7eef9194ab
Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2009 lines
47 KiB
C
2009 lines
47 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <rte_acl.h>
|
|
#include "tb_mem.h"
|
|
#include "acl.h"
|
|
|
|
#define ACL_POOL_ALIGN 8
|
|
#define ACL_POOL_ALLOC_MIN 0x800000
|
|
|
|
/* number of pointers per alloc */
|
|
#define ACL_PTR_ALLOC 32
|
|
|
|
/* variable for dividing rule sets */
|
|
#define NODE_MAX 2500
|
|
#define NODE_PERCENTAGE (0.40)
|
|
#define RULE_PERCENTAGE (0.40)
|
|
|
|
/* TALLY are statistics per field */
|
|
enum {
|
|
TALLY_0 = 0, /* number of rules that are 0% or more wild. */
|
|
TALLY_25, /* number of rules that are 25% or more wild. */
|
|
TALLY_50,
|
|
TALLY_75,
|
|
TALLY_100,
|
|
TALLY_DEACTIVATED, /* deactivated fields (100% wild in all rules). */
|
|
TALLY_DEPTH,
|
|
/* number of rules that are 100% wild for this field and higher. */
|
|
TALLY_NUM
|
|
};
|
|
|
|
static const uint32_t wild_limits[TALLY_DEACTIVATED] = {0, 25, 50, 75, 100};
|
|
|
|
enum {
|
|
ACL_INTERSECT_NONE = 0,
|
|
ACL_INTERSECT_A = 1, /* set A is a superset of A and B intersect */
|
|
ACL_INTERSECT_B = 2, /* set B is a superset of A and B intersect */
|
|
ACL_INTERSECT = 4, /* sets A and B intersect */
|
|
};
|
|
|
|
enum {
|
|
ACL_PRIORITY_EQUAL = 0,
|
|
ACL_PRIORITY_NODE_A = 1,
|
|
ACL_PRIORITY_NODE_B = 2,
|
|
ACL_PRIORITY_MIXED = 3
|
|
};
|
|
|
|
|
|
struct acl_mem_block {
|
|
uint32_t block_size;
|
|
void *mem_ptr;
|
|
};
|
|
|
|
#define MEM_BLOCK_NUM 16
|
|
|
|
/* Single ACL rule, build representation.*/
|
|
struct rte_acl_build_rule {
|
|
struct rte_acl_build_rule *next;
|
|
struct rte_acl_config *config;
|
|
/**< configuration for each field in the rule. */
|
|
const struct rte_acl_rule *f;
|
|
uint32_t *wildness;
|
|
};
|
|
|
|
/* Context for build phase */
|
|
struct acl_build_context {
|
|
const struct rte_acl_ctx *acx;
|
|
struct rte_acl_build_rule *build_rules;
|
|
struct rte_acl_config cfg;
|
|
uint32_t node;
|
|
uint32_t num_nodes;
|
|
uint32_t category_mask;
|
|
uint32_t num_rules;
|
|
uint32_t node_id;
|
|
uint32_t src_mask;
|
|
uint32_t num_build_rules;
|
|
uint32_t num_tries;
|
|
struct tb_mem_pool pool;
|
|
struct rte_acl_trie tries[RTE_ACL_MAX_TRIES];
|
|
struct rte_acl_bld_trie bld_tries[RTE_ACL_MAX_TRIES];
|
|
uint32_t data_indexes[RTE_ACL_MAX_TRIES][RTE_ACL_MAX_FIELDS];
|
|
|
|
/* memory free lists for nodes and blocks used for node ptrs */
|
|
struct acl_mem_block blocks[MEM_BLOCK_NUM];
|
|
struct rte_acl_node *node_free_list;
|
|
};
|
|
|
|
static int acl_merge_trie(struct acl_build_context *context,
|
|
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
|
|
uint32_t level, uint32_t subtree_id, struct rte_acl_node **node_c);
|
|
|
|
static int acl_merge(struct acl_build_context *context,
|
|
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
|
|
int move, int a_subset, int level);
|
|
|
|
static void
|
|
acl_deref_ptr(struct acl_build_context *context,
|
|
struct rte_acl_node *node, int index);
|
|
|
|
static void *
|
|
acl_build_alloc(struct acl_build_context *context, size_t n, size_t s)
|
|
{
|
|
uint32_t m;
|
|
void *p;
|
|
size_t alloc_size = n * s;
|
|
|
|
/*
|
|
* look for memory in free lists
|
|
*/
|
|
for (m = 0; m < RTE_DIM(context->blocks); m++) {
|
|
if (context->blocks[m].block_size ==
|
|
alloc_size && context->blocks[m].mem_ptr != NULL) {
|
|
p = context->blocks[m].mem_ptr;
|
|
context->blocks[m].mem_ptr = *((void **)p);
|
|
memset(p, 0, alloc_size);
|
|
return p;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* return allocation from memory pool
|
|
*/
|
|
p = tb_alloc(&context->pool, alloc_size);
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Free memory blocks (kept in context for reuse).
|
|
*/
|
|
static void
|
|
acl_build_free(struct acl_build_context *context, size_t s, void *p)
|
|
{
|
|
uint32_t n;
|
|
|
|
for (n = 0; n < RTE_DIM(context->blocks); n++) {
|
|
if (context->blocks[n].block_size == s) {
|
|
*((void **)p) = context->blocks[n].mem_ptr;
|
|
context->blocks[n].mem_ptr = p;
|
|
return;
|
|
}
|
|
}
|
|
for (n = 0; n < RTE_DIM(context->blocks); n++) {
|
|
if (context->blocks[n].block_size == 0) {
|
|
context->blocks[n].block_size = s;
|
|
*((void **)p) = NULL;
|
|
context->blocks[n].mem_ptr = p;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize a new node.
|
|
*/
|
|
static struct rte_acl_node *
|
|
acl_alloc_node(struct acl_build_context *context, int level)
|
|
{
|
|
struct rte_acl_node *node;
|
|
|
|
if (context->node_free_list != NULL) {
|
|
node = context->node_free_list;
|
|
context->node_free_list = node->next;
|
|
memset(node, 0, sizeof(struct rte_acl_node));
|
|
} else {
|
|
node = acl_build_alloc(context, sizeof(struct rte_acl_node), 1);
|
|
}
|
|
|
|
if (node != NULL) {
|
|
node->num_ptrs = 0;
|
|
node->level = level;
|
|
node->node_type = RTE_ACL_NODE_UNDEFINED;
|
|
node->node_index = RTE_ACL_NODE_UNDEFINED;
|
|
context->num_nodes++;
|
|
node->id = context->node_id++;
|
|
}
|
|
return node;
|
|
}
|
|
|
|
/*
|
|
* Dereference all nodes to which this node points
|
|
*/
|
|
static void
|
|
acl_free_node(struct acl_build_context *context,
|
|
struct rte_acl_node *node)
|
|
{
|
|
uint32_t n;
|
|
|
|
if (node->prev != NULL)
|
|
node->prev->next = NULL;
|
|
for (n = 0; n < node->num_ptrs; n++)
|
|
acl_deref_ptr(context, node, n);
|
|
|
|
/* free mrt if this is a match node */
|
|
if (node->mrt != NULL) {
|
|
acl_build_free(context, sizeof(struct rte_acl_match_results),
|
|
node->mrt);
|
|
node->mrt = NULL;
|
|
}
|
|
|
|
/* free transitions to other nodes */
|
|
if (node->ptrs != NULL) {
|
|
acl_build_free(context,
|
|
node->max_ptrs * sizeof(struct rte_acl_ptr_set),
|
|
node->ptrs);
|
|
node->ptrs = NULL;
|
|
}
|
|
|
|
/* put it on the free list */
|
|
context->num_nodes--;
|
|
node->next = context->node_free_list;
|
|
context->node_free_list = node;
|
|
}
|
|
|
|
|
|
/*
|
|
* Include src bitset in dst bitset
|
|
*/
|
|
static void
|
|
acl_include(struct rte_acl_bitset *dst, struct rte_acl_bitset *src, bits_t mask)
|
|
{
|
|
uint32_t n;
|
|
|
|
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
|
|
dst->bits[n] = (dst->bits[n] & mask) | src->bits[n];
|
|
}
|
|
|
|
/*
|
|
* Set dst to bits of src1 that are not in src2
|
|
*/
|
|
static int
|
|
acl_exclude(struct rte_acl_bitset *dst,
|
|
struct rte_acl_bitset *src1,
|
|
struct rte_acl_bitset *src2)
|
|
{
|
|
uint32_t n;
|
|
bits_t all_bits = 0;
|
|
|
|
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
|
|
dst->bits[n] = src1->bits[n] & ~src2->bits[n];
|
|
all_bits |= dst->bits[n];
|
|
}
|
|
return all_bits != 0;
|
|
}
|
|
|
|
/*
|
|
* Add a pointer (ptr) to a node.
