_switch_queue(dev, FALSE, tx_queue_id, TRUE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
tx_queue_id);
return err;
}
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
}
static int
i40evf_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
{
struct i40e_tx_queue *txq;
int err;
txq = dev->data->tx_queues[tx_queue_id];
err = i40evf_switch_queue(dev, FALSE, tx_queue_id, FALSE);
if (err) {
PMD_DRV_LOG(ERR, "Failed to switch TX queue %u off",
tx_queue_id);
return err;
}
i40e_tx_queue_release_mbufs(txq);
i40e_reset_tx_queue(txq);
dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
static int
i40evf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
int ret;
if (on)
ret = i40evf_add_vlan(dev, vlan_id);
else
ret = i40evf_del_vlan(dev,vlan_id);
return ret;
}
static int
i40evf_rxq_init(struct rte_eth_dev *dev, struct i40e_rx_queue *rxq)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_dev_data *dev_data = dev->data;
struct rte_pktmbuf_pool_private *mbp_priv;
uint16_t buf_size, len;
rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL1(rxq->queue_id);
I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
I40EVF_WRITE_FLUSH(hw);
/* Calculate the maximum packet length allowed */
mbp_priv = rte_mempool_get_priv(rxq->mp);
buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
rxq->hs_mode = i40e_header_split_none;
rxq->rx_hdr_len = 0;
rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
len = rxq->rx_buf_len * I40E_MAX_CHAINED_RX_BUFFERS;
rxq->max_pkt_len = RTE_MIN(len,
dev_data->dev_conf.rxmode.max_rx_pkt_len);
/**
* Check if the jumbo frame and maximum packet length are set correctly
*/
if (dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
if (rxq->max_pkt_len <= I40E_ETH_MAX_LEN ||
rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u, as jumbo "
"frame is enabled", (uint32_t)I40E_ETH_MAX_LEN,
(uint32_t)I40E_FRAME_SIZE_MAX);
return I40E_ERR_CONFIG;
}
} else {
if (rxq->max_pkt_len < RTE_ETHER_MIN_LEN ||
rxq->max_pkt_len > I40E_ETH_MAX_LEN) {
PMD_DRV_LOG(ERR, "maximum packet length must be "
"larger than %u and smaller than %u, as jumbo "
"frame is disabled",
(uint32_t)RTE_ETHER_MIN_LEN,
(uint32_t)I40E_ETH_MAX_LEN);
return I40E_ERR_CONFIG;
}
}
if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
rxq->max_pkt_len > buf_size)
dev_data->scattered_rx = 1;
return 0;
}
static int
i40evf_rx_init(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint16_t i;
int ret = I40E_SUCCESS;
struct i40e_rx_queue **rxq =
(struct i40e_rx_queue **)dev->data->rx_queues;
i40evf_config_rss(vf);
for (i = 0; i < dev->data->nb_rx_queues; i++) {
if (!rxq[i] || !rxq[i]->q_set)
continue;
ret = i40evf_rxq_init(dev, rxq[i]);
if (ret != I40E_SUCCESS)
break;
}
if (ret == I40E_SUCCESS)
i40e_set_rx_function(dev);
return ret;
}
static void
i40evf_tx_init(struct rte_eth_dev *dev)
{
uint16_t i;
struct i40e_tx_queue **txq =
