numam-dpdk/drivers/net/sfc/sfc_ef10_rx.c
Andrew Rybchenko 638bddc99f net/sfc: implement EF10 native Rx datapath
Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
Reviewed-by: David Riddoch <driddoch@solarflare.com>
2017-04-04 18:59:42 +02:00

713 lines
19 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) 2016 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* EF10 native datapath implementation */
#include <stdbool.h>
#include <rte_byteorder.h>
#include <rte_mbuf_ptype.h>
#include <rte_mbuf.h>
#include <rte_io.h>
#include "efx.h"
#include "efx_types.h"
#include "efx_regs.h"
#include "efx_regs_ef10.h"
#include "sfc_tweak.h"
#include "sfc_dp_rx.h"
#include "sfc_kvargs.h"
#include "sfc_ef10.h"
#define sfc_ef10_rx_err(dpq, ...) \
SFC_DP_LOG(SFC_KVARG_DATAPATH_EF10, ERR, dpq, __VA_ARGS__)
/**
* Alignment requirement for value written to RX WPTR:
* the WPTR must be aligned to an 8 descriptor boundary.
*/
#define SFC_EF10_RX_WPTR_ALIGN 8
/**
* Maximum number of descriptors/buffers in the Rx ring.
* It should guarantee that corresponding event queue never overfill.
* EF10 native datapath uses event queue of the same size as Rx queue.
* Maximum number of events on datapath can be estimated as number of
* Rx queue entries (one event per Rx buffer in the worst case) plus
* Rx error and flush events.
*/
#define SFC_EF10_RXQ_LIMIT(_ndesc) \
((_ndesc) - 1 /* head must not step on tail */ - \
(SFC_EF10_EV_PER_CACHE_LINE - 1) /* max unused EvQ entries */ - \
1 /* Rx error */ - 1 /* flush */)
struct sfc_ef10_rx_sw_desc {
struct rte_mbuf *mbuf;
};
struct sfc_ef10_rxq {
/* Used on data path */
unsigned int flags;
#define SFC_EF10_RXQ_STARTED 0x1
#define SFC_EF10_RXQ_NOT_RUNNING 0x2
#define SFC_EF10_RXQ_EXCEPTION 0x4
#define SFC_EF10_RXQ_RSS_HASH 0x8
unsigned int ptr_mask;
unsigned int prepared;
unsigned int completed;
unsigned int evq_read_ptr;
efx_qword_t *evq_hw_ring;
struct sfc_ef10_rx_sw_desc *sw_ring;
uint64_t rearm_data;
uint16_t prefix_size;
/* Used on refill */
uint16_t buf_size;
unsigned int added;
unsigned int refill_threshold;
struct rte_mempool *refill_mb_pool;
efx_qword_t *rxq_hw_ring;
volatile void *doorbell;
/* Datapath receive queue anchor */
struct sfc_dp_rxq dp;
};
static inline struct sfc_ef10_rxq *
sfc_ef10_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
{
return container_of(dp_rxq, struct sfc_ef10_rxq, dp);
}
static void
sfc_ef10_rx_qpush(struct sfc_ef10_rxq *rxq)
{
efx_dword_t dword;
/* Hardware has alignment restriction for WPTR */
RTE_BUILD_BUG_ON(SFC_RX_REFILL_BULK % SFC_EF10_RX_WPTR_ALIGN != 0);
SFC_ASSERT(RTE_ALIGN(rxq->added, SFC_EF10_RX_WPTR_ALIGN) == rxq->added);
EFX_POPULATE_DWORD_1(dword, ERF_DZ_RX_DESC_WPTR,
rxq->added & rxq->ptr_mask);
/* DMA sync to device is not required */
/*
* rte_write32() has rte_io_wmb() which guarantees that the STORE
* operations (i.e. Rx and event descriptor updates) that precede
* the rte_io_wmb() call are visible to NIC before the STORE
* operations that follow it (i.e. doorbell write).
*/
rte_write32(dword.ed_u32[0], rxq->doorbell);
}
static void
sfc_ef10_rx_qrefill(struct sfc_ef10_rxq *rxq)
{
const unsigned int ptr_mask = rxq->ptr_mask;
const uint32_t buf_size = rxq->buf_size;
unsigned int free_space;
unsigned int bulks;
void *objs[SFC_RX_REFILL_BULK];
unsigned int added = rxq->added;
free_space = SFC_EF10_RXQ_LIMIT(ptr_mask + 1) -
(added - rxq->completed);
if (free_space < rxq->refill_threshold)
return;
bulks = free_space / RTE_DIM(objs);
/* refill_threshold guarantees that bulks is positive */
SFC_ASSERT(bulks > 0);
do {
unsigned int id;
unsigned int i;
if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
RTE_DIM(objs)) < 0)) {
struct rte_eth_dev_data *dev_data =
rte_eth_devices[rxq->dp.dpq.port_id].data;
/*
* It is hardly a safe way to increment counter
* from different contexts, but all PMDs do it.