|
|
*/
|
|
static int
|
|
acl_add_ptr(struct acl_build_context *context,
|
|
struct rte_acl_node *node,
|
|
struct rte_acl_node *ptr,
|
|
struct rte_acl_bitset *bits)
|
|
{
|
|
uint32_t n, num_ptrs;
|
|
struct rte_acl_ptr_set *ptrs = NULL;
|
|
|
|
/*
|
|
* If there's already a pointer to the same node, just add to the bitset
|
|
*/
|
|
for (n = 0; n < node->num_ptrs; n++) {
|
|
if (node->ptrs[n].ptr != NULL) {
|
|
if (node->ptrs[n].ptr == ptr) {
|
|
acl_include(&node->ptrs[n].values, bits, -1);
|
|
acl_include(&node->values, bits, -1);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if there's no room for another pointer, make room */
|
|
if (node->num_ptrs >= node->max_ptrs) {
|
|
/* add room for more pointers */
|
|
num_ptrs = node->max_ptrs + ACL_PTR_ALLOC;
|
|
ptrs = acl_build_alloc(context, num_ptrs, sizeof(*ptrs));
|
|
if (ptrs == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* copy current points to new memory allocation */
|
|
if (node->ptrs != NULL) {
|
|
memcpy(ptrs, node->ptrs,
|
|
node->num_ptrs * sizeof(*ptrs));
|
|
acl_build_free(context, node->max_ptrs * sizeof(*ptrs),
|
|
node->ptrs);
|
|
}
|
|
node->ptrs = ptrs;
|
|
node->max_ptrs = num_ptrs;
|
|
}
|
|
|
|
/* Find available ptr and add a new pointer to this node */
|
|
for (n = node->min_add; n < node->max_ptrs; n++) {
|
|
if (node->ptrs[n].ptr == NULL) {
|
|
node->ptrs[n].ptr = ptr;
|
|
acl_include(&node->ptrs[n].values, bits, 0);
|
|
acl_include(&node->values, bits, -1);
|
|
if (ptr != NULL)
|
|
ptr->ref_count++;
|
|
if (node->num_ptrs <= n)
|
|
node->num_ptrs = n + 1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a pointer for a range of values
|
|
*/
|
|
static int
|
|
acl_add_ptr_range(struct acl_build_context *context,
|
|
struct rte_acl_node *root,
|
|
struct rte_acl_node *node,
|
|
uint8_t low,
|
|
uint8_t high)
|
|
{
|
|
uint32_t n;
|
|
struct rte_acl_bitset bitset;
|
|
|
|
/* clear the bitset values */
|
|
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
|
|
bitset.bits[n] = 0;
|
|
|
|
/* for each bit in range, add bit to set */
|
|
for (n = 0; n < UINT8_MAX + 1; n++)
|
|
if (n >= low && n <= high)
|
|
bitset.bits[n / (sizeof(bits_t) * 8)] |=
|
|
1 << (n % (sizeof(bits_t) * 8));
|
|
|
|
return acl_add_ptr(context, root, node, &bitset);
|
|
}
|
|
|
|
/*
|
|
* Generate a bitset from a byte value and mask.
|
|
*/
|
|
static int
|
|
acl_gen_mask(struct rte_acl_bitset *bitset, uint32_t value, uint32_t mask)
|
|
{
|
|
int range = 0;
|
|
uint32_t n;
|
|
|
|
/* clear the bitset values */
|
|
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
|
|
bitset->bits[n] = 0;
|
|
|
|
/* for each bit in value/mask, add bit to set */
|
|
for (n = 0; n < UINT8_MAX + 1; n++) {
|
|
if ((n & mask) == value) {
|
|
range++;
|
|
bitset->bits[n / (sizeof(bits_t) * 8)] |=
|
|
1 << (n % (sizeof(bits_t) * 8));
|
|
}
|
|
}
|
|
return range;
|
|
}
|
|
|
|
/*
|
|
* Determine how A and B intersect.
|
|
* Determine if A and/or B are supersets of the intersection.
|
|
*/
|
|
static int
|
|
acl_intersect_type(struct rte_acl_bitset *a_bits,
|
|
struct rte_acl_bitset *b_bits,
|
|
struct rte_acl_bitset *intersect)
|
|
{
|
|
uint32_t n;
|
|
bits_t intersect_bits = 0;
|
|
bits_t a_superset = 0;
|
|
bits_t b_superset = 0;
|
|
|
|
/*
|
|
* calculate and store intersection and check if A and/or B have
|
|
* bits outside the intersection (superset)
|
|
*/
|
|
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
|
|
intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n];
|
|
a_superset |= a_bits->bits[n] ^ intersect->bits[n];
|
|
b_superset |= b_bits->bits[n] ^ intersect->bits[n];
|
|
intersect_bits |= intersect->bits[n];
|
|
}
|
|
|
|
n = (intersect_bits == 0 ? ACL_INTERSECT_NONE : ACL_INTERSECT) |
|
|
(b_superset == 0 ? 0 : ACL_INTERSECT_B) |
|
|
(a_superset == 0 ? 0 : ACL_INTERSECT_A);
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Check if all bits in the bitset are on
|
|
*/
|
|
static int
|
|
acl_full(struct rte_acl_node *node)
|
|
{
|
|
uint32_t n;
|
|
bits_t all_bits = -1;
|
|
|
|
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
|
|
all_bits &= node->values.bits[n];
|
|
return all_bits == -1;
|
|
}
|
|
|
|
/*
|
|
* Check if all bits in the bitset are off
|
|
*/
|
|
static int
|
|
acl_empty(struct rte_acl_node *node)
|
|
{
|
|
uint32_t n;
|
|
|
|
if (node->ref_count == 0) {
|
|
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
|
|
if (0 != node->values.bits[n])
|
|
return 0;
|
|
}
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute intersection of A and B
|
|
* return 1 if there is an intersection else 0.
|
|
*/
|
|
static int
|
|
acl_intersect(struct rte_acl_bitset *a_bits,
|
|
struct rte_acl_bitset *b_bits,
|
|
struct rte_acl_bitset *intersect)
|
|
{
|
|
uint32_t n;
|
|
bits_t all_bits = 0;
|
|
|
|
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
|
|
intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n];
|
|
all_bits |= intersect->bits[n];
|
|
}
|
|
return all_bits != 0;
|
|
}
|
|
|
|
/*
|
|
* Duplicate a node
|
|
*/
|
|
static struct rte_acl_node *
|
|
acl_dup_node(struct acl_build_context *context, struct rte_acl_node *node)
|
|
{
|
|
uint32_t n;
|
|
struct rte_acl_node *next;
|
|
|
|
next = acl_alloc_node(context, node->level);
|
|
if (next == NULL)
|
|
return NULL;
|
|
|
|
/* allocate the pointers */
|
|
if (node->num_ptrs > 0) {
|
|
next->ptrs = acl_build_alloc(context,
|
|
node->max_ptrs,
|
|
sizeof(struct rte_acl_ptr_set));
|
|
if (next->ptrs == NULL)
|
|
return NULL;
|
|
next->max_ptrs = node->max_ptrs;
|
|
}
|
|
|
|
/* copy over the pointers */
|
|
for (n = 0; n < node->num_ptrs; n++) {
|
|
if (node->ptrs[n].ptr != NULL) {
|
|
next->ptrs[n].ptr = node->ptrs[n].ptr;
|
|
next->ptrs[n].ptr->ref_count++;
|
|
acl_include(&next->ptrs[n].values,
|
|
&node->ptrs[n].values, -1);
|
|
}
|
|
}
|
|
|
|
next->num_ptrs = node->num_ptrs;
|
|
|
|
/* copy over node's match results */
|
|
if (node->match_flag == 0)
|
|
next->match_flag = 0;
|
|
else {
|
|
next->match_flag = -1;
|
|
next->mrt = acl_build_alloc(context, 1, sizeof(*next->mrt));
|
|
memcpy(next->mrt, node->mrt, sizeof(*next->mrt));
|
|
}
|
|
|
|
/* copy over node's bitset */
|
|
acl_include(&next->values, &node->values, -1);
|
|
|
|
node->next = next;
|
|
next->prev = node;
|
|
|
|
return next;
|
|
}
|
|
|
|
/*
|
|
* Dereference a pointer from a node
|
|
*/
|
|
static void
|
|
acl_deref_ptr(struct acl_build_context *context,
|
|
struct rte_acl_node *node, int index)
|
|
{
|
|
struct rte_acl_node *ref_node;
|
|
|
|
/* De-reference the node at the specified pointer */
|
|
if (node != NULL && node->ptrs[index].ptr != NULL) {
|
|
ref_node = node->ptrs[index].ptr;
|
|
ref_node->ref_count--;
|
|
if (ref_node->ref_count == 0)
|
|
acl_free_node(context, ref_node);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Exclude bitset from a node pointer
|
|
* returns 0 if poiter was deref'd
|
|
* 1 otherwise.