(struct i40e_tx_queue **)dev->data->tx_queues;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
for (i = 0; i < dev->data->nb_tx_queues; i++)
txq[i]->qtx_tail = hw->hw_addr + I40E_QTX_TAIL1(i);
i40e_set_tx_function(dev);
}
static inline void
i40evf_enable_queues_intr(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
if (!rte_intr_allow_others(intr_handle)) {
I40E_WRITE_REG(hw,
I40E_VFINT_DYN_CTL01,
I40E_VFINT_DYN_CTL01_INTENA_MASK |
I40E_VFINT_DYN_CTL01_CLEARPBA_MASK |
I40E_VFINT_DYN_CTL01_ITR_INDX_MASK);
I40EVF_WRITE_FLUSH(hw);
return;
}
I40EVF_WRITE_FLUSH(hw);
}
static inline void
i40evf_disable_queues_intr(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
if (!rte_intr_allow_others(intr_handle)) {
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01,
I40E_VFINT_DYN_CTL01_ITR_INDX_MASK);
I40EVF_WRITE_FLUSH(hw);
return;
}
I40EVF_WRITE_FLUSH(hw);
}
static int
i40evf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t interval =
i40e_calc_itr_interval(0, 0);
uint16_t msix_intr;
msix_intr = intr_handle->intr_vec[queue_id];
if (msix_intr == I40E_MISC_VEC_ID)
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01,
I40E_VFINT_DYN_CTL01_INTENA_MASK |
I40E_VFINT_DYN_CTL01_CLEARPBA_MASK |
(0 << I40E_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
(interval <<
I40E_VFINT_DYN_CTL01_INTERVAL_SHIFT));
else
I40E_WRITE_REG(hw,
I40E_VFINT_DYN_CTLN1(msix_intr -
I40E_RX_VEC_START),
I40E_VFINT_DYN_CTLN1_INTENA_MASK |
I40E_VFINT_DYN_CTLN1_CLEARPBA_MASK |
(0 << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
(interval <<
I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
I40EVF_WRITE_FLUSH(hw);
return 0;
}
static int
i40evf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t msix_intr;
msix_intr = intr_handle->intr_vec[queue_id];
if (msix_intr == I40E_MISC_VEC_ID)
I40E_WRITE_REG(hw, I40E_VFINT_DYN_CTL01, 0);
else
I40E_WRITE_REG(hw,
I40E_VFINT_DYN_CTLN1(msix_intr -
I40E_RX_VEC_START),
0);
I40EVF_WRITE_FLUSH(hw);
return 0;
}
static void
i40evf_add_del_all_mac_addr(struct rte_eth_dev *dev, bool add)
{
struct virtchnl_ether_addr_list *list;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int err, i, j;
int next_begin = 0;
int begin = 0;
uint32_t len;
struct rte_ether_addr *addr;
struct vf_cmd_info args;
do {
j = 0;
len = sizeof(struct virtchnl_ether_addr_list);
for (i = begin; i < I40E_NUM_MACADDR_MAX; i++, next_begin++) {
if (rte_is_zero_ether_addr(&dev->data->mac_addrs[i]))
continue;
len += sizeof(struct virtchnl_ether_addr);
if (len >= I40E_AQ_BUF_SZ) {
next_begin = i + 1;
break;
}
}
list = rte_zmalloc("i40evf_del_mac_buffer", len, 0);
if (!list) {
PMD_DRV_LOG(ERR, "fail to allocate memory");
return;
}
for (i = begin; i < next_begin; i++) {
addr = &dev->data->mac_addrs[i];
if (rte_is_zero_ether_addr(addr))
continue;
rte_memcpy(list->list[j].addr, addr->addr_bytes,
sizeof(addr->addr_bytes));
list->list[j].type = (j == 0 ?