*/
dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
/* Return if we have posted nothing yet */
if (added == rxq->added)
return;
/* Push posted */
break;
}
for (i = 0, id = added & ptr_mask;
i < RTE_DIM(objs);
++i, ++id) {
struct rte_mbuf *m = objs[i];
struct sfc_ef10_rx_sw_desc *rxd;
phys_addr_t phys_addr;
SFC_ASSERT((id & ~ptr_mask) == 0);
rxd = &rxq->sw_ring[id];
rxd->mbuf = m;
/*
* Avoid writing to mbuf. It is cheaper to do it
* when we receive packet and fill in nearby
* structure members.
*/
phys_addr = rte_mbuf_data_dma_addr_default(m);
EFX_POPULATE_QWORD_2(rxq->rxq_hw_ring[id],
ESF_DZ_RX_KER_BYTE_CNT, buf_size,
ESF_DZ_RX_KER_BUF_ADDR, phys_addr);
}
added += RTE_DIM(objs);
} while (--bulks > 0);
SFC_ASSERT(rxq->added != added);
rxq->added = added;
sfc_ef10_rx_qpush(rxq);
}
static void
sfc_ef10_rx_prefetch_next(struct sfc_ef10_rxq *rxq, unsigned int next_id)
{
struct rte_mbuf *next_mbuf;
/* Prefetch next bunch of software descriptors */
if ((next_id % (RTE_CACHE_LINE_SIZE / sizeof(rxq->sw_ring[0]))) == 0)
rte_prefetch0(&rxq->sw_ring[next_id]);
/*
* It looks strange to prefetch depending on previous prefetch
* data, but measurements show that it is really efficient and
* increases packet rate.
*/
next_mbuf = rxq->sw_ring[next_id].mbuf;
if (likely(next_mbuf != NULL)) {
/* Prefetch the next mbuf structure */
rte_mbuf_prefetch_part1(next_mbuf);
/* Prefetch pseudo header of the next packet */
/* data_off is not filled in yet */
/* Yes, data could be not ready yet, but we hope */
rte_prefetch0((uint8_t *)next_mbuf->buf_addr +
RTE_PKTMBUF_HEADROOM);
}
}
static uint16_t
sfc_ef10_rx_prepared(struct sfc_ef10_rxq *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t n_rx_pkts = RTE_MIN(nb_pkts, rxq->prepared);
unsigned int completed = rxq->completed;
unsigned int i;
rxq->prepared -= n_rx_pkts;
rxq->completed = completed + n_rx_pkts;
for (i = 0; i < n_rx_pkts; ++i, ++completed)
rx_pkts[i] = rxq->sw_ring[completed & rxq->ptr_mask].mbuf;
return n_rx_pkts;
}
static void
sfc_ef10_rx_ev_to_offloads(struct sfc_ef10_rxq *rxq, const efx_qword_t rx_ev,
struct rte_mbuf *m)
{
uint32_t l2_ptype = 0;
uint32_t l3_ptype = 0;
uint32_t l4_ptype = 0;
uint64_t ol_flags = 0;
if (unlikely(EFX_TEST_QWORD_BIT(rx_ev, ESF_DZ_RX_PARSE_INCOMPLETE_LBN)))
goto done;
switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_ETH_TAG_CLASS)) {
case ESE_DZ_ETH_TAG_CLASS_NONE:
l2_ptype = RTE_PTYPE_L2_ETHER;
break;
case ESE_DZ_ETH_TAG_CLASS_VLAN1:
l2_ptype = RTE_PTYPE_L2_ETHER_VLAN;
break;
case ESE_DZ_ETH_TAG_CLASS_VLAN2:
l2_ptype = RTE_PTYPE_L2_ETHER_QINQ;
break;
default:
/* Unexpected Eth tag class */
SFC_ASSERT(false);
}
switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_L3_CLASS)) {
case ESE_DZ_L3_CLASS_IP4_FRAG:
l4_ptype = RTE_PTYPE_L4_FRAG;
/* FALLTHROUGH */
case ESE_DZ_L3_CLASS_IP4:
l3_ptype = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
ol_flags |= PKT_RX_RSS_HASH |
((EFX_TEST_QWORD_BIT(rx_ev,
ESF_DZ_RX_IPCKSUM_ERR_LBN)) ?