|
|
*/
|
|
static int
|
|
acl_exclude_ptr(struct acl_build_context *context,
|
|
struct rte_acl_node *node,
|
|
int index,
|
|
struct rte_acl_bitset *b_bits)
|
|
{
|
|
int retval = 1;
|
|
|
|
/*
|
|
* remove bitset from node pointer and deref
|
|
* if the bitset becomes empty.
|
|
*/
|
|
if (!acl_exclude(&node->ptrs[index].values,
|
|
&node->ptrs[index].values,
|
|
b_bits)) {
|
|
acl_deref_ptr(context, node, index);
|
|
node->ptrs[index].ptr = NULL;
|
|
retval = 0;
|
|
}
|
|
|
|
/* exclude bits from the composite bits for the node */
|
|
acl_exclude(&node->values, &node->values, b_bits);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Remove a bitset from src ptr and move remaining ptr to dst
|
|
*/
|
|
static int
|
|
acl_move_ptr(struct acl_build_context *context,
|
|
struct rte_acl_node *dst,
|
|
struct rte_acl_node *src,
|
|
int index,
|
|
struct rte_acl_bitset *b_bits)
|
|
{
|
|
int rc;
|
|
|
|
if (b_bits != NULL)
|
|
if (!acl_exclude_ptr(context, src, index, b_bits))
|
|
return 0;
|
|
|
|
/* add src pointer to dst node */
|
|
rc = acl_add_ptr(context, dst, src->ptrs[index].ptr,
|
|
&src->ptrs[index].values);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* remove ptr from src */
|
|
acl_exclude_ptr(context, src, index, &src->ptrs[index].values);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* acl_exclude rte_acl_bitset from src and copy remaining pointer to dst
|
|
*/
|
|
static int
|
|
acl_copy_ptr(struct acl_build_context *context,
|
|
struct rte_acl_node *dst,
|
|
struct rte_acl_node *src,
|
|
int index,
|
|
struct rte_acl_bitset *b_bits)
|
|
{
|
|
int rc;
|
|
struct rte_acl_bitset bits;
|
|
|
|
if (b_bits != NULL)
|
|
if (!acl_exclude(&bits, &src->ptrs[index].values, b_bits))
|
|
return 0;
|
|
|
|
rc = acl_add_ptr(context, dst, src->ptrs[index].ptr, &bits);
|
|
if (rc < 0)
|
|
return rc;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Fill in gaps in ptrs list with the ptr at the end of the list
|
|
*/
|
|
static void
|
|
acl_compact_node_ptrs(struct rte_acl_node *node_a)
|
|
{
|
|
uint32_t n;
|
|
int min_add = node_a->min_add;
|
|
|
|
while (node_a->num_ptrs > 0 &&
|
|
node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL)
|
|
node_a->num_ptrs--;
|
|
|
|
for (n = min_add; n + 1 < node_a->num_ptrs; n++) {
|
|
|
|
/* if this entry is empty */
|
|
if (node_a->ptrs[n].ptr == NULL) {
|
|
|
|
/* move the last pointer to this entry */
|
|
acl_include(&node_a->ptrs[n].values,
|
|
&node_a->ptrs[node_a->num_ptrs - 1].values,
|
|
0);
|
|
node_a->ptrs[n].ptr =
|
|
node_a->ptrs[node_a->num_ptrs - 1].ptr;
|
|
|
|
/*
|
|
* mark the end as empty and adjust the number
|
|
* of used pointer enum_tries
|
|
*/
|
|
node_a->ptrs[node_a->num_ptrs - 1].ptr = NULL;
|
|
while (node_a->num_ptrs > 0 &&
|
|
node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL)
|
|
node_a->num_ptrs--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* acl_merge helper routine.
|
|
*/
|
|
static int
|
|
acl_merge_intersect(struct acl_build_context *context,
|
|
struct rte_acl_node *node_a, uint32_t idx_a,
|
|
struct rte_acl_node *node_b, uint32_t idx_b,
|
|
int next_move, int level,
|
|
struct rte_acl_bitset *intersect_ptr)
|
|
{
|
|
struct rte_acl_node *node_c;
|
|
|
|
/* Duplicate A for intersection */
|
|
node_c = acl_dup_node(context, node_a->ptrs[idx_a].ptr);
|
|
if (node_c == NULL)
|
|
return -1;
|
|
|
|
/* Remove intersection from A */
|
|
acl_exclude_ptr(context, node_a, idx_a, intersect_ptr);
|
|
|
|
/*
|
|
* Added link from A to C for all transitions
|
|
* in the intersection
|
|
*/
|
|
if (acl_add_ptr(context, node_a, node_c, intersect_ptr) < 0)
|
|
return -1;
|
|
|
|
/* merge B->node into C */
|
|
return acl_merge(context, node_c, node_b->ptrs[idx_b].ptr, next_move,
|
|
0, level + 1);
|
|
}
|
|
|
|
|
|
/*
|
|
* Merge the children of nodes A and B together.
|
|
*
|
|
* if match node
|
|
* For each category
|
|
* node A result = highest priority result
|
|
* if any pointers in A intersect with any in B
|
|
* For each intersection
|
|
* C = copy of node that A points to
|
|
* remove intersection from A pointer
|
|
* add a pointer to A that points to C for the intersection
|
|
* Merge C and node that B points to
|
|
* Compact the pointers in A and B
|
|
* if move flag
|
|
* If B has only one reference
|
|
* Move B pointers to A
|
|
* else
|
|
* Copy B pointers to A
|
|
*/
|
|
static int
|
|
acl_merge(struct acl_build_context *context,
|
|
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
|
|
int move, int a_subset, int level)
|
|
{
|
|
uint32_t n, m, ptrs_a, ptrs_b;
|
|
uint32_t min_add_a, min_add_b;
|
|
int intersect_type;
|
|
int node_intersect_type;
|
|
int b_full, next_move, rc;
|
|
struct rte_acl_bitset intersect_values;
|
|
struct rte_acl_bitset intersect_ptr;
|
|
|
|
min_add_a = 0;
|
|
min_add_b = 0;
|
|
intersect_type = 0;
|
|
node_intersect_type = 0;
|
|
|
|
if (level == 0)
|
|
a_subset = 1;
|
|
|
|
/*
|
|
* Resolve match priorities
|
|
*/
|
|
if (node_a->match_flag != 0 || node_b->match_flag != 0) {
|
|
|
|
if (node_a->match_flag == 0 || node_b->match_flag == 0)
|
|
RTE_LOG(ERR, ACL, "Not both matches\n");
|
|
|
|
if (node_b->match_flag < node_a->match_flag)
|
|
RTE_LOG(ERR, ACL, "Not same match\n");
|
|
|
|
for (n = 0; n < context->cfg.num_categories; n++) {
|
|
if (node_a->mrt->priority[n] <
|
|
node_b->mrt->priority[n]) {
|
|
node_a->mrt->priority[n] =
|
|
node_b->mrt->priority[n];
|
|
node_a->mrt->results[n] =
|
|
node_b->mrt->results[n];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the two node transitions intersect then merge the transitions.