VIRTCHNL_ETHER_ADDR_PRIMARY :
VIRTCHNL_ETHER_ADDR_EXTRA);
PMD_DRV_LOG(DEBUG, "add/rm mac:%x:%x:%x:%x:%x:%x",
addr->addr_bytes[0], addr->addr_bytes[1],
addr->addr_bytes[2], addr->addr_bytes[3],
addr->addr_bytes[4], addr->addr_bytes[5]);
j++;
}
list->vsi_id = vf->vsi_res->vsi_id;
list->num_elements = j;
args.ops = add ? VIRTCHNL_OP_ADD_ETH_ADDR :
VIRTCHNL_OP_DEL_ETH_ADDR;
args.in_args = (uint8_t *)list;
args.in_args_size = len;
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err) {
PMD_DRV_LOG(ERR, "fail to execute command %s",
add ? "OP_ADD_ETHER_ADDRESS" :
"OP_DEL_ETHER_ADDRESS");
} else {
if (add)
vf->vsi.mac_num++;
else
vf->vsi.mac_num--;
}
rte_free(list);
begin = next_begin;
} while (begin < I40E_NUM_MACADDR_MAX);
}
static int
i40evf_dev_start(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint32_t intr_vector = 0;
PMD_INIT_FUNC_TRACE();
hw->adapter_stopped = 0;
vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
dev->data->nb_tx_queues);
/* check and configure queue intr-vector mapping */
if (rte_intr_cap_multiple(intr_handle) &&
dev->data->dev_conf.intr_conf.rxq) {
intr_vector = dev->data->nb_rx_queues;
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -1;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (!intr_handle->intr_vec) {
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
" intr_vec", dev->data->nb_rx_queues);
return -ENOMEM;
}
}
if (i40evf_rx_init(dev) != 0){
PMD_DRV_LOG(ERR, "failed to do RX init");
return -1;
}
i40evf_tx_init(dev);
if (i40evf_configure_vsi_queues(dev) != 0) {
PMD_DRV_LOG(ERR, "configure queues failed");
goto err_queue;
}
if (i40evf_config_irq_map(dev)) {
PMD_DRV_LOG(ERR, "config_irq_map failed");
goto err_queue;
}
/* Set all mac addrs */
i40evf_add_del_all_mac_addr(dev, TRUE);
/* Set all multicast addresses */
i40evf_add_del_mc_addr_list(dev, vf->mc_addrs, vf->mc_addrs_num,
TRUE);
if (i40evf_start_queues(dev) != 0) {
PMD_DRV_LOG(ERR, "enable queues failed");
goto err_mac;
}
/* only enable interrupt in rx interrupt mode */
if (dev->data->dev_conf.intr_conf.rxq != 0)
rte_intr_enable(intr_handle);
i40evf_enable_queues_intr(dev);
return 0;
err_mac:
i40evf_add_del_all_mac_addr(dev, FALSE);
i40evf_add_del_mc_addr_list(dev, vf->mc_addrs, vf->mc_addrs_num,
FALSE);
err_queue:
return -1;
}
static int
i40evf_dev_stop(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
PMD_INIT_FUNC_TRACE();
if (dev->data->dev_conf.intr_conf.rxq != 0)
rte_intr_disable(intr_handle);
if (hw->adapter_stopped == 1)
return 0;
i40evf_stop_queues(dev);
i40evf_disable_queues_intr(dev);
i40e_dev_clear_queues(dev);
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
/* remove all mac addrs */
i40evf_add_del_all_mac_addr(dev, FALSE);
/* remove all multicast addresses */
i40evf_add_del_mc_addr_list(dev, vf->mc_addrs, vf->mc_addrs_num,
FALSE);
hw->adapter_stopped = 1;
dev->data->dev_started = 0;
return 0;
}
static int
i40evf_dev_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
struct rte_eth_link new_link;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
/*
* DPDK pf host provide interfacet to acquire link status
* while Linux driver does not
*/
memset(&new_link, 0, sizeof(new_link));
/* Linux driver PF host */
switch (vf->link_speed) {
case I40E_LINK_SPEED_100MB:
new_link.link_speed = ETH_SPEED_NUM_100M;
break;
case I40E_LINK_SPEED_1GB:
new_link.link_speed = ETH_SPEED_NUM_1G;
break;
case I40E_LINK_SPEED_10GB:
new_link.link_speed = ETH_SPEED_NUM_10G;
break;
case I40E_LINK_SPEED_20GB:
new_link.link_speed = ETH_SPEED_NUM_20G;
break;
case I40E_LINK_SPEED_25GB:
new_link.link_speed = ETH_SPEED_NUM_25G;
break;
case I40E_LINK_SPEED_40GB:
new_link.link_speed = ETH_SPEED_NUM_40G;
break;
default:
if (vf->link_up)
new_link.link_speed = ETH_SPEED_NUM_UNKNOWN;
else
new_link.link_speed = ETH_SPEED_NUM_NONE;
break;
}
/* full duplex only */
new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
new_link.link_status = vf->link_up ? ETH_LINK_UP : ETH_LINK_DOWN;
new_link.link_autoneg =
!(dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
return rte_eth_linkstatus_set(dev, &new_link);
}
static int