PKT_RX_IP_CKSUM_BAD : PKT_RX_IP_CKSUM_GOOD);
break;
case ESE_DZ_L3_CLASS_IP6_FRAG:
l4_ptype |= RTE_PTYPE_L4_FRAG;
/* FALLTHROUGH */
case ESE_DZ_L3_CLASS_IP6:
l3_ptype |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
ol_flags |= PKT_RX_RSS_HASH;
break;
case ESE_DZ_L3_CLASS_ARP:
/* Override Layer 2 packet type */
l2_ptype = RTE_PTYPE_L2_ETHER_ARP;
break;
default:
/* Unexpected Layer 3 class */
SFC_ASSERT(false);
}
switch (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_L4_CLASS)) {
case ESE_DZ_L4_CLASS_TCP:
l4_ptype = RTE_PTYPE_L4_TCP;
ol_flags |=
(EFX_TEST_QWORD_BIT(rx_ev,
ESF_DZ_RX_TCPUDP_CKSUM_ERR_LBN)) ?
PKT_RX_L4_CKSUM_BAD : PKT_RX_L4_CKSUM_GOOD;
break;
case ESE_DZ_L4_CLASS_UDP:
l4_ptype = RTE_PTYPE_L4_UDP;
ol_flags |=
(EFX_TEST_QWORD_BIT(rx_ev,
ESF_DZ_RX_TCPUDP_CKSUM_ERR_LBN)) ?
PKT_RX_L4_CKSUM_BAD : PKT_RX_L4_CKSUM_GOOD;
break;
case ESE_DZ_L4_CLASS_UNKNOWN:
break;
default:
/* Unexpected Layer 4 class */
SFC_ASSERT(false);
}
/* Remove RSS hash offload flag if RSS is not enabled */
if (~rxq->flags & SFC_EF10_RXQ_RSS_HASH)
ol_flags &= ~PKT_RX_RSS_HASH;
done:
m->ol_flags = ol_flags;
m->packet_type = l2_ptype | l3_ptype | l4_ptype;
}
static uint16_t
sfc_ef10_rx_pseudo_hdr_get_len(const uint8_t *pseudo_hdr)
{
return rte_le_to_cpu_16(*(const uint16_t *)&pseudo_hdr[8]);
}
static uint32_t
sfc_ef10_rx_pseudo_hdr_get_hash(const uint8_t *pseudo_hdr)
{
return rte_le_to_cpu_32(*(const uint32_t *)pseudo_hdr);
}
static uint16_t
sfc_ef10_rx_process_event(struct sfc_ef10_rxq *rxq, efx_qword_t rx_ev,
struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
const unsigned int ptr_mask = rxq->ptr_mask;
unsigned int completed = rxq->completed;
unsigned int ready;
struct sfc_ef10_rx_sw_desc *rxd;
struct rte_mbuf *m;
struct rte_mbuf *m0;
uint16_t n_rx_pkts;
const uint8_t *pseudo_hdr;
uint16_t pkt_len;
ready = (EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_DSC_PTR_LBITS) - completed) &
EFX_MASK32(ESF_DZ_RX_DSC_PTR_LBITS);
SFC_ASSERT(ready > 0);
if (rx_ev.eq_u64[0] &
rte_cpu_to_le_64((1ull << ESF_DZ_RX_ECC_ERR_LBN) |
(1ull << ESF_DZ_RX_ECRC_ERR_LBN))) {
SFC_ASSERT(rxq->prepared == 0);
rxq->completed += ready;
while (ready-- > 0) {
rxd = &rxq->sw_ring[completed++ & ptr_mask];
rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
}
return 0;
}
n_rx_pkts = RTE_MIN(ready, nb_pkts);
rxq->prepared = ready - n_rx_pkts;
rxq->completed += n_rx_pkts;
rxd = &rxq->sw_ring[completed++ & ptr_mask];
sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);
m = rxd->mbuf;
*rx_pkts++ = m;
*(uint64_t *)(&m->rearm_data) = rxq->rearm_data;
/* rearm_data rewrites ol_flags which is updated below */
rte_compiler_barrier();
/* Classify packet based on Rx event */
sfc_ef10_rx_ev_to_offloads(rxq, rx_ev, m);
/* data_off already moved past pseudo header */
pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
/*
* Always get RSS hash from pseudo header to avoid
* condition/branching. If it is valid or not depends on
* PKT_RX_RSS_HASH in m->ol_flags.