|
|
* Check intersection for entire node (all pointers)
|
|
*/
|
|
node_intersect_type = acl_intersect_type(&node_a->values,
|
|
&node_b->values,
|
|
&intersect_values);
|
|
|
|
if (node_intersect_type & ACL_INTERSECT) {
|
|
|
|
b_full = acl_full(node_b);
|
|
|
|
min_add_b = node_b->min_add;
|
|
node_b->min_add = node_b->num_ptrs;
|
|
ptrs_b = node_b->num_ptrs;
|
|
|
|
min_add_a = node_a->min_add;
|
|
node_a->min_add = node_a->num_ptrs;
|
|
ptrs_a = node_a->num_ptrs;
|
|
|
|
for (n = 0; n < ptrs_a; n++) {
|
|
for (m = 0; m < ptrs_b; m++) {
|
|
|
|
if (node_a->ptrs[n].ptr == NULL ||
|
|
node_b->ptrs[m].ptr == NULL ||
|
|
node_a->ptrs[n].ptr ==
|
|
node_b->ptrs[m].ptr)
|
|
continue;
|
|
|
|
intersect_type = acl_intersect_type(
|
|
&node_a->ptrs[n].values,
|
|
&node_b->ptrs[m].values,
|
|
&intersect_ptr);
|
|
|
|
/* If this node is not a 'match' node */
|
|
if ((intersect_type & ACL_INTERSECT) &&
|
|
(context->cfg.num_categories != 1 ||
|
|
!(node_a->ptrs[n].ptr->match_flag))) {
|
|
|
|
/*
|
|
* next merge is a 'move' pointer,
|
|
* if this one is and B is a
|
|
* subset of the intersection.
|
|
*/
|
|
next_move = move &&
|
|
(intersect_type &
|
|
ACL_INTERSECT_B) == 0;
|
|
|
|
if (a_subset && b_full) {
|
|
rc = acl_merge(context,
|
|
node_a->ptrs[n].ptr,
|
|
node_b->ptrs[m].ptr,
|
|
next_move,
|
|
1, level + 1);
|
|
if (rc != 0)
|
|
return rc;
|
|
} else {
|
|
rc = acl_merge_intersect(
|
|
context, node_a, n,
|
|
node_b, m, next_move,
|
|
level, &intersect_ptr);
|
|
if (rc != 0)
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compact pointers */
|
|
node_a->min_add = min_add_a;
|
|
acl_compact_node_ptrs(node_a);
|
|
node_b->min_add = min_add_b;
|
|
acl_compact_node_ptrs(node_b);
|
|
|
|
/*
|
|
* Either COPY or MOVE pointers from B to A
|
|
*/
|
|
acl_intersect(&node_a->values, &node_b->values, &intersect_values);
|
|
|
|
if (move && node_b->ref_count == 1) {
|
|
for (m = 0; m < node_b->num_ptrs; m++) {
|
|
if (node_b->ptrs[m].ptr != NULL &&
|
|
acl_move_ptr(context, node_a, node_b, m,
|
|
&intersect_values) < 0)
|
|
return -1;
|
|
}
|
|
} else {
|
|
for (m = 0; m < node_b->num_ptrs; m++) {
|
|
if (node_b->ptrs[m].ptr != NULL &&
|
|
acl_copy_ptr(context, node_a, node_b, m,
|
|
&intersect_values) < 0)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free node if its empty (no longer used)
|
|
*/
|
|
if (acl_empty(node_b))
|
|
acl_free_node(context, node_b);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
acl_resolve_leaf(struct acl_build_context *context,
|
|
struct rte_acl_node *node_a,
|
|
struct rte_acl_node *node_b,
|
|
struct rte_acl_node **node_c)
|
|
{
|
|
uint32_t n;
|
|
int combined_priority = ACL_PRIORITY_EQUAL;
|
|
|
|
for (n = 0; n < context->cfg.num_categories; n++) {
|
|
if (node_a->mrt->priority[n] != node_b->mrt->priority[n]) {
|
|
combined_priority |= (node_a->mrt->priority[n] >
|
|
node_b->mrt->priority[n]) ?
|
|
ACL_PRIORITY_NODE_A : ACL_PRIORITY_NODE_B;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if node a is higher or equal priority for all categories,
|
|
* then return node_a.
|
|
*/
|
|
if (combined_priority == ACL_PRIORITY_NODE_A ||
|
|
combined_priority == ACL_PRIORITY_EQUAL) {
|
|
*node_c = node_a;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* if node b is higher or equal priority for all categories,
|
|
* then return node_b.
|
|
*/
|
|
if (combined_priority == ACL_PRIORITY_NODE_B) {
|
|
*node_c = node_b;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* mixed priorities - create a new node with the highest priority
|
|
* for each category.
|
|
*/
|
|
|
|
/* force new duplication. */
|
|
node_a->next = NULL;
|
|
|
|
*node_c = acl_dup_node(context, node_a);
|
|
for (n = 0; n < context->cfg.num_categories; n++) {
|
|
if ((*node_c)->mrt->priority[n] < node_b->mrt->priority[n]) {
|
|
(*node_c)->mrt->priority[n] = node_b->mrt->priority[n];
|
|
(*node_c)->mrt->results[n] = node_b->mrt->results[n];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Within the existing trie structure, determine which nodes are
|
|
* part of the subtree of the trie to be merged.
|
|
*
|
|
* For these purposes, a subtree is defined as the set of nodes that
|
|
* are 1) not a superset of the intersection with the same level of
|
|
* the merging tree, and 2) do not have any references from a node
|
|
* outside of the subtree.
|
|
*/
|
|
static void
|
|
mark_subtree(struct rte_acl_node *node,
|
|
struct rte_acl_bitset *level_bits,
|
|
uint32_t level,
|
|
uint32_t id)
|
|
{
|
|
uint32_t n;
|
|
|
|
/* mark this node as part of the subtree */
|
|
node->subtree_id = id | RTE_ACL_SUBTREE_NODE;
|
|
|
|
for (n = 0; n < node->num_ptrs; n++) {
|
|
|
|
if (node->ptrs[n].ptr != NULL) {
|
|
|
|
struct rte_acl_bitset intersect_bits;
|
|
int intersect;
|
|
|
|
/*
|
|
* Item 1) :
|
|
* check if this child pointer is not a superset of the
|
|
* same level of the merging tree.
|
|
*/
|
|
intersect = acl_intersect_type(&node->ptrs[n].values,
|
|
&level_bits[level],
|
|
&intersect_bits);
|
|
|
|
if ((intersect & ACL_INTERSECT_A) == 0) {
|
|
|
|
struct rte_acl_node *child = node->ptrs[n].ptr;
|
|
|
|
/*
|
|
* reset subtree reference if this is
|
|
* the first visit by this subtree.
|
|
*/
|
|
if (child->subtree_id != id) {
|
|
child->subtree_id = id;
|
|
child->subtree_ref_count = 0;
|
|
}
|
|
|
|
/*
|
|
* Item 2) :
|
|
* increment the subtree reference count and if
|
|
* all references are from this subtree then
|
|
* recurse to that child
|
|
*/
|
|
child->subtree_ref_count++;
|
|
if (child->subtree_ref_count ==
|
|
child->ref_count)
|
|
mark_subtree(child, level_bits,
|
|
level + 1, id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build the set of bits that define the set of transitions
|
|
* for each level of a trie.
|
|
*/
|
|
static void
|
|
build_subset_mask(struct rte_acl_node *node,
|
|
struct rte_acl_bitset *level_bits,
|
|
int level)
|
|
{
|
|
uint32_t n;
|
|
|
|
/* Add this node's transitions to the set for this level */
|
|
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
|
|
level_bits[level].bits[n] &= node->values.bits[n];
|
|
|
|
/* For each child, add the transitions for the next level */
|
|
for (n = 0; n < node->num_ptrs; n++)
|
|
if (node->ptrs[n].ptr != NULL)
|
|
build_subset_mask(node->ptrs[n].ptr, level_bits,
|
|
level + 1);
|
|
}
|
|
|
|
|
|
/*
|
|
* Merge nodes A and B together,
|
|
* returns a node that is the path for the intersection
|
|
*
|
|
* If match node (leaf on trie)
|
|
* For each category
|
|
* return node = highest priority result
|
|
*
|
|
* Create C as a duplicate of A to point to child intersections
|
|
* If any pointers in C intersect with any in B
|
|
* For each intersection
|
|
* merge children
|
|
* remove intersection from C pointer
|
|
* add a pointer from C to child intersection node
|
|
* Compact the pointers in A and B
|
|
* Copy any B pointers that are outside of the intersection to C
|
|
* If C has no references to the B trie
|
|
* free C and return A
|
|
* Else If C has no references to the A trie
|
|
* free C and return B
|
|
* Else
|
|
* return C
|
|
*/
|
|
static int
|
|
acl_merge_trie(struct acl_build_context *context,
|
|
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
|
|
uint32_t level, uint32_t subtree_id, struct rte_acl_node **return_c)
|
|
{
|
|
uint32_t n, m, ptrs_c, ptrs_b;
|
|
uint32_t min_add_c, min_add_b;
|
|
int node_intersect_type;
|
|
struct rte_acl_bitset node_intersect;
|
|
struct rte_acl_node *node_c;
|
|
struct rte_acl_node *node_a_next;
|
|
int node_b_refs;
|
|
int node_a_refs;
|
|
|
|
node_c = node_a;
|
|
node_a_next = node_a->next;
|
|
min_add_c = 0;
|
|
min_add_b = 0;
|
|
node_a_refs = node_a->num_ptrs;
|
|
node_b_refs = 0;
|
|
node_intersect_type = 0;
|
|
|
|
/* Resolve leaf nodes (matches) */
|
|
if (node_a->match_flag != 0) {
|
|
acl_resolve_leaf(context, node_a, node_b, return_c);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create node C as a copy of node A if node A is not part of
|
|
* a subtree of the merging tree (node B side). Otherwise,
|
|
* just use node A.