i40evf_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
return i40evf_config_promisc(dev, true, vf->promisc_multicast_enabled);
}
static int
i40evf_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
return i40evf_config_promisc(dev, false, vf->promisc_multicast_enabled);
}
static int
i40evf_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
return i40evf_config_promisc(dev, vf->promisc_unicast_enabled, true);
}
static int
i40evf_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
return i40evf_config_promisc(dev, vf->promisc_unicast_enabled, false);
}
static int
i40evf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
dev_info->max_rx_queues = I40E_MAX_QP_NUM_PER_VF;
dev_info->max_tx_queues = I40E_MAX_QP_NUM_PER_VF;
dev_info->min_rx_bufsize = I40E_BUF_SIZE_MIN;
dev_info->max_rx_pktlen = I40E_FRAME_SIZE_MAX;
dev_info->max_mtu = dev_info->max_rx_pktlen - I40E_ETH_OVERHEAD;
dev_info->min_mtu = RTE_ETHER_MIN_MTU;
dev_info->hash_key_size = (I40E_VFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t);
dev_info->reta_size = ETH_RSS_RETA_SIZE_64;
dev_info->flow_type_rss_offloads = vf->adapter->flow_types_mask;
dev_info->max_mac_addrs = I40E_NUM_MACADDR_MAX;
dev_info->rx_queue_offload_capa = 0;
dev_info->rx_offload_capa =
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_QINQ_STRIP |
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_VLAN_FILTER;
dev_info->tx_queue_offload_capa = 0;
dev_info->tx_offload_capa =
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_QINQ_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_IPIP_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
DEV_TX_OFFLOAD_MULTI_SEGS;
dev_info->default_rxconf = (struct rte_eth_rxconf) {
.rx_thresh = {
.pthresh = I40E_DEFAULT_RX_PTHRESH,
.hthresh = I40E_DEFAULT_RX_HTHRESH,
.wthresh = I40E_DEFAULT_RX_WTHRESH,
},
.rx_free_thresh = I40E_DEFAULT_RX_FREE_THRESH,
.rx_drop_en = 0,
.offloads = 0,
};
dev_info->default_txconf = (struct rte_eth_txconf) {
.tx_thresh = {
.pthresh = I40E_DEFAULT_TX_PTHRESH,
.hthresh = I40E_DEFAULT_TX_HTHRESH,
.wthresh = I40E_DEFAULT_TX_WTHRESH,
},
.tx_free_thresh = I40E_DEFAULT_TX_FREE_THRESH,
.tx_rs_thresh = I40E_DEFAULT_TX_RSBIT_THRESH,
.offloads = 0,
};
dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = I40E_MAX_RING_DESC,
.nb_min = I40E_MIN_RING_DESC,
.nb_align = I40E_ALIGN_RING_DESC,
};
dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = I40E_MAX_RING_DESC,
.nb_min = I40E_MIN_RING_DESC,
.nb_align = I40E_ALIGN_RING_DESC,
};
return 0;
}
static int
i40evf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
{
int ret;
struct i40e_eth_stats *pstats = NULL;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_vsi *vsi = &vf->vsi;
ret = i40evf_query_stats(dev, &pstats);
if (ret == 0) {
i40evf_update_stats(vsi, pstats);
stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
pstats->rx_broadcast;
stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
pstats->tx_unicast;
stats->imissed = pstats->rx_discards;
stats->oerrors = pstats->tx_errors + pstats->tx_discards;
stats->ibytes = pstats->rx_bytes;
stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
stats->obytes = pstats->tx_bytes;
} else {
PMD_DRV_LOG(ERR, "Get statistics failed");
}
return ret;
}
static int
i40evf_dev_close(struct rte_eth_dev *dev)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
int ret;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
ret = i40evf_dev_stop(dev);
i40e_dev_free_queues(dev);
/*
* disable promiscuous mode before reset vf
* it is a workaround solution when work with kernel driver
* and it is not the normal way
*/
if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
i40evf_config_promisc(dev, false, false);
rte_eal_alarm_cancel(i40evf_dev_alarm_handler, dev);
i40evf_reset_vf(dev);
i40e_shutdown_adminq(hw);
i40evf_disable_irq0(hw);
/*
* If the VF is reset via VFLR, the device will be knocked out of bus
* master mode, and the driver will fail to recover from the reset. Fix
* this by enabling bus mastering after every reset. In a non-VFLR case,
* the bus master bit will not be disabled, and this call will have no
* effect.