*/
m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
if (ready == 1)
pkt_len = EFX_QWORD_FIELD(rx_ev, ESF_DZ_RX_BYTES) -
rxq->prefix_size;
else
pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
SFC_ASSERT(pkt_len > 0);
rte_pktmbuf_data_len(m) = pkt_len;
rte_pktmbuf_pkt_len(m) = pkt_len;
m->next = NULL;
/* Remember mbuf to copy offload flags and packet type from */
m0 = m;
for (--ready; ready > 0; --ready) {
rxd = &rxq->sw_ring[completed++ & ptr_mask];
sfc_ef10_rx_prefetch_next(rxq, completed & ptr_mask);
m = rxd->mbuf;
if (ready > rxq->prepared)
*rx_pkts++ = m;
*(uint64_t *)(&m->rearm_data) = rxq->rearm_data;
/* rearm_data rewrites ol_flags which is updated below */
rte_compiler_barrier();
/* Event-dependent information is the same */
m->ol_flags = m0->ol_flags;
m->packet_type = m0->packet_type;
/* data_off already moved past pseudo header */
pseudo_hdr = (uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
/*
* Always get RSS hash from pseudo header to avoid
* condition/branching. If it is valid or not depends on
* PKT_RX_RSS_HASH in m->ol_flags.
*/
m->hash.rss = sfc_ef10_rx_pseudo_hdr_get_hash(pseudo_hdr);
pkt_len = sfc_ef10_rx_pseudo_hdr_get_len(pseudo_hdr);
SFC_ASSERT(pkt_len > 0);
rte_pktmbuf_data_len(m) = pkt_len;
rte_pktmbuf_pkt_len(m) = pkt_len;
m->next = NULL;
}
return n_rx_pkts;
}
static bool
sfc_ef10_rx_get_event(struct sfc_ef10_rxq *rxq, efx_qword_t *rx_ev)
{
*rx_ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
if (!sfc_ef10_ev_present(*rx_ev))
return false;
if (unlikely(EFX_QWORD_FIELD(*rx_ev, FSF_AZ_EV_CODE) !=
FSE_AZ_EV_CODE_RX_EV)) {
/*
* Do not move read_ptr to keep the event for exception
* handling by the control path.
*/
rxq->flags |= SFC_EF10_RXQ_EXCEPTION;
sfc_ef10_rx_err(&rxq->dp.dpq,
"RxQ exception at EvQ read ptr %#x",
rxq->evq_read_ptr);
return false;
}
rxq->evq_read_ptr++;
return true;
}
static uint16_t
sfc_ef10_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(rx_queue);
unsigned int evq_old_read_ptr;
uint16_t n_rx_pkts;
efx_qword_t rx_ev;
if (unlikely(rxq->flags &
(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION)))
return 0;
n_rx_pkts = sfc_ef10_rx_prepared(rxq, rx_pkts, nb_pkts);
evq_old_read_ptr = rxq->evq_read_ptr;
while (n_rx_pkts != nb_pkts && sfc_ef10_rx_get_event(rxq, &rx_ev)) {
/*
* DROP_EVENT is an internal to the NIC, software should
* never see it and, therefore, may ignore it.
*/
n_rx_pkts += sfc_ef10_rx_process_event(rxq, rx_ev,
rx_pkts + n_rx_pkts,
nb_pkts - n_rx_pkts);
}
sfc_ef10_ev_qclear(rxq->evq_hw_ring, rxq->ptr_mask, evq_old_read_ptr,
rxq->evq_read_ptr);
/* It is not a problem if we refill in the case of exception */
sfc_ef10_rx_qrefill(rxq);
return n_rx_pkts;
}
static const uint32_t *
sfc_ef10_supported_ptypes_get(void)
{
static const uint32_t ef10_native_ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_ARP,
RTE_PTYPE_L2_ETHER_VLAN,
RTE_PTYPE_L2_ETHER_QINQ,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_FRAG,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_UNKNOWN
};
return ef10_native_ptypes;
}
static sfc_dp_rx_qdesc_npending_t sfc_ef10_rx_qdesc_npending;
static unsigned int
sfc_ef10_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq)
{
/*
* Correct implementation requires EvQ polling and events
* processing (keeping all ready mbufs in prepared).