|
|
*/
|
|
if (level > 0 &&
|
|
node_a->subtree_id !=
|
|
(subtree_id | RTE_ACL_SUBTREE_NODE)) {
|
|
node_c = acl_dup_node(context, node_a);
|
|
node_c->subtree_id = subtree_id | RTE_ACL_SUBTREE_NODE;
|
|
}
|
|
|
|
/*
|
|
* If the two node transitions intersect then merge the transitions.
|
|
* Check intersection for entire node (all pointers)
|
|
*/
|
|
node_intersect_type = acl_intersect_type(&node_c->values,
|
|
&node_b->values,
|
|
&node_intersect);
|
|
|
|
if (node_intersect_type & ACL_INTERSECT) {
|
|
|
|
min_add_b = node_b->min_add;
|
|
node_b->min_add = node_b->num_ptrs;
|
|
ptrs_b = node_b->num_ptrs;
|
|
|
|
min_add_c = node_c->min_add;
|
|
node_c->min_add = node_c->num_ptrs;
|
|
ptrs_c = node_c->num_ptrs;
|
|
|
|
for (n = 0; n < ptrs_c; n++) {
|
|
if (node_c->ptrs[n].ptr == NULL) {
|
|
node_a_refs--;
|
|
continue;
|
|
}
|
|
node_c->ptrs[n].ptr->next = NULL;
|
|
for (m = 0; m < ptrs_b; m++) {
|
|
|
|
struct rte_acl_bitset child_intersect;
|
|
int child_intersect_type;
|
|
struct rte_acl_node *child_node_c = NULL;
|
|
|
|
if (node_b->ptrs[m].ptr == NULL ||
|
|
node_c->ptrs[n].ptr ==
|
|
node_b->ptrs[m].ptr)
|
|
continue;
|
|
|
|
child_intersect_type = acl_intersect_type(
|
|
&node_c->ptrs[n].values,
|
|
&node_b->ptrs[m].values,
|
|
&child_intersect);
|
|
|
|
if ((child_intersect_type & ACL_INTERSECT) !=
|
|
0) {
|
|
if (acl_merge_trie(context,
|
|
node_c->ptrs[n].ptr,
|
|
node_b->ptrs[m].ptr,
|
|
level + 1, subtree_id,
|
|
&child_node_c))
|
|
return 1;
|
|
|
|
if (child_node_c != NULL &&
|
|
child_node_c !=
|
|
node_c->ptrs[n].ptr) {
|
|
|
|
node_b_refs++;
|
|
|
|
/*
|
|
* Added link from C to
|
|
* child_C for all transitions
|
|
* in the intersection.
|
|
*/
|
|
acl_add_ptr(context, node_c,
|
|
child_node_c,
|
|
&child_intersect);
|
|
|
|
/*
|
|
* inc refs if pointer is not
|
|
* to node b.
|
|
*/
|
|
node_a_refs += (child_node_c !=
|
|
node_b->ptrs[m].ptr);
|
|
|
|
/*
|
|
* Remove intersection from C
|
|
* pointer.
|
|
*/
|
|
if (!acl_exclude(
|
|
&node_c->ptrs[n].values,
|
|
&node_c->ptrs[n].values,
|
|
&child_intersect)) {
|
|
acl_deref_ptr(context,
|
|
node_c, n);
|
|
node_c->ptrs[n].ptr =
|
|
NULL;
|
|
node_a_refs--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compact pointers */
|
|
node_c->min_add = min_add_c;
|
|
acl_compact_node_ptrs(node_c);
|
|
node_b->min_add = min_add_b;
|
|
acl_compact_node_ptrs(node_b);
|
|
}
|
|
|
|
/*
|
|
* Copy pointers outside of the intersection from B to C
|
|
*/
|
|
if ((node_intersect_type & ACL_INTERSECT_B) != 0) {
|
|
node_b_refs++;
|
|
for (m = 0; m < node_b->num_ptrs; m++)
|
|
if (node_b->ptrs[m].ptr != NULL)
|
|
acl_copy_ptr(context, node_c,
|
|
node_b, m, &node_intersect);
|
|
}
|
|
|
|
/*
|
|
* Free node C if top of trie is contained in A or B
|
|
* if node C is a duplicate of node A &&
|
|
* node C was not an existing duplicate
|
|
*/
|
|
if (node_c != node_a && node_c != node_a_next) {
|
|
|
|
/*
|
|
* if the intersection has no references to the
|
|
* B side, then it is contained in A
|
|
*/
|
|
if (node_b_refs == 0) {
|
|
acl_free_node(context, node_c);
|
|
node_c = node_a;
|
|
} else {
|
|
/*
|
|
* if the intersection has no references to the
|
|
* A side, then it is contained in B.
|
|
*/
|
|
if (node_a_refs == 0) {
|
|
acl_free_node(context, node_c);
|
|
node_c = node_b;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (return_c != NULL)
|
|
*return_c = node_c;
|
|
|
|
if (level == 0)
|
|
acl_free_node(context, node_b);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reset current runtime fields before next build:
|
|
* - free allocated RT memory.
|
|
* - reset all RT related fields to zero.
|
|
*/
|
|
static void
|
|
acl_build_reset(struct rte_acl_ctx *ctx)
|
|
{
|
|
rte_free(ctx->mem);
|
|
memset(&ctx->num_categories, 0,
|
|
sizeof(*ctx) - offsetof(struct rte_acl_ctx, num_categories));
|
|
}
|
|
|
|
static void
|
|
acl_gen_range(struct acl_build_context *context,
|
|
const uint8_t *hi, const uint8_t *lo, int size, int level,
|
|
struct rte_acl_node *root, struct rte_acl_node *end)
|
|
{
|
|
struct rte_acl_node *node, *prev;
|
|
uint32_t n;
|
|
|
|
prev = root;
|
|
for (n = size - 1; n > 0; n--) {
|
|
node = acl_alloc_node(context, level++);
|
|
acl_add_ptr_range(context, prev, node, lo[n], hi[n]);
|
|
prev = node;
|
|
}
|
|
acl_add_ptr_range(context, prev, end, lo[0], hi[0]);
|
|
}
|
|
|
|
static struct rte_acl_node *
|
|
acl_gen_range_trie(struct acl_build_context *context,
|
|
const void *min, const void *max,
|
|
int size, int level, struct rte_acl_node **pend)
|
|
{
|
|
int32_t n;
|
|
struct rte_acl_node *root;
|
|
const uint8_t *lo = (const uint8_t *)min;
|
|
const uint8_t *hi = (const uint8_t *)max;
|
|
|
|
*pend = acl_alloc_node(context, level+size);
|
|
root = acl_alloc_node(context, level++);
|
|
|
|
if (lo[size - 1] == hi[size - 1]) {
|
|
acl_gen_range(context, hi, lo, size, level, root, *pend);
|
|
} else {
|
|
uint8_t limit_lo[64];
|
|
uint8_t limit_hi[64];
|
|
uint8_t hi_ff = UINT8_MAX;
|
|
uint8_t lo_00 = 0;
|
|
|
|
memset(limit_lo, 0, RTE_DIM(limit_lo));
|
|
memset(limit_hi, UINT8_MAX, RTE_DIM(limit_hi));
|
|
|
|
for (n = size - 2; n >= 0; n--) {
|
|
hi_ff = (uint8_t)(hi_ff & hi[n]);
|
|
lo_00 = (uint8_t)(lo_00 | lo[n]);
|
|
}
|
|
|
|
if (hi_ff != UINT8_MAX) {
|
|
limit_lo[size - 1] = hi[size - 1];
|
|
acl_gen_range(context, hi, limit_lo, size, level,
|
|
root, *pend);
|
|
}
|
|
|
|
if (lo_00 != 0) {
|
|
limit_hi[size - 1] = lo[size - 1];
|
|
acl_gen_range(context, limit_hi, lo, size, level,
|
|
root, *pend);
|
|
}
|
|
|
|
if (hi[size - 1] - lo[size - 1] > 1 ||
|
|
lo_00 == 0 ||
|
|
hi_ff == UINT8_MAX) {
|
|
limit_lo[size-1] = (uint8_t)(lo[size-1] + (lo_00 != 0));
|
|
limit_hi[size-1] = (uint8_t)(hi[size-1] -
|
|
(hi_ff != UINT8_MAX));
|
|
acl_gen_range(context, limit_hi, limit_lo, size,
|
|
level, root, *pend);
|
|
}
|
|
}
|
|
return root;
|
|
}
|
|
|
|
static struct rte_acl_node *
|
|
acl_gen_mask_trie(struct acl_build_context *context,
|
|
const void *value, const void *mask,
|
|
int size, int level, struct rte_acl_node **pend)
|
|
{
|
|
int32_t n;
|
|
struct rte_acl_node *root;
|
|
struct rte_acl_node *node, *prev;
|
|
struct rte_acl_bitset bits;
|
|
const uint8_t *val = (const uint8_t *)value;
|
|
const uint8_t *msk = (const uint8_t *)mask;
|
|
|
|
root = acl_alloc_node(context, level++);
|
|
prev = root;
|
|
|
|
for (n = size - 1; n >= 0; n--) {
|
|
node = acl_alloc_node(context, level++);
|
|
acl_gen_mask(&bits, val[n] & msk[n], msk[n]);
|
|
acl_add_ptr(context, prev, node, &bits);
|
|
prev = node;
|
|
}
|
|
|
|