*/
if (vf->vf_reset && !rte_pci_set_bus_master(pci_dev, true))
vf->vf_reset = false;
rte_free(vf->vf_res);
vf->vf_res = NULL;
rte_free(vf->aq_resp);
vf->aq_resp = NULL;
hw->adapter_closed = 1;
return ret;
}
/*
* Reset VF device only to re-initialize resources in PMD layer
*/
static int
i40evf_dev_reset(struct rte_eth_dev *dev)
{
int ret;
ret = i40evf_dev_uninit(dev);
if (ret)
return ret;
ret = i40evf_dev_init(dev);
return ret;
}
static int
i40evf_get_rss_lut(struct i40e_vsi *vsi, uint8_t *lut, uint16_t lut_size)
{
struct i40e_vf *vf = I40E_VSI_TO_VF(vsi);
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int ret;
if (!lut)
return -EINVAL;
if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
ret = i40e_aq_get_rss_lut(hw, vsi->vsi_id, FALSE,
lut, lut_size);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to get RSS lookup table");
return ret;
}
} else {
uint32_t *lut_dw = (uint32_t *)lut;
uint16_t i, lut_size_dw = lut_size / 4;
for (i = 0; i < lut_size_dw; i++)
lut_dw[i] = I40E_READ_REG(hw, I40E_VFQF_HLUT(i));
}
return 0;
}
static int
i40evf_set_rss_lut(struct i40e_vsi *vsi, uint8_t *lut, uint16_t lut_size)
{
struct i40e_vf *vf;
struct i40e_hw *hw;
int ret;
if (!vsi || !lut)
return -EINVAL;
vf = I40E_VSI_TO_VF(vsi);
hw = I40E_VSI_TO_HW(vsi);
if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
ret = i40e_aq_set_rss_lut(hw, vsi->vsi_id, FALSE,
lut, lut_size);
if (ret) {
PMD_DRV_LOG(ERR, "Failed to set RSS lookup table");
return ret;
}
} else {
uint32_t *lut_dw = (uint32_t *)lut;
uint16_t i, lut_size_dw = lut_size / 4;
for (i = 0; i < lut_size_dw; i++)
I40E_WRITE_REG(hw, I40E_VFQF_HLUT(i), lut_dw[i]);
I40EVF_WRITE_FLUSH(hw);
}
return 0;
}
static int
i40evf_dev_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint8_t *lut;
uint16_t i, idx, shift;
int ret;
if (reta_size != ETH_RSS_RETA_SIZE_64) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number of hardware can "
"support (%d)", reta_size, ETH_RSS_RETA_SIZE_64);
return -EINVAL;
}
lut = rte_zmalloc("i40e_rss_lut", reta_size, 0);
if (!lut) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
ret = i40evf_get_rss_lut(&vf->vsi, lut, reta_size);
if (ret)
goto out;
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
lut[i] = reta_conf[idx].reta[shift];
}
ret = i40evf_set_rss_lut(&vf->vsi, lut, reta_size);
out:
rte_free(lut);
return ret;
}
static int
i40evf_dev_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint16_t i, idx, shift;
uint8_t *lut;
int ret;
if (reta_size != ETH_RSS_RETA_SIZE_64) {
PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
"(%d) doesn't match the number of hardware can "
"support (%d)", reta_size, ETH_RSS_RETA_SIZE_64);
return -EINVAL;
}
lut = rte_zmalloc("i40e_rss_lut", reta_size, 0);
if (!lut) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
ret = i40evf_get_rss_lut(&vf->vsi, lut, reta_size);
if (ret)
goto out;