*/
return -ENOTSUP;
}
static uint64_t
sfc_ef10_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
{
struct rte_mbuf m;
memset(&m, 0, sizeof(m));
rte_mbuf_refcnt_set(&m, 1);
m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
m.nb_segs = 1;
m.port = port_id;
/* rearm_data covers structure members filled in above */
rte_compiler_barrier();
return *(uint64_t *)(&m.rearm_data);
}
static sfc_dp_rx_qcreate_t sfc_ef10_rx_qcreate;
static int
sfc_ef10_rx_qcreate(uint16_t port_id, uint16_t queue_id,
const struct rte_pci_addr *pci_addr, int socket_id,
const struct sfc_dp_rx_qcreate_info *info,
struct sfc_dp_rxq **dp_rxqp)
{
struct sfc_ef10_rxq *rxq;
int rc;
rc = EINVAL;
if (info->rxq_entries != info->evq_entries)
goto fail_rxq_args;
rc = ENOMEM;
rxq = rte_zmalloc_socket("sfc-ef10-rxq", sizeof(*rxq),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL)
goto fail_rxq_alloc;
sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
rc = ENOMEM;
rxq->sw_ring = rte_calloc_socket("sfc-ef10-rxq-sw_ring",
info->rxq_entries,
sizeof(*rxq->sw_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_ring == NULL)
goto fail_desc_alloc;
rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
rxq->flags |= SFC_EF10_RXQ_RSS_HASH;
rxq->ptr_mask = info->rxq_entries - 1;
rxq->evq_hw_ring = info->evq_hw_ring;
rxq->refill_threshold = info->refill_threshold;
rxq->rearm_data =
sfc_ef10_mk_mbuf_rearm_data(port_id, info->prefix_size);
rxq->prefix_size = info->prefix_size;
rxq->buf_size = info->buf_size;
rxq->refill_mb_pool = info->refill_mb_pool;
rxq->rxq_hw_ring = info->rxq_hw_ring;
rxq->doorbell = (volatile uint8_t *)info->mem_bar +
ER_DZ_RX_DESC_UPD_REG_OFST +
info->hw_index * ER_DZ_RX_DESC_UPD_REG_STEP;
*dp_rxqp = &rxq->dp;
return 0;
fail_desc_alloc:
rte_free(rxq);
fail_rxq_alloc:
fail_rxq_args:
return rc;
}
static sfc_dp_rx_qdestroy_t sfc_ef10_rx_qdestroy;
static void
sfc_ef10_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
rte_free(rxq->sw_ring);
rte_free(rxq);
}
static sfc_dp_rx_qstart_t sfc_ef10_rx_qstart;
static int
sfc_ef10_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
rxq->prepared = 0;
rxq->completed = rxq->added = 0;
sfc_ef10_rx_qrefill(rxq);
rxq->evq_read_ptr = evq_read_ptr;
rxq->flags |= SFC_EF10_RXQ_STARTED;
rxq->flags &= ~(SFC_EF10_RXQ_NOT_RUNNING | SFC_EF10_RXQ_EXCEPTION);
return 0;
}
static sfc_dp_rx_qstop_t sfc_ef10_rx_qstop;
static void
sfc_ef10_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
rxq->flags |= SFC_EF10_RXQ_NOT_RUNNING;
*evq_read_ptr = rxq->evq_read_ptr;
}
static sfc_dp_rx_qrx_ev_t sfc_ef10_rx_qrx_ev;
static bool
sfc_ef10_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
{
__rte_unused struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
SFC_ASSERT(rxq->flags & SFC_EF10_RXQ_NOT_RUNNING);
/*
* It is safe to ignore Rx event since we free all mbufs on
* queue purge anyway.
*/
return false;
}
static sfc_dp_rx_qpurge_t sfc_ef10_rx_qpurge;
static void
sfc_ef10_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_ef10_rxq *rxq = sfc_ef10_rxq_by_dp_rxq(dp_rxq);
unsigned int i;
struct sfc_ef10_rx_sw_desc *rxd;
for (i = rxq->completed; i != rxq->added; ++i) {
rxd = &rxq->sw_ring[i & rxq->ptr_mask];
rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
rxd->mbuf = NULL;
}
rxq->flags &= ~SFC_EF10_RXQ_STARTED;
}
struct sfc_dp_rx sfc_ef10_rx = {
.dp = {
.name = SFC_KVARG_DATAPATH_EF10,
.type = SFC_DP_RX,
.hw_fw_caps = SFC_DP_HW_FW_CAP_EF10,
},
.features = 0,
.qcreate = sfc_ef10_rx_qcreate,
.qdestroy = sfc_ef10_rx_qdestroy,
.qstart = sfc_ef10_rx_qstart,
.qstop = sfc_ef10_rx_qstop,
.qrx_ev = sfc_ef10_rx_qrx_ev,
.qpurge = sfc_ef10_rx_qpurge,
.supported_ptypes_get = sfc_ef10_supported_ptypes_get,
.qdesc_npending = sfc_ef10_rx_qdesc_npending,
.pkt_burst = sfc_ef10_recv_pkts,
};