*pend = prev;
|
|
return root;
|
|
}
|
|
|
|
static struct rte_acl_node *
|
|
build_trie(struct acl_build_context *context, struct rte_acl_build_rule *head,
|
|
struct rte_acl_build_rule **last, uint32_t *count)
|
|
{
|
|
uint32_t n, m;
|
|
int field_index, node_count;
|
|
struct rte_acl_node *trie;
|
|
struct rte_acl_build_rule *prev, *rule;
|
|
struct rte_acl_node *end, *merge, *root, *end_prev;
|
|
const struct rte_acl_field *fld;
|
|
struct rte_acl_bitset level_bits[RTE_ACL_MAX_LEVELS];
|
|
|
|
prev = head;
|
|
rule = head;
|
|
|
|
trie = acl_alloc_node(context, 0);
|
|
if (trie == NULL)
|
|
return NULL;
|
|
|
|
while (rule != NULL) {
|
|
|
|
root = acl_alloc_node(context, 0);
|
|
if (root == NULL)
|
|
return NULL;
|
|
|
|
root->ref_count = 1;
|
|
end = root;
|
|
|
|
for (n = 0; n < rule->config->num_fields; n++) {
|
|
|
|
field_index = rule->config->defs[n].field_index;
|
|
fld = rule->f->field + field_index;
|
|
end_prev = end;
|
|
|
|
/* build a mini-trie for this field */
|
|
switch (rule->config->defs[n].type) {
|
|
|
|
case RTE_ACL_FIELD_TYPE_BITMASK:
|
|
merge = acl_gen_mask_trie(context,
|
|
&fld->value,
|
|
&fld->mask_range,
|
|
rule->config->defs[n].size,
|
|
end->level + 1,
|
|
&end);
|
|
break;
|
|
|
|
case RTE_ACL_FIELD_TYPE_MASK:
|
|
{
|
|
/*
|
|
* set msb for the size of the field and
|
|
* all higher bits.
|
|
*/
|
|
uint64_t mask;
|
|
|
|
if (fld->mask_range.u32 == 0) {
|
|
mask = 0;
|
|
|
|
/*
|
|
* arithmetic right shift for the length of
|
|
* the mask less the msb.
|
|
*/
|
|
} else {
|
|
mask = -1 <<
|
|
(rule->config->defs[n].size *
|
|
CHAR_BIT - fld->mask_range.u32);
|
|
}
|
|
|
|
/* gen a mini-trie for this field */
|
|
merge = acl_gen_mask_trie(context,
|
|
&fld->value,
|
|
(char *)&mask,
|
|
rule->config->defs[n].size,
|
|
end->level + 1,
|
|
&end);
|
|
}
|
|
break;
|
|
|
|
case RTE_ACL_FIELD_TYPE_RANGE:
|
|
merge = acl_gen_range_trie(context,
|
|
&rule->f->field[field_index].value,
|
|
&rule->f->field[field_index].mask_range,
|
|
rule->config->defs[n].size,
|
|
end->level + 1,
|
|
&end);
|
|
break;
|
|
|
|
default:
|
|
RTE_LOG(ERR, ACL,
|
|
"Error in rule[%u] type - %hhu\n",
|
|
rule->f->data.userdata,
|
|
rule->config->defs[n].type);
|
|
return NULL;
|
|
}
|
|
|
|
/* merge this field on to the end of the rule */
|
|
if (acl_merge_trie(context, end_prev, merge, 0,
|
|
0, NULL) != 0) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
end->match_flag = ++context->num_build_rules;
|
|
|
|
/*
|
|
* Setup the results for this rule.
|
|
* The result and priority of each category.
|
|
*/
|
|
if (end->mrt == NULL &&
|
|
(end->mrt = acl_build_alloc(context, 1,
|
|
sizeof(*end->mrt))) == NULL)
|
|
return NULL;
|
|
|
|
for (m = 0; m < context->cfg.num_categories; m++) {
|
|
if (rule->f->data.category_mask & (1 << m)) {
|
|
end->mrt->results[m] = rule->f->data.userdata;
|
|
end->mrt->priority[m] = rule->f->data.priority;
|
|
} else {
|
|
end->mrt->results[m] = 0;
|
|
end->mrt->priority[m] = 0;
|
|
}
|
|
}
|
|
|
|
node_count = context->num_nodes;
|
|
|
|
memset(&level_bits[0], UINT8_MAX, sizeof(level_bits));
|
|
build_subset_mask(root, &level_bits[0], 0);
|
|
mark_subtree(trie, &level_bits[0], 0, end->match_flag);
|
|
(*count)++;
|
|
|
|
/* merge this rule into the trie */
|
|
if (acl_merge_trie(context, trie, root, 0, end->match_flag,
|
|
NULL))
|
|
return NULL;
|
|
|
|
node_count = context->num_nodes - node_count;
|
|
if (node_count > NODE_MAX) {
|
|
*last = prev;
|
|
return trie;
|
|
}
|
|
|
|
prev = rule;
|
|
rule = rule->next;
|
|
}
|
|
|
|
*last = NULL;
|
|
return trie;
|
|
}
|
|
|
|
static int
|
|
acl_calc_wildness(struct rte_acl_build_rule *head,
|
|
const struct rte_acl_config *config)
|
|
{
|
|
uint32_t n;
|
|
struct rte_acl_build_rule *rule;
|
|
|
|
for (rule = head; rule != NULL; rule = rule->next) {
|
|
|
|
for (n = 0; n < config->num_fields; n++) {
|
|
|
|
double wild = 0;
|
|
double size = CHAR_BIT * config->defs[n].size;
|
|
int field_index = config->defs[n].field_index;
|
|
const struct rte_acl_field *fld = rule->f->field +
|
|
field_index;
|
|
|
|
switch (rule->config->defs[n].type) {
|
|
case RTE_ACL_FIELD_TYPE_BITMASK:
|
|
wild = (size - __builtin_popcount(
|
|
fld->mask_range.u8)) /
|
|
size;
|
|
break;
|
|
|
|
case RTE_ACL_FIELD_TYPE_MASK:
|
|
wild = (size - fld->mask_range.u32) / size;
|
|
break;
|
|
|
|
case RTE_ACL_FIELD_TYPE_RANGE:
|
|
switch (rule->config->defs[n].size) {
|
|
case sizeof(uint8_t):
|
|
wild = ((double)fld->mask_range.u8 -
|
|
fld->value.u8) / UINT8_MAX;
|
|
break;
|
|
case sizeof(uint16_t):
|
|
wild = ((double)fld->mask_range.u16 -
|
|
fld->value.u16) / UINT16_MAX;
|
|
break;
|
|
case sizeof(uint32_t):
|
|
wild = ((double)fld->mask_range.u32 -
|
|
fld->value.u32) / UINT32_MAX;
|
|
break;
|
|
case sizeof(uint64_t):
|
|
wild = ((double)fld->mask_range.u64 -
|
|
fld->value.u64) / UINT64_MAX;
|
|
break;
|
|
default:
|
|
RTE_LOG(ERR, ACL,
|
|
"%s(rule: %u) invalid %u-th "
|
|
"field, type: %hhu, "
|
|
"unknown size: %hhu\n",
|
|
__func__,
|
|
rule->f->data.userdata,
|
|
n,
|
|
rule->config->defs[n].type,
|
|
rule->config->defs[n].size);
|
|
return -EINVAL;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
RTE_LOG(ERR, ACL,
|
|
"%s(rule: %u) invalid %u-th "
|
|
"field, unknown type: %hhu\n",
|
|
__func__,
|
|
rule->f->data.userdata,
|
|
n,
|
|
rule->config->defs[n].type);
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
rule->wildness[field_index] = (uint32_t)(wild * 100);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
acl_rule_stats(struct rte_acl_build_rule *head, struct rte_acl_config *config,
|
|
uint32_t *wild_limit)
|
|
{
|
|
int min;
|
|
struct rte_acl_build_rule *rule;
|
|
uint32_t n, m, fields_deactivated = 0;
|
|
uint32_t start = 0, deactivate = 0;
|
|
int tally[RTE_ACL_MAX_LEVELS][TALLY_NUM];
|
|
|
|
memset(tally, 0, sizeof(tally));
|
|
|
|
for (rule = head; rule != NULL; rule = rule->next) {
|
|
|
|
for (n = 0; n < config->num_fields; n++) {
|
|
uint32_t field_index = config->defs[n].field_index;
|
|
|
|
tally[n][TALLY_0]++;
|
|
for (m = 1; m < RTE_DIM(wild_limits); m++) {
|
|
if (rule->wildness[field_index] >=
|
|
wild_limits[m])
|
|
tally[n][m]++;
|
|
}
|
|
}
|
|
|
|
for (n = config->num_fields - 1; n > 0; n--) {
|
|
uint32_t field_index = config->defs[n].field_index;
|
|
|
|
if (rule->wildness[field_index] == 100)
|
|
tally[n][TALLY_DEPTH]++;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look for any field that is always wild and drop it from the config
|
|
* Only deactivate if all fields for a given input loop are deactivated.