for (i = 0; i < reta_size; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (reta_conf[idx].mask & (1ULL << shift))
reta_conf[idx].reta[shift] = lut[i];
}
out:
rte_free(lut);
return ret;
}
static int
i40evf_set_rss_key(struct i40e_vsi *vsi, uint8_t *key, uint8_t key_len)
{
struct i40e_vf *vf = I40E_VSI_TO_VF(vsi);
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int ret = 0;
if (!key || key_len == 0) {
PMD_DRV_LOG(DEBUG, "No key to be configured");
return 0;
} else if (key_len != (I40E_VFQF_HKEY_MAX_INDEX + 1) *
sizeof(uint32_t)) {
PMD_DRV_LOG(ERR, "Invalid key length %u", key_len);
return -EINVAL;
}
if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
struct i40e_aqc_get_set_rss_key_data *key_dw =
(struct i40e_aqc_get_set_rss_key_data *)key;
ret = i40e_aq_set_rss_key(hw, vsi->vsi_id, key_dw);
if (ret)
PMD_INIT_LOG(ERR, "Failed to configure RSS key "
"via AQ");
} else {
uint32_t *hash_key = (uint32_t *)key;
uint16_t i;
for (i = 0; i <= I40E_VFQF_HKEY_MAX_INDEX; i++)
i40e_write_rx_ctl(hw, I40E_VFQF_HKEY(i), hash_key[i]);
I40EVF_WRITE_FLUSH(hw);
}
return ret;
}
static int
i40evf_get_rss_key(struct i40e_vsi *vsi, uint8_t *key, uint8_t *key_len)
{
struct i40e_vf *vf = I40E_VSI_TO_VF(vsi);
struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
int ret;
if (!key || !key_len)
return -EINVAL;
if (vf->flags & I40E_FLAG_RSS_AQ_CAPABLE) {
ret = i40e_aq_get_rss_key(hw, vsi->vsi_id,
(struct i40e_aqc_get_set_rss_key_data *)key);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to get RSS key via AQ");
return ret;
}
} else {
uint32_t *key_dw = (uint32_t *)key;
uint16_t i;
for (i = 0; i <= I40E_VFQF_HKEY_MAX_INDEX; i++)
key_dw[i] = i40e_read_rx_ctl(hw, I40E_VFQF_HKEY(i));
}
*key_len = (I40E_VFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t);
return 0;
}
static int
i40evf_hw_rss_hash_set(struct i40e_vf *vf, struct rte_eth_rss_conf *rss_conf)
{
struct i40e_hw *hw = I40E_VF_TO_HW(vf);
uint64_t hena;
int ret;
ret = i40evf_set_rss_key(&vf->vsi, rss_conf->rss_key,
rss_conf->rss_key_len);
if (ret)
return ret;
hena = i40e_config_hena(vf->adapter, rss_conf->rss_hf);
i40e_write_rx_ctl(hw, I40E_VFQF_HENA(0), (uint32_t)hena);
i40e_write_rx_ctl(hw, I40E_VFQF_HENA(1), (uint32_t)(hena >> 32));
I40EVF_WRITE_FLUSH(hw);
return 0;
}
static void
i40evf_disable_rss(struct i40e_vf *vf)
{
struct i40e_hw *hw = I40E_VF_TO_HW(vf);
i40e_write_rx_ctl(hw, I40E_VFQF_HENA(0), 0);
i40e_write_rx_ctl(hw, I40E_VFQF_HENA(1), 0);
I40EVF_WRITE_FLUSH(hw);
}
static int
i40evf_config_rss(struct i40e_vf *vf)
{
struct i40e_hw *hw = I40E_VF_TO_HW(vf);
struct rte_eth_rss_conf rss_conf;
uint32_t i, j, lut = 0, nb_q = (I40E_VFQF_HLUT_MAX_INDEX + 1) * 4;
uint32_t rss_lut_size = (I40E_VFQF_HLUT1_MAX_INDEX + 1) * 4;
uint16_t num;
uint8_t *lut_info;
int ret;
if (vf->dev_data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
i40evf_disable_rss(vf);
PMD_DRV_LOG(DEBUG, "RSS not configured");
return 0;
}