|
|
*/
|
|
for (n = 1; n < config->num_fields; n++) {
|
|
if (config->defs[n].input_index !=
|
|
config->defs[n - 1].input_index) {
|
|
for (m = start; m < n; m++)
|
|
tally[m][TALLY_DEACTIVATED] = deactivate;
|
|
fields_deactivated += deactivate;
|
|
start = n;
|
|
deactivate = 1;
|
|
}
|
|
|
|
/* if the field is not always completely wild */
|
|
if (tally[n][TALLY_100] != tally[n][TALLY_0])
|
|
deactivate = 0;
|
|
}
|
|
|
|
for (m = start; m < n; m++)
|
|
tally[m][TALLY_DEACTIVATED] = deactivate;
|
|
|
|
fields_deactivated += deactivate;
|
|
|
|
/* remove deactivated fields */
|
|
if (fields_deactivated) {
|
|
uint32_t k, l = 0;
|
|
|
|
for (k = 0; k < config->num_fields; k++) {
|
|
if (tally[k][TALLY_DEACTIVATED] == 0) {
|
|
memcpy(&tally[l][0], &tally[k][0],
|
|
TALLY_NUM * sizeof(tally[0][0]));
|
|
memcpy(&config->defs[l++],
|
|
&config->defs[k],
|
|
sizeof(struct rte_acl_field_def));
|
|
}
|
|
}
|
|
config->num_fields = l;
|
|
}
|
|
|
|
min = RTE_ACL_SINGLE_TRIE_SIZE;
|
|
if (config->num_fields == 2)
|
|
min *= 4;
|
|
else if (config->num_fields == 3)
|
|
min *= 3;
|
|
else if (config->num_fields == 4)
|
|
min *= 2;
|
|
|
|
if (tally[0][TALLY_0] < min)
|
|
return 0;
|
|
for (n = 0; n < config->num_fields; n++)
|
|
wild_limit[n] = 0;
|
|
|
|
/*
|
|
* If trailing fields are 100% wild, group those together.
|
|
* This allows the search length of the trie to be shortened.
|
|
*/
|
|
for (n = 1; n < config->num_fields; n++) {
|
|
|
|
double rule_percentage = (double)tally[n][TALLY_DEPTH] /
|
|
tally[n][0];
|
|
|
|
if (rule_percentage > RULE_PERCENTAGE) {
|
|
/* if it crosses an input boundary then round up */
|
|
while (config->defs[n - 1].input_index ==
|
|
config->defs[n].input_index)
|
|
n++;
|
|
|
|
/* set the limit for selecting rules */
|
|
while (n < config->num_fields)
|
|
wild_limit[n++] = 100;
|
|
|
|
if (wild_limit[n - 1] == 100)
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* look for the most wild that's 40% or more of the rules */
|
|
for (n = 1; n < config->num_fields; n++) {
|
|
for (m = TALLY_100; m > 0; m--) {
|
|
|
|
double rule_percentage = (double)tally[n][m] /
|
|
tally[n][0];
|
|
|
|
if (tally[n][TALLY_DEACTIVATED] == 0 &&
|
|
tally[n][TALLY_0] >
|
|
RTE_ACL_SINGLE_TRIE_SIZE &&
|
|
rule_percentage > NODE_PERCENTAGE &&
|
|
rule_percentage < 0.80) {
|
|
wild_limit[n] = wild_limits[m];
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
order(struct rte_acl_build_rule **insert, struct rte_acl_build_rule *rule)
|
|
{
|
|
uint32_t n;
|
|
struct rte_acl_build_rule *left = *insert;
|
|
|
|
if (left == NULL)
|
|
return 0;
|
|
|
|
for (n = 1; n < left->config->num_fields; n++) {
|
|
int field_index = left->config->defs[n].field_index;
|
|
|
|
if (left->wildness[field_index] != rule->wildness[field_index])
|
|
return (left->wildness[field_index] >=
|
|
rule->wildness[field_index]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct rte_acl_build_rule *
|
|
ordered_insert_rule(struct rte_acl_build_rule *head,
|
|
struct rte_acl_build_rule *rule)
|
|
{
|
|
struct rte_acl_build_rule **insert;
|
|
|
|
if (rule == NULL)
|
|
return head;
|
|
|
|
rule->next = head;
|
|
if (head == NULL)
|
|
return rule;
|
|
|
|
insert = &head;
|
|
while (order(insert, rule))
|
|
insert = &(*insert)->next;
|
|
|
|
rule->next = *insert;
|
|
*insert = rule;
|
|
return head;
|
|
}
|
|
|
|
static struct rte_acl_build_rule *
|
|
sort_rules(struct rte_acl_build_rule *head)
|
|
{
|
|
struct rte_acl_build_rule *rule, *reordered_head = NULL;
|
|
struct rte_acl_build_rule *last_rule = NULL;
|
|
|
|
for (rule = head; rule != NULL; rule = rule->next) {
|
|
reordered_head = ordered_insert_rule(reordered_head, last_rule);
|
|
last_rule = rule;
|
|
}
|
|
|
|
if (last_rule != reordered_head)
|
|
reordered_head = ordered_insert_rule(reordered_head, last_rule);
|
|
|
|
return reordered_head;
|
|
}
|
|
|
|
static uint32_t
|
|
acl_build_index(const struct rte_acl_config *config, uint32_t *data_index)
|
|
{
|
|
uint32_t n, m;
|
|
int32_t last_header;
|
|
|
|
m = 0;
|
|
last_header = -1;
|
|
|
|
for (n = 0; n < config->num_fields; n++) {
|
|
if (last_header != config->defs[n].input_index) {
|
|
last_header = config->defs[n].input_index;
|
|
data_index[m++] = config->defs[n].offset;
|
|
}
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
static int
|
|
acl_build_tries(struct acl_build_context *context,
|
|
struct rte_acl_build_rule *head)
|
|
{
|
|
int32_t rc;
|
|
uint32_t n, m, num_tries;
|
|
struct rte_acl_config *config;
|
|
struct rte_acl_build_rule *last, *rule;
|
|
uint32_t wild_limit[RTE_ACL_MAX_LEVELS];
|
|
struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES];
|
|
|
|
config = head->config;
|
|
rule = head;
|
|
rule_sets[0] = head;
|
|
num_tries = 1;
|
|
|
|
/* initialize tries */
|
|
for (n = 0; n < RTE_DIM(context->tries); n++) {
|
|
context->tries[n].type = RTE_ACL_UNUSED_TRIE;
|
|
context->bld_tries[n].trie = NULL;
|
|
context->tries[n].count = 0;
|
|
context->tries[n].smallest = INT32_MAX;
|
|
}
|
|
|
|
context->tries[0].type = RTE_ACL_FULL_TRIE;
|
|
|
|
/* calc wildness of each field of each rule */
|
|
rc = acl_calc_wildness(head, config);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
n = acl_rule_stats(head, config, &wild_limit[0]);
|
|
|
|
/* put all rules that fit the wildness criteria into a seperate trie */
|
|
while (n > 0 && num_tries < RTE_ACL_MAX_TRIES) {
|
|
|
|
struct rte_acl_config *new_config;
|
|
struct rte_acl_build_rule **prev = &rule_sets[num_tries - 1];
|
|