num = RTE_MIN(vf->dev_data->nb_rx_queues, I40E_MAX_QP_NUM_PER_VF);
/* Fill out the look up table */
if (!(vf->flags & I40E_FLAG_RSS_AQ_CAPABLE)) {
for (i = 0, j = 0; i < nb_q; i++, j++) {
if (j >= num)
j = 0;
lut = (lut << 8) | j;
if ((i & 3) == 3)
I40E_WRITE_REG(hw, I40E_VFQF_HLUT(i >> 2), lut);
}
} else {
lut_info = rte_zmalloc("i40e_rss_lut", rss_lut_size, 0);
if (!lut_info) {
PMD_DRV_LOG(ERR, "No memory can be allocated");
return -ENOMEM;
}
for (i = 0; i < rss_lut_size; i++)
lut_info[i] = i % num;
ret = i40evf_set_rss_lut(&vf->vsi, lut_info,
rss_lut_size);
rte_free(lut_info);
if (ret)
return ret;
}
rss_conf = vf->dev_data->dev_conf.rx_adv_conf.rss_conf;
if ((rss_conf.rss_hf & vf->adapter->flow_types_mask) == 0) {
i40evf_disable_rss(vf);
PMD_DRV_LOG(DEBUG, "No hash flag is set");
return 0;
}
if (rss_conf.rss_key == NULL || rss_conf.rss_key_len <
(I40E_VFQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t)) {
/* Calculate the default hash key */
for (i = 0; i <= I40E_VFQF_HKEY_MAX_INDEX; i++)
rss_key_default[i] = (uint32_t)rte_rand();
rss_conf.rss_key = (uint8_t *)rss_key_default;
rss_conf.rss_key_len = (I40E_VFQF_HKEY_MAX_INDEX + 1) *
sizeof(uint32_t);
}
return i40evf_hw_rss_hash_set(vf, &rss_conf);
}
static int
i40evf_dev_rss_hash_update(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t rss_hf = rss_conf->rss_hf & vf->adapter->flow_types_mask;
uint64_t hena;
hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(0));
hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(1))) << 32;
if (!(hena & vf->adapter->pctypes_mask)) { /* RSS disabled */
if (rss_hf != 0) /* Enable RSS */
return -EINVAL;
return 0;
}
/* RSS enabled */
if (rss_hf == 0) /* Disable RSS */
return -EINVAL;
return i40evf_hw_rss_hash_set(vf, rss_conf);
}
static int
i40evf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
struct rte_eth_rss_conf *rss_conf)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint64_t hena;
i40evf_get_rss_key(&vf->vsi, rss_conf->rss_key,
&rss_conf->rss_key_len);
hena = (uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(0));
hena |= ((uint64_t)i40e_read_rx_ctl(hw, I40E_VFQF_HENA(1))) << 32;
rss_conf->rss_hf = i40e_parse_hena(vf->adapter, hena);
return 0;
}
static int
i40evf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct rte_eth_dev_data *dev_data = vf->dev_data;
uint32_t frame_size = mtu + I40E_ETH_OVERHEAD;
int ret = 0;
/* check if mtu is within the allowed range */
if (mtu < RTE_ETHER_MIN_MTU || frame_size > I40E_FRAME_SIZE_MAX)
return -EINVAL;
/* mtu setting is forbidden if port is start */
if (dev_data->dev_started) {
PMD_DRV_LOG(ERR, "port %d must be stopped before configuration",
dev_data->port_id);
return -EBUSY;
}
if (frame_size > I40E_ETH_MAX_LEN)
dev_data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_JUMBO_FRAME;
else
dev_data->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_JUMBO_FRAME;