struct rte_acl_build_rule *next = head->next;
|
|
|
|
new_config = acl_build_alloc(context, 1, sizeof(*new_config));
|
|
if (new_config == NULL) {
|
|
RTE_LOG(ERR, ACL,
|
|
"Failed to get space for new config\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(new_config, config, sizeof(*new_config));
|
|
config = new_config;
|
|
rule_sets[num_tries] = NULL;
|
|
|
|
for (rule = head; rule != NULL; rule = next) {
|
|
|
|
int move = 1;
|
|
|
|
next = rule->next;
|
|
for (m = 0; m < config->num_fields; m++) {
|
|
int x = config->defs[m].field_index;
|
|
if (rule->wildness[x] < wild_limit[m]) {
|
|
move = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (move) {
|
|
rule->config = new_config;
|
|
rule->next = rule_sets[num_tries];
|
|
rule_sets[num_tries] = rule;
|
|
*prev = next;
|
|
} else
|
|
prev = &rule->next;
|
|
}
|
|
|
|
head = rule_sets[num_tries];
|
|
n = acl_rule_stats(rule_sets[num_tries], config,
|
|
&wild_limit[0]);
|
|
num_tries++;
|
|
}
|
|
|
|
if (n > 0)
|
|
RTE_LOG(DEBUG, ACL,
|
|
"Number of tries(%d) exceeded.\n", RTE_ACL_MAX_TRIES);
|
|
|
|
for (n = 0; n < num_tries; n++) {
|
|
|
|
rule_sets[n] = sort_rules(rule_sets[n]);
|
|
context->tries[n].type = RTE_ACL_FULL_TRIE;
|
|
context->tries[n].count = 0;
|
|
context->tries[n].num_data_indexes =
|
|
acl_build_index(rule_sets[n]->config,
|
|
context->data_indexes[n]);
|
|
context->tries[n].data_index = context->data_indexes[n];
|
|
|
|
context->bld_tries[n].trie =
|
|
build_trie(context, rule_sets[n],
|
|
&last, &context->tries[n].count);
|
|
if (context->bld_tries[n].trie == NULL) {
|
|
RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (last != NULL) {
|
|
rule_sets[num_tries++] = last->next;
|
|
last->next = NULL;
|
|
acl_free_node(context, context->bld_tries[n].trie);
|
|
context->tries[n].count = 0;
|
|
|
|
context->bld_tries[n].trie =
|
|
build_trie(context, rule_sets[n],
|
|
&last, &context->tries[n].count);
|
|
if (context->bld_tries[n].trie == NULL) {
|
|
RTE_LOG(ERR, ACL,
|
|
"Build of %u-th trie failed\n", n);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
}
|
|
|
|
context->num_tries = num_tries;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
acl_build_log(const struct acl_build_context *ctx)
|
|
{
|
|
uint32_t n;
|
|
|
|
RTE_LOG(DEBUG, ACL, "Build phase for ACL \"%s\":\n"
|
|
"memory consumed: %zu\n",
|
|
ctx->acx->name,
|
|
ctx->pool.alloc);
|
|
|
|
for (n = 0; n < RTE_DIM(ctx->tries); n++) {
|
|
if (ctx->tries[n].count != 0)
|
|
RTE_LOG(DEBUG, ACL,
|
|
"trie %u: number of rules: %u\n",
|
|
n, ctx->tries[n].count);
|
|
}
|
|
}
|
|
|
|
static int
|
|
acl_build_rules(struct acl_build_context *bcx)
|
|
{
|
|
struct rte_acl_build_rule *br, *head;
|
|
const struct rte_acl_rule *rule;
|
|
uint32_t *wp;
|
|
uint32_t fn, i, n, num;
|
|
size_t ofs, sz;
|
|
|
|
fn = bcx->cfg.num_fields;
|
|
n = bcx->acx->num_rules;
|
|
ofs = n * sizeof(*br);
|
|
sz = ofs + n * fn * sizeof(*wp);
|
|
|
|
br = tb_alloc(&bcx->pool, sz);
|
|
if (br == NULL) {
|
|
RTE_LOG(ERR, ACL, "ACL context %s: failed to create a copy "
|
|
"of %u build rules (%zu bytes)\n",
|
|
bcx->acx->name, n, sz);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
wp = (uint32_t *)((uintptr_t)br + ofs);
|
|
num = 0;
|
|
head = NULL;
|
|
|
|
for (i = 0; i != n; i++) {
|
|
rule = (const struct rte_acl_rule *)
|
|
((uintptr_t)bcx->acx->rules + bcx->acx->rule_sz * i);
|
|
if ((rule->data.category_mask & bcx->category_mask) != 0) {
|
|
br[num].next = head;
|
|
br[num].config = &bcx->cfg;
|
|
br[num].f = rule;
|
|
br[num].wildness = wp;
|
|
wp += fn;
|
|
head = br + num;
|
|
num++;
|
|
}
|
|
}
|
|
|
|
bcx->num_rules = num;
|
|
bcx->build_rules = head;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy data_indexes for each trie into RT location.
|
|
*/
|
|
static void
|
|
acl_set_data_indexes(struct rte_acl_ctx *ctx)
|
|
{
|
|
uint32_t i, n, ofs;
|
|
|
|
ofs = 0;
|
|
for (i = 0; i != ctx->num_tries; i++) {
|
|
n = ctx->trie[i].num_data_indexes;
|
|
memcpy(ctx->data_indexes + ofs, ctx->trie[i].data_index,
|
|
n * sizeof(ctx->data_indexes[0]));
|
|
ctx->trie[i].data_index = ctx->data_indexes + ofs;
|
|
ofs += n;
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
rte_acl_build(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg)
|
|
{
|
|
int rc;
|
|
struct acl_build_context bcx;
|
|
|
|
if (ctx == NULL || cfg == NULL || cfg->num_categories == 0 ||
|
|
cfg->num_categories > RTE_ACL_MAX_CATEGORIES)
|
|
return -EINVAL;
|
|
|
|
acl_build_reset(ctx);
|
|
|
|
memset(&bcx, 0, sizeof(bcx));
|
|
bcx.acx = ctx;
|
|
bcx.pool.alignment = ACL_POOL_ALIGN;
|
|
bcx.pool.min_alloc = ACL_POOL_ALLOC_MIN;
|
|
bcx.cfg = *cfg;
|
|
bcx.category_mask = LEN2MASK(bcx.cfg.num_categories);
|
|
|
|
|
|
/* Create a build rules copy. */
|
|
rc = acl_build_rules(&bcx);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/* No rules to build for that context+config */
|
|
if (bcx.build_rules == NULL) {
|
|
rc = -EINVAL;
|
|
|
|
/* build internal trie representation. */
|
|
} else if ((rc = acl_build_tries(&bcx, bcx.build_rules)) == 0) {
|
|
|
|
/* allocate and fill run-time structures. */
|
|
rc = rte_acl_gen(ctx, bcx.tries, bcx.bld_tries,
|
|
bcx.num_tries, bcx.cfg.num_categories,
|
|
RTE_ACL_IPV4VLAN_NUM * RTE_DIM(bcx.tries),
|
|
bcx.num_build_rules);
|
|
if (rc == 0) {
|
|
|
|
/* set data indexes. */
|
|
acl_set_data_indexes(ctx);
|
|
|
|
/* copy in build config. */
|
|
ctx->config = *cfg;
|
|
}
|
|
}
|
|
|
|
acl_build_log(&bcx);
|
|
|
|
/* cleanup after build. */
|
|
tb_free_pool(&bcx.pool);
|
|
return rc;
|
|
}
|