dev_data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
return ret;
}
static int
i40evf_set_default_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr)
{
struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_ether_addr *old_addr;
int ret;
old_addr = (struct rte_ether_addr *)hw->mac.addr;
if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
PMD_DRV_LOG(ERR, "Tried to set invalid MAC address.");
return -EINVAL;
}
if (rte_is_same_ether_addr(old_addr, mac_addr))
return 0;
i40evf_add_del_eth_addr(dev, old_addr, FALSE, VIRTCHNL_ETHER_ADDR_PRIMARY);
ret = i40evf_add_del_eth_addr(dev, mac_addr, TRUE, VIRTCHNL_ETHER_ADDR_PRIMARY);
if (ret)
return -EIO;
rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
return 0;
}
static int
i40evf_add_del_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addrs,
uint32_t mc_addrs_num, bool add)
{
struct virtchnl_ether_addr_list *list;
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
uint8_t cmd_buffer[sizeof(struct virtchnl_ether_addr_list) +
(I40E_NUM_MACADDR_MAX * sizeof(struct virtchnl_ether_addr))];
uint32_t i;
int err;
struct vf_cmd_info args;
if (mc_addrs == NULL || mc_addrs_num == 0)
return 0;
if (mc_addrs_num > I40E_NUM_MACADDR_MAX)
return -EINVAL;
list = (struct virtchnl_ether_addr_list *)cmd_buffer;
list->vsi_id = vf->vsi_res->vsi_id;
list->num_elements = mc_addrs_num;
for (i = 0; i < mc_addrs_num; i++) {
if (!I40E_IS_MULTICAST(mc_addrs[i].addr_bytes)) {
PMD_DRV_LOG(ERR, "Invalid mac:%x:%x:%x:%x:%x:%x",
mc_addrs[i].addr_bytes[0],
mc_addrs[i].addr_bytes[1],
mc_addrs[i].addr_bytes[2],
mc_addrs[i].addr_bytes[3],
mc_addrs[i].addr_bytes[4],
mc_addrs[i].addr_bytes[5]);
return -EINVAL;
}
memcpy(list->list[i].addr, mc_addrs[i].addr_bytes,
sizeof(list->list[i].addr));
list->list[i].type = VIRTCHNL_ETHER_ADDR_EXTRA;
}
args.ops = add ? VIRTCHNL_OP_ADD_ETH_ADDR : VIRTCHNL_OP_DEL_ETH_ADDR;
args.in_args = cmd_buffer;
args.in_args_size = sizeof(struct virtchnl_ether_addr_list) +
i * sizeof(struct virtchnl_ether_addr);
args.out_buffer = vf->aq_resp;
args.out_size = I40E_AQ_BUF_SZ;
err = i40evf_execute_vf_cmd(dev, &args);
if (err) {
PMD_DRV_LOG(ERR, "fail to execute command %s",
add ? "OP_ADD_ETH_ADDR" : "OP_DEL_ETH_ADDR");
return err;
}
return 0;
}
static int
i40evf_set_mc_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addrs,
uint32_t mc_addrs_num)
{
struct i40e_vf *vf = I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
int err;
/* flush previous addresses */
err = i40evf_add_del_mc_addr_list(dev, vf->mc_addrs, vf->mc_addrs_num,
FALSE);
if (err)
return err;
vf->mc_addrs_num = 0;
/* add new ones */
err = i40evf_add_del_mc_addr_list(dev, mc_addrs, mc_addrs_num,
TRUE);
if (err)
return err;
vf->mc_addrs_num = mc_addrs_num;
memcpy(vf->mc_addrs, mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
return 0;
}
bool
is_i40evf_supported(struct rte_eth_dev *dev)
{
return is_device_supported(dev, &rte_i40evf_pmd);
}